
LPI certification 101 exam prep (release
2), Part 2

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Before you start... 2
2. Regular expressions ... 4
3. FHS and finding files... 8
4. Process control ... 15
5. Text processing... 20
6. Kernel modules ... 26
7. Summary and resources .. 31

LPI certification 101 exam prep (release 2), Part 2 Page 1 of 32

Section 1. Before you start

About this tutorial
Welcome to "Basic administration," the second of four tutorials designed to prepare you for
the Linux Professional Institute's 101 exam. In this tutorial, we'll show you how to use regular
expressions to search files for text patterns. Next, we'll introduce you to the Filesystem
Hierarchy Standard (FSH), and then show you how to locate files on your system. Then, we'll
show you how to take full control of Linux processes by running them in the background,
listing processes, detaching processes from the terminal, and more. Next, we'll give you a
whirlwind introduction to shell pipelines, redirection, and text processing commands. Finally,
we'll introduce you to Linux kernel modules.

This particular tutorial (Part 2) is ideal for those who have a good basic knowledge of bash
and want to receive a solid introduction to basic Linux administration tasks. If you are new to
Linux, we recommend that you complete Part 1 of this tutorial series first before continuing.
For some, much of this material will be new, but more experienced Linux users may find this
tutorial to be a great way of "rounding out" their basic Linux administration skills.

By the end of this tutorial, you'll have a solid grounding in basic Linux administration and will
be ready to begin learning some more advanced Linux system administration skills. By the
end of this series of tutorials (eight in all), you'll have the knowledge you need to become a
Linux Systems Administrator and will be ready to attain an LPIC Level 1 certification from the
Linux Professional Institute if you so choose.

For those who have taken the release 1 version of this tutorial for reasons other than LPI
exam preparation, you probably don't need to take this one. However, if you do plan to take
the exams, you should strongly consider reading this revised tutorial.

About the authors
For technical questions about the content of this tutorial, contact the authors:

• Daniel Robbins, at drobbins@gentoo.org

• Chris Houser, at chouser@gentoo.org

• Aron Griffis, at agriffis@gentoo.org

Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of Gentoo
Linux an advanced ports-based Linux metadistribution. Besides writing articles, tutorials, and
tips for the developerWorks Linux zone and Intel Developer Services, he has also served as
a contributing author for several books, including Samba Unleashed and SuSE Linux
Unleashed. Daniel enjoys spending time with his wife, Mary, and his daughter, Hadassah.
You can contact Daniel at drobbins@gentoo.org.

Chris Houser, known to his friends as "Chouser," has been a UNIX proponent since 1994
when he joined the administration team for the computer science network at Taylor
University in Indiana, where he earned his Bachelor's degree in Computer Science and
Mathematics. Since then, he has gone on to work in Web application programming, user
interface design, professional video software support, and now Tru64 UNIX device driver
programming at Compaq. He has also contributed to various free software projects, most

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 32 LPI certification 101 exam prep (release 2), Part 2

http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi2-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi2-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi2-i.html
mailto:drobbins@gentoo.org
mailto:chouser@gentoo.org
mailto:agriffis@gentoo.org
http://www.gentoo.org
http://www.gentoo.org
mailto:drobbins@gentoo.org
http://www.compaq.com

recently to Gentoo Linux). He lives with his wife and two cats in New Hampshire. You can
contact Chris at chouser@gentoo.org.

Aron Griffis graduated from Taylor University with a degree in Computer Science and an
award that proclaimed, "Future Founder of a Utopian UNIX Commune." Working towards that
goal, Aron is employed by Compaq writing network drivers for Tru64 UNIX, and spending his
spare time plunking out tunes on the piano or developing Gentoo Linux. He lives with his wife
Amy (also a UNIX engineer) in Nashua, New Hampshire.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 3 of 32

http://www.gentoo.org
http://www.gentoo.org
mailto:chouser@gentoo.org
http://www.compaq.com
http://www.gentoo.org
http://www.gentoo.org

Section 2. Regular expressions

What is a regular expression?
A regular expression (also called a "regex" or "regexp") is a special syntax used to describe
text patterns. On Linux systems, regular expressions are commonly used to find patterns of
text, as well as to perform search-and-replace operations on text streams.

Glob comparison
As we take a look at regular expressions, you may find that regular expression syntax looks
similar to the filename "globbing" syntax that we looked at in Part 1. However, don't let this
fool you; their similarity is only skin deep. Both regular expressions and filename globbing
patterns, while they may look similar, are fundamentally different beasts.

The simple substring
With that caution, let's take a look at the most basic of regular expressions, the simple
substring. To do this, we're going to use grep, a command that scans the contents of a file
for a particular regular expression. grep prints every line that matches the regular
expression, and ignores every line that doesn't:

$ grep bash /etc/passwd
operator:x:11:0:operator:/root:/bin/bash
root:x:0:0::/root:/bin/bash
ftp:x:40:1::/home/ftp:/bin/bash

Above, the first parameter to grep is a regex; the second is a filename. Grep read each line
in /etc/passwd and applied the simple substring regex bash to it, looking for a match. If a
match was found, grep printed out the entire line; otherwise, the line was ignored.

Understanding the simple substring
In general, if you are searching for a substring, you can just specify the text verbatim without
supplying any "special" characters. The only time you'd need to do anything special would be
if your substring contained a +, ., *, [,], or \, in which case these characters would need to
be enclosed in quotes and preceded by a backslash. Here are a few more examples of
simple substring regular expressions:

• /tmp (scans for the literal string /tmp)

• "\[box\]" (scans for the literal string [box])

• "*funny*" (scans for the literal string *funny*)

• "ld\.so" (scans for the literal string ld.so)

Metacharacters

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 32 LPI certification 101 exam prep (release 2), Part 2

With regular expressions, you can perform much more complex searches than the examples
we've looked at so far by taking advantage of metacharacters. One of these metacharacters
is the . (a period), which matches any single character:

$ grep dev.hda /etc/fstab
/dev/hda3 / reiserfs noatime,ro 1 1
/dev/hda1 /boot reiserfs noauto,noatime,notail 1 2
/dev/hda2 swap swap sw 0 0
#/dev/hda4 /mnt/extra reiserfs noatime,rw 1 1

In this example, the literal text dev.hda didn't appear on any of the lines in /etc/fstab.
However, grep wasn't scanning them for the literal dev.hda string, but for the dev.hda
pattern. Remember that the . will match any single character. As you can see, the .
metacharacter is functionally equivalent to how the ? metacharacter works in "glob"
expansions.

Using []
If we wanted to match a character a bit more specifically than ., we could use [and]
(square brackets) to specify a subset of characters that should be matched:

$ grep dev.hda[12] /etc/fstab
/dev/hda1 /boot reiserfs noauto,noatime,notail 1 2
/dev/hda2 swap swap sw 0 0

As you can see, this particular syntactical feature works identically to the [] in "glob"
filename expansions. Again, this is one of the tricky things about learning regular
expressions -- the syntax is similar but not identical to "glob" filename expansion syntax,
which often makes regexes a bit confusing to learn.

Using [^]
You can reverse the meaning of the square brackets by putting a ^ immediately after the [.
In this case, the brackets will match any character that is not listed inside the brackets.
Again, note that we use [^] with regular expressions, but [!] with globs:

$ grep dev.hda[^12] /etc/fstab
/dev/hda3 / reiserfs noatime,ro 1 1
#/dev/hda4 /mnt/extra reiserfs noatime,rw 1 1

Differing syntax
It's important to note that the syntax inside square brackets is fundamentally different from
that in other parts of the regular expression. For example, if you put a . inside square
brackets, it allows the square brackets to match a literal ., just like the 1 and 2 in the
examples above. In comparison, a literal . outside the square brackets is interpreted as a
metacharacter unless prefixed by a \. We can take advantage of this fact to print a list of all
lines in /etc/fstab that contain the literal string dev.hda by typing:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 5 of 32

$ grep dev[.]hda /etc/fstab

Alternately, we could also type:

$ grep "dev\.hda" /etc/fstab

Neither regular expression is likely to match any lines in your /etc/fstab file.

The "*" metacharacter
Some metacharacters don't match anything in themselves, but instead modify the meaning of
a previous character. One such metacharacter is * (asterisk), which is used to match zero or
more repeated occurrences of the previous character. Note that this means that the * has a
different meaning in a regex than it does with globs. Here are some examples, and play
close attention to instances where these regex matches differ from globs:

• ab*c matches abbbbc but not abqc (if a glob, it would match both strings -- can you
figure out why?)

• ab*c matches abc but not abbqbbc (again, if a glob, it would match both strings)

• ab*c matches ac but not cba (if a glob, ac would not be matched, nor would cba)

• b[cq]*e matches bqe and be (if a glob, it would match bqe but not be)

• b[cq]*e matches bccqqe but not bccc (if a glob, it would match the first but not the
second as well)

• b[cq]*e matches bqqcce but not cqe (if a glob, it would match the first but not the
second as well)

• b[cq]*e matches bbbeee (this would not be the case with a glob)

• .* will match any string. (if a glob, it would match any string starting with .)

• foo.* will match any string that begins with foo (if a glob, it would match any string
starting with the four literal characters foo..)

Now, for a quick brain-twisting review: the line ac matches the regex ab*c because the
asterisk also allows the preceding expression (c) to appear zero times. Again, it's critical to
note that the * regex metacharacter is interpreted in a fundamentally different way than the *
glob character.

Beginning and end of line
The last metacharacters we will cover in detail here are the ^ and $ metacharacters, used to
match the beginning and end of line, respectively. By using a ^ at the beginning of your
regex, you can cause your pattern to be "anchored" to the start of the line. In the following
example, we use the ^# regex to match any line beginning with the # character:

$ grep ^# /etc/fstab
/etc/fstab: static file system information.
#

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 32 LPI certification 101 exam prep (release 2), Part 2

Full-line regexes
^ and $ can be combined to match an entire line. For example, the following regex will match
a line that starts with the # character and ends with the . character, with any number of other
characters in between:

$ grep '^#.*\.$' /etc/fstab
/etc/fstab: static file system information.

In the above example, we surrounded our regular expression with single quotes to prevent $
from being interpreted by the shell. Without the single quotes, the $ will disappear from our
regex before grep even has a chance to take a look at it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 7 of 32

Section 3. FHS and finding files

Filesystem Hierarchy Standard
The Filesystem Hierarchy Standard is a document that specifies the layout of directories on a
Linux system. The FHS was devised to provide a common layout to simplify
distribution-independent software development -- so that stuff is in generally the same place
across Linux distributions. The FHS specifies the following directory tree (taken directly from
the FHS specification):

• / (the root directory)

• /boot (static files of the boot loader)

• /dev (device files)

• /etc (host-specific system configuration)

• /lib (essential shared libraries and kernel modules)

• /mnt (mount point for mounting a filesystem temporarily)

• /opt (add-on application software packages)

• /sbin (essential system binaries)

• /tmp (temporary files)

• /usr (secondary hierarchy)

• /var (variable data)

The two independent FHS categories
The FHS bases its layout specification on the idea that there are two independent categories
of files: shareable vs. unshareable, and variable vs. static. Shareable data can be shared
between hosts; unshareable data is specific to a given host (such as configuration files).
Variable data can be modified; static data is not modified (except at system installation and
maintenance).

The following grid summarizes the four possible combinations, with examples of directories
that would fall into those categories. Again, this table is straight from the FHS specification:

+---------+-----------------+-------------+
| | shareable | unshareable |
+---------+-----------------+-------------+
|static | /usr | /etc |
| | /opt | /boot |
+---------+-----------------+-------------+
|variable | /var/mail | /var/run |
| | /var/spool/news | /var/lock |
+---------+-----------------+-------------+

Secondary hierarchy at /usr
Under /usr you'll find a secondary hierarchy that looks a lot like the root filesystem. It isn't
critical for /usr to exist when the machine powers up, so it can be shared on a network

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 32 LPI certification 101 exam prep (release 2), Part 2

(shareable), or mounted from a CD-ROM (static). Most Linux setups don't make use of
sharing /usr, but it's valuable to understand the usefulness of distinguishing between the
primary hierarchy at the root directory and the secondary hierarchy at /usr.

This is all we'll say about the Filesystem Hierarchy Standard. The document itself is quite
readable, so you should go take a look at it. You'll understand a lot more about the Linux
filesystem if you read it. Find it at http://www.pathname.com/fhs/.

Finding files
Linux systems often contain hundreds of thousands of files. Perhaps you are savvy enough
to never lose track of any of them, but it's more likely that you will occasionally need help
finding one. There are a few different tools on Linux for finding files. This introduction will
help you choose the right tool for the job.

The PATH
When you run a program at the command line, bash actually searches through a list of
directories to find the program you requested. For example, when you type ls, bash doesn't
intrinsically know that the ls program lives in /usr/bin. Instead, bash refers to an
environment variable called PATH, which is a colon-separated list of directories. We can
examine the value of PATH:

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin

Given this value of PATH (yours may differ,) bash would first check /usr/local/bin, then
/usr/bin for the ls program. Most likely, ls is kept in /usr/bin, so bash would stop at that
point.

Modifying PATH
You can augment your PATH by assigning to it on the command line:

$ PATH=$PATH:~/bin
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/home/agriffis/bin

You can also remove elements from PATH, although it isn't as easy since you can't refer to
the existing $PATH. Your best bet is to simply type out the new PATH you want:

$ PATH=/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:~/bin
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home/agriffis/bin

To make your PATH changes available to any future processes you start from this shell,
export your changes using the export command:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 9 of 32

http://www.pathname.com/fhs/

$ export PATH

All about "which"
You can check to see if there's a given program in your PATH by using which. For example,
here we find out that our Linux system has no (common) sense:

$ which sense
which: no sense in (/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin)

In this example, we successfully locate ls:

$ which ls
/usr/bin/ls

"which -a"
Finally, you should be aware of the -a flag, which causes which to show you all of the
instances of a given program in your PATH:

$ which -a ls
/usr/bin/ls
/bin/ls

whereis
If you're interested in finding more information than purely the location of a program, you
might try the whereis program:

$ whereis ls
ls: /bin/ls /usr/bin/ls /usr/share/man/man1/ls.1.gz

Here we see that ls occurs in two common binary locations, /bin and /usr/bin. Additionally,
we are informed that there is a manual page located in /usr/share/man. This is the man-page
you would see if you were to type man ls.

The whereis program also has the ability to search for sources, to specify alternate search
paths, and to search for unusual entries. Refer to the whereis man-page for further
information.

find
The find command is another handy tool for your toolbox. With find you aren't restricted to
programs; you can search for any file you want, using a variety of search criteria. For
example, to search for a file by the name of README, starting in /usr/share/doc:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 32 LPI certification 101 exam prep (release 2), Part 2

$ find /usr/share/doc -name README
/usr/share/doc/ion-20010523/README
/usr/share/doc/bind-9.1.3-r6/dhcp-dynamic-dns-examples/README
/usr/share/doc/sane-1.0.5/README

find and wildcards
You can use "glob" wildcards in the argument to -name, provided that you quote them or
backslash-escape them (so they get passed to find intact rather than being expanded by
bash). For example, we might want to search for README files with extensions:

$ find /usr/share/doc -name README*
/usr/share/doc/iproute2-2.4.7/README.gz
/usr/share/doc/iproute2-2.4.7/README.iproute2+tc.gz
/usr/share/doc/iproute2-2.4.7/README.decnet.gz
/usr/share/doc/iproute2-2.4.7/examples/diffserv/README.gz
/usr/share/doc/pilot-link-0.9.6-r2/README.gz
/usr/share/doc/gnome-pilot-conduits-0.8/README.gz
/usr/share/doc/gimp-1.2.2/README.i18n.gz
/usr/share/doc/gimp-1.2.2/README.win32.gz
/usr/share/doc/gimp-1.2.2/README.gz
/usr/share/doc/gimp-1.2.2/README.perl.gz
[578 additional lines snipped]

Ignoring case with find
Of course, you might want to ignore case in your search:

$ find /usr/share/doc -name '[Rr][Ee][Aa][Dd][Mm][Ee]*'

Or, more simply:

$ find /usr/share/doc -iname readme*

As you can see, you can use -iname to do case-insensitive searching.

find and regular expressions
If you're familiar with regular expressions, you can use the -regex option to limit the output
to filenames that match a pattern. And similar to the -iname option, there is a corresponding
-iregex option that ignores case in the pattern. For example:

$ find /etc -iregex '.*xt.*'
/etc/X11/xkb/types/extra
/etc/X11/xkb/semantics/xtest
/etc/X11/xkb/compat/xtest
/etc/X11/app-defaults/XTerm
/etc/X11/app-defaults/XTerm-color

Note that unlike many programs, find requires that the regex specified matches the entire

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 11 of 32

path, not just a part of it. For that reason, specifying the leading and trailing .* is necessary;
purely using xt as the regex would not be sufficient.

find and types
The -type option allows you to find filesystem objects of a certain type. The possible
arguments to -type are b (block device), c (character device), d (directory), p (named pipe),
f (regular file), l (symbolic link), and s (socket). For example, to search for symbolic links in
/usr/bin that contain the string vim:

$ find /usr/bin -name '*vim*' -type l
/usr/bin/rvim
/usr/bin/vimdiff
/usr/bin/gvimdiff

find and mtimes
The -mtime option allows you to select files based on their last modification time. The
argument to mtime is in terms of 24-hour periods, and is most useful when entered with
either a plus sign (meaning "after") or a minus sign (meaning "before"). For example,
consider the following scenario:

$ ls -l ?
-rw------- 1 root root 0 Jan 7 18:00 a
-rw------- 1 root root 0 Jan 6 18:00 b
-rw------- 1 root root 0 Jan 5 18:00 c
-rw------- 1 root root 0 Jan 4 18:00 d
$ date
Mon May 7 18:14:52 EST 2003

You could search for files that were created in the past 24 hours:

$ find . -name \? -mtime -1
./a

Or you could search for files that were created prior to the current 24-hour period:

$ find . -name \? -mtime +0
./b
./c
./d

The -daystart option
If you additionally specify the -daystart option, then the periods of time start at the
beginning of today rather than 24 hours ago. For example, here is a set of files created
yesterday and the day before:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 32 LPI certification 101 exam prep (release 2), Part 2

$ find . -name \? -daystart -mtime +0 -mtime -3
./b
./c
$ ls -l b c
-rw------- 1 root root 0 May 6 18:00 b
-rw------- 1 root root 0 May 5 18:00 c

The -size option
The -size option allows you to find files based on their size. By default, the argument to
-size is 512-byte blocks, but adding a suffix can make things easier. The available suffixes
are b (512-byte blocks), c (bytes), k (kilobytes), and w (2-byte words). Additionally, you can
prepend a plus sign ("larger than") or minus sign ("smaller than").

For example, to find regular files in /usr/bin that are smaller than 50 bytes:

$ find /usr/bin -type f -size -50c
/usr/bin/krdb
/usr/bin/run-nautilus
/usr/bin/sgmlwhich
/usr/bin/muttbug

Processing found files
You may be wondering what you can do with all these files that you find! Well, find has the
ability to act on the files that it finds by using the -exec option. This option accepts a
command line to execute as its argument, terminated with ;, and it replaces any occurrences
of {} with the filename. This is best understood with an example:

$ find /usr/bin -type f -size -50c -exec ls -l '{}' ';'
-rwxr-xr-x 1 root root 27 Oct 28 07:13 /usr/bin/krdb
-rwxr-xr-x 1 root root 35 Nov 28 18:26 /usr/bin/run-nautilus
-rwxr-xr-x 1 root root 25 Oct 21 17:51 /usr/bin/sgmlwhich
-rwxr-xr-x 1 root root 26 Sep 26 08:00 /usr/bin/muttbug

As you can see, find is a very powerful command. It has grown through the years of UNIX
and Linux development. There are many other useful options to find. You can learn about
them in the find manual page.

locate
We have covered which, whereis, and find. You might have noticed that find can take
a while to execute, since it needs to read each directory that it's searching. It turns out that
the locate command can speed things up by relying on an external database generated by
updatedb (which we'll cover in the next panel.)

The locate command matches against any part of a pathname, not just the file itself. For
example:

$ locate bin/ls

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 13 of 32

/var/ftp/bin/ls
/bin/ls
/sbin/lsmod
/sbin/lspci
/usr/bin/lsattr
/usr/bin/lspgpot
/usr/sbin/lsof

Using updatedb
Most Linux systems have a "cron job" to update the database periodically. If your locate
returned an error such as the following, then you will need to run updatedb as root to
generate the search database:

$ locate bin/ls
locate: /var/spool/locate/locatedb: No such file or directory
$ su
Password:
updatedb

The updatedb command may take a long time to run. If you have a noisy hard disk, you will
hear a lot of racket as the entire filesystem is indexed. :)

slocate
On many Linux distributions, the locate command has been replaced by slocate. There
is typically a symbolic link to "locate" so that you don't need to remember which you have.
slocate stands for "secure locate." It stores permissions information in the database so that
normal users can't pry into directories they would otherwise be unable to read. The usage
information for slocate is essentially the same as for locate, although the output might be
different depending on the user running the command.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 32 LPI certification 101 exam prep (release 2), Part 2

Section 4. Process control

Staring xeyes
To learn about process control, we first need to start a process. Make sure that you have X
running and execute the following command:

$ xeyes -center red

You will notice that an xeyes window pops up, and the red eyeballs follow your mouse
around the screen. You may also notice that you don't have a new prompt in your terminal.

Stopping a process
To get a prompt back, you could type Control-C (often written as Ctrl-C or ^C):

^C
$

You get a new bash prompt, but the xeyes window disappeared. In fact, the entire process
has been killed. Instead of killing it with Control-C, we could have just stopped it with
Control-Z:

$ xeyes -center red
^Z
[1]+ Stopped xeyes -center red
$

This time you get a new bash prompt, and the xeyes windows stays up. If you play with it a
bit, however, you will notice that the eyeballs are frozen in place. If the xeyes window gets
covered by another window and then uncovered again, you will see that it doesn't even
redraw the eyes at all. The process isn't doing anything. It is, in fact, "Stopped."

fg and bg
To get the process "un-stopped" and running again, we can bring it to the foreground with the
bash built-in fg:

$ fg

xeyesbashbashandxeyes

^Z
[1]+ Stopped xeyes -center red
$

Now continue it in the background with the bash built-in bg:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 15 of 32

$ bg
[1]+ xeyes -center red &
$

Great! The xeyes process is now running in the background, and we have a new, working
bash prompt.

Using "&"
If we wanted to start xeyes in the background from the beginning (instead of using Control-Z
and bg), we could have just added an "&" (ampersand) to the end of xeyes command line:

$ xeyes -center blue &
[2] 16224

Multiple background processes
Now we have both a red and a blue xeyes running in the background. We can list these jobs
with the bash built-in jobs:

$ jobs -l
[1]- 16217 Running xeyes -center red &
[2]+ 16224 Running xeyes -center blue &

The numbers in the left column are the job numbers bash assigned when they were started.
Job 2 has a + (plus) to indicate that it's the "current job," which means that typing fg will
bring it to the foreground. You could also foreground a specific job by specifying its number;
for example, fg 1 would make the red xeyes the foreground task. The next column is the
process id or pid, included in the listing courtesy of the -l option to jobs. Finally, both jobs
are currently "Running," and their command lines are listed to the right.

Introducing signals
To kill, stop, or continue processes, Linux uses a special form of communication called
"signals." By sending a certain signal to a process, you can get it to terminate, stop, or do
other things. This is what you're actually doing when you type Control-C, Control-Z, or use
the bg or fg built-ins -- you're using bash to send a particular signal to the process. These
signals can also be sent using the kill command and specifying the pid (process id) on the
command line:

$ kill -s SIGSTOP 16224
$ jobs -l
[1]- 16217 Running xeyes -center red &
[2]+ 16224 Stopped (signal) xeyes -center blue

As you can see, kill doesn't necessarily "kill" a process, although it can. Using the "-s"
option, kill can send any signal to a process. Linux kills, stops or continues processes when
they are sent the SIGINT, SIGSTOP, or SIGCONT signals respectively. There are also other
signals that you can send to a process; some of these signals may be interpreted in an

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 32 LPI certification 101 exam prep (release 2), Part 2

application-dependent way. You can learn what signals a particular process recognizes by
looking at its man-page and searching for a SIGNALS section.

SIGTERM and SIGINT
If you want to kill a process, you have several options. By default, kill sends SIGTERM,
which is not identical to SIGINT of Control-C fame, but usually has the same results:

$ kill 16217
$ jobs -l
[1]- 16217 Terminated xeyes -center red
[2]+ 16224 Stopped (signal) xeyes -center blue

The big kill
Processes can ignore both SIGTERM and SIGINT, either by choice or because they are
stopped or somehow "stuck." In these cases it may be necessary to use the big hammer, the
SIGKILL signal. A process cannot ignore SIGKILL:

$ kill 16224
$ jobs -l
[2]+ 16224 Stopped (signal) xeyes -center blue
$ kill -s SIGKILL
$ jobs -l
[2]+ 16224 Interrupt xeyes -center blue

nohup
The terminal where you start a job is called the job's controlling terminal. Some shells (not
bash by default), will deliver a SIGHUP signal to backgrounded jobs when you logout,
causing them to quit. To protect processes from this behavior, use the nohup when you start
the process:

$ nohup make &
$ exit

Using ps to list processes
The jobs command we were using earlier only lists processes that were started from your
bash session. To see all the processes on your system, use ps with the a and x options
together:

$ ps ax
PID TTY STAT TIME COMMAND
1 ? S 0:04 init [3]
2 ? SW 0:11 [keventd]
3 ? SWN 0:13 [ksoftirqd_CPU0]
4 ? SW 2:33 [kswapd]

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 17 of 32

5 ? SW 0:00 [bdflush]

I've only listed the first few because it is usually a very long list. This gives you a snapshot of
what the whole machine is doing, but is a lot of information to sift through. If you were to
leave off the ax, you would see only processes that are owned by you, and that have a
controlling terminal. The command ps x would show you all your processes, even those
without a controlling terminal. If you were to use ps a, you would get the list of everybody's
processes that are attached to a terminal.

Seeing the forest and the trees
You can also list different information about each process. The --forest option makes it
easy to see the process hierarchy, which will give you an indication of how the various
processes on your system interrelate. When a process starts a new process, that new
process is called a "child" process. In a --forest listing, parents appear on the left, and
children appear as branches to the right:

$ ps x --forest
PID TTY STAT TIME COMMAND
927 pts/1 S 0:00 bash
6690 pts/1 S 0:00 _ bash
26909 pts/1 R 0:00 _ ps x --forest
19930 pts/4 S 0:01 bash
25740 pts/4 S 0:04 _ vi processes.txt

The "u" and "l" ps options
The "u" or "l" options can also be added to any combination of "a" and "x" in order to include
more information about each process:

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
agriffis 403 0.0 0.0 2484 72 tty1 S 2001 0:00 -bash
chouser 404 0.0 0.0 2508 92 tty2 S 2001 0:00 -bash
root 408 0.0 0.0 1308 248 tty6 S 2001 0:00 /sbin/agetty 3
agriffis 434 0.0 0.0 1008 4 tty1 S 2001 0:00 /bin/sh /usr/X
chouser 927 0.0 0.0 2540 96 pts/1 S 2001 0:00 bash

$ ps al
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

100 1001 403 1 9 0 2484 72 wait4 S tty1 0:00 -bash
100 1000 404 1 9 0 2508 92 wait4 S tty2 0:00 -bash
000 0 408 1 9 0 1308 248 read_c S tty6 0:00 /sbin/ag
000 1001 434 403 9 0 1008 4 wait4 S tty1 0:00 /bin/sh
000 1000 927 652 9 0 2540 96 wait4 S pts/1 0:00 bash

Using "top"
If you find yourself running ps several times in a row, trying to watch things change, what you
probably want is top. top displays a continuously updated process listing, along with some
useful summary information:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 32 LPI certification 101 exam prep (release 2), Part 2

$ top
10:02pm up 19 days, 6:24, 8 users, load average: 0.04, 0.05, 0.00
75 processes: 74 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 1.3% user, 2.5% system, 0.0% nice, 96.0% idle
Mem: 256020K av, 226580K used, 29440K free, 0K shrd, 3804K buff
Swap: 136544K av, 80256K used, 56288K free 101760K cached

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
628 root 16 0 213M 31M 2304 S 0 1.9 12.5 91:43 X

26934 chouser 17 0 1272 1272 1076 R 0 1.1 0.4 0:00 top
652 chouser 11 0 12016 8840 1604 S 0 0.5 3.4 3:52 gnome-termin
641 chouser 9 0 2936 2808 1416 S 0 0.1 1.0 2:13 sawfish

nice
Each processes has a priority setting that Linux uses to determine how CPU timeslices are
shared. You can set the priority of a process by starting it with the nice command:

$ nice -n 10 oggenc /tmp/song.wav

Since the priority setting is called nice, it should be easy to remember that a higher value
will be nice to other processes, allowing them to get priority access to the CPU. By default,
processes are started with a setting of 0, so the setting of 10 above means oggenc will
readily give up the CPU to other processes. Generally, this means that oggenc will allow
other processes to run at their normal speed, regardless of how CPU-hungry oggenc
happens to be. You can see these niceness levels under the NI column in the ps and top
listings above.

renice
The nice command can only change the priority of a process when you start it. If you want
to change the niceness setting of a running process, use renice:

$ ps l 641
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

000 1000 641 1 9 0 5876 2808 do_sel S ? 2:14 sawfish
$ renice 10 641
641: old priority 0, new priority 10
$ ps l 641
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

000 1000 641 1 9 10 5876 2808 do_sel S ? 2:14 sawfish

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 19 of 32

Section 5. Text processing

Redirection revisited
Earlier in this tutorial series, we saw an example of how to use the > operator to redirect the
output of a command to a file, as follows:

$ echo "firstfile" > copyme

In addition to redirecting output to a file, we can also take advantage of a powerful shell
feature called pipes. Using pipes, we can pass the output of one command to the input of
another command. Consider the following example:

$ echo "hi there" | wc
1 2 9

The | character is used to connect the output of the command on the left to the input of the
command on the right. In the example above, the echo command prints out the string hi
there followed by a linefeed. That output would normally appear on the terminal, but the
pipe redirects it into the wc command, which displays the number of lines, words, and
characters in its input.

A pipe example
Here is another simple example:

$ ls -s | sort -n

In this case, ls -s would normally print a listing of the current directory on the terminal,
preceding each file with its size. But instead we've piped the output into sort -n, which
sorts the output numerically. This is a really useful way to find large files in your home
directory!

The following examples are more complex, but they demonstrate the power that can be
harnessed using pipes. We're going to throw out some commands we haven't covered yet,
but don't let that slow you down. Concentrate instead on understanding how pipes work so
you can employ them in your daily Linux tasks.

The decompression pipeline
Normally to decompress and untar a file, you might do the following:

$ bzip2 -d linux-2.4.16.tar.bz2
$ tar xvf linux-2.4.16.tar

The downside of this method is that it requires the creation of an intermediate,
uncompressed file on your disk. Since tar has the ability to read directly from its input
(instead of specifying a file), we could produce the same end-result using a pipeline:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 32 LPI certification 101 exam prep (release 2), Part 2

$ bzip2 -dc linux-2.4.16.tar.bz2 | tar xvf -

Woo hoo! Our compressed tarball has been extracted and we didn't need an intermediate
file.

A longer pipeline
Here's another pipeline example:

$ cat myfile.txt | sort | uniq | wc -l

We use cat to feed the contents of myfile.txt to the sort command. When the sort
command receives the input, it sorts all input lines so that they are in alphabetical order, and
then sends the output to uniq. uniq removes any duplicate lines (and requires its input to
be sorted, by the way,) sending the scrubbed output to wc -l. We've seen the wc command
earlier, but without command-line options. When given the -l option, it only prints the
number of lines in its input, instead of also including words and characters. You'll see that
this pipeline will print out the number of unique (non-identical) lines in a text file.

Try creating a couple of test files with your favorite text editor and use this pipeline to see
what results you get.

The text processing whirlwind begins
Now we embark on a whirlwind tour of the standard Linux text processing commands.
Because we're covering a lot of material in this tutorial, we don't have the space to provide
examples for every command. Instead, we encourage you to read each command's man
page (by typing man echo, for example) and learn how each command and it's options work
by spending some time playing with each one. As a rule, these commands print the results of
any text processing to the terminal rather than modifying any specified files. After we take our
whirlwind tour of the standard Linux text processing commands, we'll take a closer look at
output and input redirection. So yes, there is light at the end of the tunnel :)

echo

echo prints its arguments to the terminal. Use the -e option if you want to embed backslash
escape sequences; for example echo -e "foo\nfoo" will print foo, then a newline, and
then foo again. Use the -n option to tell echo to omit the trailing newline that is appended to
the output by default.

cat, sort, and uniq
cat

cat will print the contents of the files specified as arguments to the terminal. Handy as the
first command of a pipeline, for example, cat foo.txt | blah.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 21 of 32

sort

sort will print the contents of the file specified on the command line in alphabetical order. Of
course, sort also accepts piped input. Type man sort to familiarize yourself with its various
options that control sorting behavior.

uniq

uniq takes an already-sorted file or stream of data (via a pipeline) and removes duplicate
lines.

wc, head, and tail
wc

wc prints out the number of lines, words, and bytes in the specified file or in the input stream
(from a pipeline). Type man wc to learn how to fine-tune what counts are displayed.

head

Prints out the first ten lines of a file or stream. Use the -n option to specify how many lines
should be displayed.

tail

Prints out the last ten lines of a file or stream. Use the -n option to specify how many lines
should be displayed.

tac, expand, and unexpand
tac

tac is like cat, but prints all lines in reverse order; in other words, the last line is printed first.

expand

Convert input tabs to spaces. Use the -t option to specify the tabstop.

unexpand

Convert input spaces to tabs. Use the -t option to specify the tabstop.

cut, nl, and pr
cut

cut is used to extract character-delimited fields from each line of an input file or stream.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 32 LPI certification 101 exam prep (release 2), Part 2

nl

The nl command adds a line number to every line of input. Useful for printouts.

pr

pr is used to break files into multiple pages of output; typically used for printing.

tr, awk, and sed
vr

tr is a character translation tool; it's used to map certain characters in the input stream to
certain other characters in the output stream.

sed

sed is a powerful stream-oriented text editor. You can learn more about sed in the following
IBM developerWorks articles:

Sed by example, Part 1

Sed by example, Part 2

Sed by example, Part 3

If you're planning to take the LPI exam, be sure to read the first two articles of this series.

awk

awk is a handy line-oriented text-processing language. To learn more about awk, read the
following IBM developerWorks articles:

Awk by example, Part 1

Awk by example, Part 2

Awk by example, Part 3

od, split, and fmt
od

od is designed to transform the input stream into a octal or hex "dump" format.

split

split is a command used to split a larger file into many smaller-sized, more manageable
chunks.

fmt

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 23 of 32

http://www-106.ibm.com/developerworks/linux/library/l-awk1.html
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?

fmt will reformat paragraphs so that wrapping is done at the margin. These days it's less
useful since this ability is built into most text editors, but it's still a good one to know.

Paste, join, and tee
paste

paste takes two or more files as input, concatenates each sequential line from the input
files, and outputs the resulting lines. It can be useful to create tables or columns of text.

join

join is similar to paste, but it uses a field (by default the first) in each input line to match up
what should be combined on a single line.

tee

The tee command will print its input both to a file and to the screen. This is useful when you
want to create a log of something, but you also want to see it on the screen.

Whirlwind over! Redirection
Similar to using > on the bash command line, you can also use < to redirect a file into a
command. For many commands, you can simply specify the filename on the command line,
however some commands only work from standard input.

Bash and other shells support the concept of a "herefile." This allows you to specify the input
to a command in the lines following the command invocation, terminating it with a sentinal
value. This is easiest shown through an example:

$ sort <<END
apple
cranberry
banana
END
apple
banana
cranberry

In the example above, we typed the words apple, cranberry and banana, followed by
"END" to signify the end of the input. The sort program then returned our words in
alphabetical order.

Using >>
You would expect >> to be somehow analogous to <<, but it isn't really. It simply means to
append the output to a file, rather than overwrite as > would. For example:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 32 LPI certification 101 exam prep (release 2), Part 2

$ echo Hi > myfile
$ echo there. > myfile
$ cat myfile
there.

Oops! We lost the "Hi" portion! What we meant was this:

$ echo Hi > myfile
$ echo there. >> myfile
$ cat myfile
Hi
there.

Much better!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 25 of 32

Section 6. Kernel modules

Meet "uname"
The uname command provides a variety of interesting information about your system. Here's
what is displayed on my development workstation when I type "uname -a" which tells the
"uname" command to print out all of its information in one feel swoop:

$ uname -a
Linux inventor 2.4.20-gaming-r1 #1 Fri Apr 11 18:33:35 MDT 2003 i686 AMD Athlon(tm) XP 2100+ AuthenticAMD GNU/Linux

More uname madness
Now, let's look at the information that "uname" provides, in table form:

info. option arg example
kernel name -s "Linux"
hostname -n "inventor"
kernel release -r "2.4.20-gaming-r1"
kernel version -v "#1 Fri Apr 11 18:33:35 MDT 2003"
machine -m "i686"
processor -p "AMD Athlon(tm) XP 2100+"
hardware platform -i "AuthenticAMD"
operating system -o "GNU/Linux"

Intriguing! What does your "uname -a" command print out?

The kernel release
Here's a magic trick. First, type "uname -r" to have the uname command print out the release
of the Linux kernel that's currently running.

Now, look in the /lib/modules directory and --presto!-- I bet you'll find a directory with that
exact name! OK, not quite magic, but now may be a good time to talk about the significance
of the directories in /lib/modules and explain what kernel modules are.

The kernel
The Linux kernel is the heart of what is commonly referred to as "Linux" -- it's the piece of
code that accesses your hardware directly and provides abstractions so that regular old
programs can run. Thanks to the kernel, your text editor doesn't need to worry about whether
it is writing to a SCSI or IDE disk -- or even a RAM disk. It just writes to a filesystem, and the
kernel takes care of the rest.

Introducing kernel modules
So, what are kernel modules? Well, they're parts of the kernel that have been stored in a

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 32 LPI certification 101 exam prep (release 2), Part 2

special format on disk. At your command, they can be loaded into the running kernel and
provide additional functionality.

Because the kernel modules are loaded on demand, you can have your kernel support a lot
of additional functionality that you may not ordinarily want to be enabled. But once in a blue
moon, those kernel modules are likely to come in quite handy and can be loaded -- often
automatically -- to support that odd filesystem or hardware device that you rarely use.

Kernel modules in a nutshell
In sum, kernel modules allow for the running kernel to enable capabilities on an on-demand
basis. Without kernel modules, you'd have to compile a completely new kernel and reboot in
order for it to support something new.

lsmod
To see what modules are currently loaded on your system, use the "lsmod" command:

lsmod
Module Size Used by Tainted: PF
vmnet 20520 5
vmmon 22484 11
nvidia 1547648 10
mousedev 3860 2
hid 16772 0 (unused)
usbmouse 1848 0 (unused)
input 3136 0 [mousedev hid usbmouse]
usb-ohci 15976 0 (unused)
ehci-hcd 13288 0 (unused)
emu10k1 64264 2
ac97_codec 9000 0 [emu10k1]
sound 51508 0 [emu10k1]
usbcore 55168 1 [hid usbmouse usb-ohci ehci-hcd]

Modules listing, part 1
As you can see, my system has quite a few modules loaded. the vmnet and vmmon modules
provide necessary functionality for my VMWare program, which allows me to run a virtual PC
in a window on my desktop. The "nvidia" module comes from NVIDIA corporation and allows
me to use my high-performance 3D-accelerated graphics card under Linux whilst taking
advantage of its many neat features.

Modules listing, part 2
Then I have a bunch of modules that are used to provide support for my USB-based input
devices -- namely "mousedev," "hid," "usbmouse," "input," "usb-ohci," "ehci-hcd" and
"usbcore." It often makes sense to configure your kernel to provide USB support as modules.
Why? Because USB devices are "plug and play," and when you have your USB support in
modules, then you can go out and buy a new USB device, plug it in to your system, and have

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 27 of 32

http://www.vmware.com
http://www.nvidia.com
http://www.nvidia.com

the system automatically load the appropriate modules to enable that device. It's a handy
way to do things.

Third-party modules
Rounding out my list of modules are "emu10k1," "ac97_codec," and "sound," which together
provide support for my SoundBlaster Audigy sound card.

It should be noted that some of my kernel modules come from the kernel sources
themselves. For example, all the USB-related modules are compiled from the standard Linux
kernel sources. However, the nvidia, emu10k1 and VMWare-related modules come from
other sources. This highlights another major benefit of kernel modules -- allowing third parties
to provide much-needed kernel functionality and allowing this functionality to "plug in" to a
running Linux kernel. No reboot necessary.

depmod and friends
In my /lib/modules/2.4.20-gaming-r1/ directory, I have a number of files that start with the
string "modules.":

$ ls /lib/modules/2.4.20-gaming-r1/modules.*
/lib/modules/2.4.20-gaming-r1/modules.dep
/lib/modules/2.4.20-gaming-r1/modules.generic_string
/lib/modules/2.4.20-gaming-r1/modules.ieee1394map
/lib/modules/2.4.20-gaming-r1/modules.isapnpmap
/lib/modules/2.4.20-gaming-r1/modules.parportmap
/lib/modules/2.4.20-gaming-r1/modules.pcimap
/lib/modules/2.4.20-gaming-r1/modules.pnpbiosmap
/lib/modules/2.4.20-gaming-r1/modules.usbmap

These files contain some lots of dependency information. For one, they record *dependency*
information for modules -- some modules require other modules to be loaded first before they
will run. This information is recorded in these files.

How you get modules
Some kernel modules are designed to work with specific hardware devices, like my
"emu10k1" module which is for my SoundBlaster Audigy card. For these types of modules,
these files also record the PCI IDs and similar identifying marks of the hardware devices that
they support. This information can be used by things like the "hotplug" scripts (which we'll
take a look at in later tutorials) to auto-detect hardware and load the appropriate module to
support said hardware automatically.

Using depmod
If you ever install a new module, this dependency information may become out of date. To
make it fresh again, simply type "depmod -a". The "depmod" program will then scan all the
modules in your directories in /lib/modules and freshening the dependency information. It

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 32 LPI certification 101 exam prep (release 2), Part 2

does this by scanning the module files in /lib/modules and looking at what are called
"symbols" inside the modules:

depmod -a

Locating kernel modules
So, what do kernel modules look like? For 2.4 kernels, they're typically any file in the
/lib/modules tree that ends in ".o". To see all the modules in /lib/modules, type the following:

find /lib/modules -name '*.o'
/lib/modules/2.4.20-gaming-r1/misc/vmmon.o
/lib/modules/2.4.20-gaming-r1/misc/vmnet.o
/lib/modules/2.4.20-gaming-r1/video/nvidia.o
/lib/modules/2.4.20-gaming-r1/kernel/fs/fat/fat.o
/lib/modules/2.4.20-gaming-r1/kernel/fs/vfat/vfat.o
/lib/modules/2.4.20-gaming-r1/kernel/fs/minix/minix.o
[listing "snipped" for brevity]

insmod vs. modprobe
So, how does one load a module into a running kernel? One way is to use the "insmod"
command and specifying the full path to the module that you wish to load:

insmod /lib/modules/2.4.20-gaming-r1/kernel/fs/fat/fat.o
lsmod | grep fat
fat 29272 0 (unused)

However, one normally loads modules by using the "modprobe" command. One of the nice
things about the "modprobe" command is that it automatically takes care of loading any
dependent modules. Also, one doesn't need to specify the path to the module you wish to
load, nor does one specify the trailing ".o".

rmmod and modprobe in action
Let's unload our "fat.o" module and load it using "modprobe":

rmmod fat
lsmod | grep fat
modprobe fat
lsmod | grep fat
fat 29272 0 (unused)

As you can see, the "rmmod" command works similarly to modprobe, but has the opposite
effect -- it unloads the module you specify.

Your friend modinfo and modules.conf

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 29 of 32

You can use the "modinfo" command to learn interesting things about your favorite modules:

modinfo fat
filename: /lib/modules/2.4.20-gaming-r1/kernel/fs/fat/fat.o
description: <none>
author: <none>
license: "GPL"

And make special note of the /etc/modules.conf file. This file contains configuration
information for modprobe. It allows you to tweak the functionality of modprobe by telling it to
load modules before/after loading others, run scripts before/after modules load, and more.

modules.conf gotchas
The syntax and functionality of modules.conf is quite complicated, and we won't go into its
syntax now (type "man modules.conf" for all the gory details), but here are some things that
you *should* know about this file.

For one, many distributions generate this file automatically from a bunch of files in another
directory, like /etc/modules.d/. For example, Gentoo Linux has an /etc/modules.d/ directory,
and running the update-modules command will take every file in /etc/modules.d/ and
concatenate them to produce a new /etc/modules.conf. Therefore, make your changes to the
files in /etc/modules.d/ and run update-modules if you are using Gentoo. If you are using
Debian, the procedure is similar except that the directory is called /etc/modutils/.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 32 LPI certification 101 exam prep (release 2), Part 2

Section 7. Summary and resources

Summary
Congratulations; you've reached the end of this tutorial on basic Linux administration! We
hope that it has helped you to firm up your foundational Linux knowledge. Please join us in
our next tutorial covering intermediate administration, where we will build on the foundation
laid here, covering topics like the Linux permissions and ownership model, user account
management, filesystem creation and mounting, and more. And remember, by continuing in
this tutorial series, you'll soon be ready to attain your LPIC Level 1 Certification from the
Linux Professional Institute.

Resources
Speaking of LPIC certification, if this is something you're interested in, then we recommend
that you study the following resources, which have been carefully selected to augment the
material covered in this tutorial:

There are a number of good regular expression resources on the 'net. Here are a couple that
we've found:

• Regular Expressions Reference

• Regular Expressions Explained

Be sure to read up on the Filesystem Hierarchy Standard at http://www.pathname.com/fhs/.

In the Bash by example article series, I show you how to use bash programming constructs
to write your own bash scripts. This series (particularly parts one and two) will be good
preparation for the LPIC Level 1 exam:

• Bash by example, part 1: Fundamental programming in the Bourne-again shell

• Bash by example, part 2: More bash programming fundamentals

• Bash by example, part 3: Exploring the ebuild system

You can learn more about sed in the following IBM developerWorks articles:

Sed by example, Part 1

Sed by example, Part 2

Sed by example, Part 3

If you're planning to take the LPI exam, be sure to read the first two articles of this series.

To learn more about awk, read the following IBM developerWorks articles:

Awk by example, Part 1

Awk by example, Part 2

Awk by example, Part 3

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 exam prep (release 2), Part 2 Page 31 of 32

http://www.zvon.org/other/reReference/Output/
http://www.zvon.org/other/reReference/Output/
http://www.zvon.org/other/reReference/Output/
http://zez.org/article/articleview/11/
http://zez.org/article/articleview/11/
http://zez.org/article/articleview/11/
http://www.pathname.com/fhs/
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash2.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-sed3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk1.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk2.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?dwzone=linux
http://www-106.ibm.com/developerworks/linux/library/l-awk3.html?dwzone=linux

We highly recommend the Technical FAQ for Linux users, a 50-page in-depth list of
frequently-asked Linux questions, along with detailed answers. The FAQ itself is in PDF
(Acrobat) format. If you're a beginning or intermediate Linux user, you really owe it to yourself
to check this FAQ out.

If you're not too familiar with the vi editor, I strongly recommend that you check out my Vi --
the cheat sheet method tutorial. This tutorial will give you a gentle yet fast-paced introduction
to this powerful text editor. Consider this must-read material if you don't know how to use vi.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered in developerWorks
tutorials.

For questions about the content of this tutorial, contact the authors:
• Daniel Robbins, at drobbins@gentoo.org

• Chris Houser, at chouser@gentoo.org

• Aron Griffis, at agriffis@gentoo.org

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 32 LPI certification 101 exam prep (release 2), Part 2

http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
mailto:drobbins@gentoo.org
mailto:chouser@gentoo.org
mailto:agriffis@gentoo.org
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

Common threads: Sed by example, Part 1

 Country/region [select] Terms of use

 Home Products Services & solutions Support & downloads My account

developerWorks > Linux >

Common threads: Sed by example, Part 1
Contents:

Pick an editor

Enter sed

GNU sed

The newest GNU sed

The right sed

Sed examples

Another sed example

Address ranges

Addresses with regular expressions

Regular expression refresher

More on addresses

C source example

Next time

Resources

About the author

Rate this article

Subscriptions:
dW newsletters

dW Subscription
(CDs and downloads)

Get to know the powerful UNIX editor

Daniel Robbins (drobbins@gentoo.org)
President/CEO, Gentoo Technologies, Inc.
01 Sep 2000

In this series of articles, Daniel Robbins will show you how to use the very
powerful (but often forgotten) UNIX stream editor, sed. Sed is an ideal tool for
batch-editing files or for creating shell scripts to modify existing files in powerful
ways.

Pick an editor
In the UNIX world, we have a lot of options when it comes to editing files. Think of it --
vi, emacs, and jed come to mind, as well as many others. We all have our favorite editor
(along with our favorite keybindings) that we have come to know and love. With our
trusty editor, we are ready to tackle any number of UNIX-related administration or
programming tasks with ease.

While interactive editors are great, they do have limitations. Though their interactive
nature can be a strength, it can also be a weakness. Consider a situation where you
need to perform similar types of changes on a group of files. You could instinctively fire up your favorite editor and perform
a bunch of mundane, repetitive, and time-consuming edits by hand. But there's a better way.

Enter sed
It would be nice if we could automate the process of making edits to files, so that we could "batch" edit files, or even write
scripts with the ability to perform sophisticated changes to existing files. Fortunately for us, for these types of situations,
there is a better way -- and the better way is called "sed".

sed is a lightweight stream editor that's included with nearly all UNIX flavors, including Linux. sed has a lot of nice features.
First of all, it's very lightweight, typically many times smaller than your favorite scripting language. Secondly, because sed is
a stream editor, it can perform edits to data it receives from stdin, such as from a pipeline. So, you don't need to have the
data to be edited stored in a file on disk. Because data can just as easily be piped to sed, it's very easy to use sed as part
of a long, complex pipeline in a powerful shell script. Try doing that with your favorite editor.

GNU sed
Fortunately for us Linux users, one of the nicest versions of sed out there happens to be GNU sed, which is currently at
version 3.02. Every Linux distribution has GNU sed, or at least should. GNU sed is popular not only because its sources
are freely distributable, but because it happens to have a lot of handy, time-saving extensions to the POSIX sed standard.
GNU sed also doesn't suffer from many of the limitations that earlier and proprietary versions of sed had, such as a limited
line length -- GNU sed handles lines of any length with ease.

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (1 of 6)08/02/2005 04:14:30 p.m.

http://www.ibm.com/
http://www.ibm.com/developerworks/country/
http://www.ibm.com/legal/
http://www.ibm.com/
http://www.ibm.com/products/
http://www.ibm.com/servicessolutions/
http://www.ibm.com/support/
http://www.ibm.com/account/
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/l-sed1.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/newsletter/
http://www-106.ibm.com/developerworks/subscription/
http://www-106.ibm.com/developerworks/subscription/
mailto:drobbins@gentoo.org?cc=&subject=Sed by example, Part 1

Common threads: Sed by example, Part 1

The newest GNU sed
While researching this article, I noticed that several online sed aficionados made reference to a GNU sed 3.02a. Strangely,
I couldn't find sed 3.02a on ftp.gnu.org (see Resources for these links), so I had to go look for it elsewhere. I found it at
alpha.gnu.org, in /pub/sed. I happily downloaded it, compiled it, and installed it, only to find minutes later that the most
recent version of sed is 3.02.80 -- and you can find its sources right next to those for 3.02a, at alpha.gnu.org. After getting
GNU sed 3.02.80 installed, I was finally ready to go.

alpha.gnu.org
alpha.gnu.org (see Resources) is the
home of new and experimental GNU
source code. However, you'll also find a lot
of nice, stable source code there, too. For
some reason a lot of the GNU developers
either forget to move stable sources over
to ftp.gnu.org, or they have unusually long
(2 years!) "beta" periods. As an example,
sed 3.02a is two years old, and even
3.02.80 is one year old, but they're still (at
the time this article was written, August
2000) not available on ftp.gnu.org!

The right sed
In this series, we will be using GNU sed 3.02.80. Some (but very few) of the most
advanced examples you'll find in my upcoming, follow-on articles in this series will not
work with GNU sed 3.02 or 3.02a. If you're using a non-GNU sed, your results may
vary. Why not take some time to install GNU sed 3.02.80 now? Then, not only will
you be ready for the rest of the series, but you'll also be able to use arguably the best
sed in existence!

Sed examples
Sed works by performing any number of user-specified editing operations
("commands") on the input data. Sed is line-based, so the commands are performed
on each line in order. And, sed writes its results to standard output (stdout); it doesn't
modify any input files.

Let's look at some examples. The first several are going to be a bit weird because I'm using them to illustrate how sed
works rather than to perform any useful task. However, if you're new to sed, it's very important that you understand them.
Here's our first example:

$ sed -e 'd' /etc/services

If you type this command, you'll get absolutely no output. Now, what happened? In this example, we called sed with one
editing command, 'd. Sed opened the /etc/services file, read a line into its pattern buffer, performed our editing command
("delete line"), and then printed the pattern buffer (which was empty). It then repeated these steps for each successive line.
This produced no output, because the "d" command zapped every single line in the pattern buffer!

There are a couple of things to notice in this example. First, /etc/services was not modified at all. This is because, again,
sed only reads from the file you specify on the command line, using it as input -- it doesn't try to modify the file. The second
thing to notice is that sed is line-oriented. The 'd' command didn't simply tell sed to delete all incoming data in one fell
swoop. Instead, sed read each line of /etc/services one by one into its internal buffer, called the pattern buffer. Once a line
was read into the pattern buffer, it performed the 'd' command and printed the contents of the pattern buffer (nothing in this
example). Later, I'll show you how to use address ranges to control which lines a command is applied to -- but in the
absence of addresses, a command is applied to all lines.

The third thing to notice is the use of single quotes to surround the 'd' command. It's a good idea to get into the habit of
using single quotes to surround your sed commands, so that shell expansion is disabled.

Another sed example
Here's an example of how to use sed to remove the first line of the /etc/services file from our output stream:

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (2 of 6)08/02/2005 04:14:30 p.m.

Common threads: Sed by example, Part 1

$ sed -e '1d' /etc/services | more

As you can see, this command is very similar to our first 'd' command, except that it is preceded by a '1'. If you guessed that
the '1' refers to line number one, you're right. While in our first example, we used 'd' by itself, this time we use the 'd'
command preceded by an optional numerical address. By using addresses, you can tell sed to perform edits only on a
particular line or lines.

Address ranges
Now, let's look at how to specify an address range. In this example, sed will delete lines 1-10 of the output:

$ sed -e '1,10d' /etc/services | more

When we separate two addresses by a comma, sed will apply the following command to the range that starts with the first
address, and ends with the second address. In this example, the 'd' command was applied to lines 1-10, inclusive. All other
lines were ignored.

Addresses with regular expressions
Now, it's time for a more useful example. Let's say you wanted to view the contents of your /etc/services file, but you aren't
interested in viewing any of the included comments. As you know, you can place comments in your /etc/services file by
starting the line with the '#' character. To avoid comments, we'd like sed to delete lines that start with a '#'. Here's how to do
it:

$ sed -e '/^#/d' /etc/services | more

Try this example and see what happens. You'll notice that sed performs its desired task with flying colors. Now, let's figure
out what happened.

To understand the '/^#/d' command, we first need to dissect it. First, let's remove the 'd' -- we're using the same delete line
command that we've used previously. The new addition is the '/^#/' part, which is a new kind of regular expression address.
Regular expression addresses are always surrounded by slashes. They specify a pattern, and the command that
immediately follows a regular expression address will only be applied to a line if it happens to match this particular pattern.

So, '/^#/' is a regular expression. But what does it do? Obviously, this would be a good time for a regular expression
refresher.

Regular expression refresher
We can use regular expressions to express patterns that we may find in the text. If you've ever used the '*' character on the
shell command line, you've used something that's similar, but not identical to, regular expressions. Here are the special
characters that you can use in regular expressions:

Character Description
^ Matches the beginning of the line

$ Matches the end of the line

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (3 of 6)08/02/2005 04:14:30 p.m.

Common threads: Sed by example, Part 1

. Matches any single character

* Will match zero or more occurrences of the previous character

[] Matches all the characters inside the []

Probably the best way to get your feet wet with regular expressions is to see a few examples. All of these examples will be
accepted by sed as valid addresses to appear on the left side of a command. Here are a few:

Regular
expression Description
/./ Will match any line that contains at least one character

/../ Will match any line that contains at least two characters

/^#/ Will match any line that begins with a '#'

/^$/ Will match all blank lines

/}^/ Will match any lines that ends with '}' (no spaces)

/} *^/ Will match any line ending with '}' followed by zero or more spaces

/[abc]/ Will match any line that contains a lowercase 'a', 'b', or 'c'

/^[abc]/ Will match any line that begins with an 'a', 'b', or 'c'

I encourage you to try several of these examples. Take some time to get familiar with regular expressions, and try a few
regular expressions of your own creation. You can use a regexp this way:

$ sed -e '/regexp/d' /path/to/my/test/file | more

This will cause sed to delete any matching lines. However, it may be easier to get familiar with regular expressions by
telling sed to print regexp matches, and delete non-matches, rather than the other way around. This can be done with the
following command:

$ sed -n -e '/regexp/p' /path/to/my/test/file | more

Note the new '-n' option, which tells sed to not print the pattern space unless explicitly commanded to do so. You'll also
notice that we've replaced the 'd' command with the 'p' command, which as you might guess, explicitly commands sed to
print the pattern space. Voila, now only matches will be printed.

More on addresses
Up till now, we've taken a look at line addresses, line range addresses, and regexp addresses. But there are even more
possibilities. We can specify two regular expressions separated by a comma, and sed will match all lines starting from the
first line that matches the first regular expression, up to and including the line that matches the second regular expression.
For example, the following command will print out a block of text that begins with a line containing "BEGIN", and ending
with a line that contains "END":

$ sed -n -e '/BEGIN/,/END/p' /my/test/file | more

If "BEGIN" isn't found, no data will be printed. And, if "BEGIN" is found, but no "END" is found on any line below it, all
subsequent lines will be printed. This happens because of sed's stream-oriented nature -- it doesn't know whether or not an

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (4 of 6)08/02/2005 04:14:30 p.m.

Common threads: Sed by example, Part 1

"END" will appear.

C source example
If you want to print out only the main() function in a C source file, you could type:

$ sed -n -e '/main[[:space:]]*(/,/^}/p' sourcefile.c | more

This command has two regular expressions, '/main[[:space:]]*(/' and '/^}/', and one command, 'p'. The first regular
expression will match the string "main" followed by any number of spaces or tabs, followed by an open parenthesis. This
should match the start of your average ANSI C main() declaration.

In this particular regular expression, we encounter the '[[:space:]]' character class. This is simply a special keyword that tells
sed to match either a TAB or a space. If you wanted, instead of typing '[[:space:]]', you could have typed '[', then a literal
space, then Control-V, then a literal tab and a ']' -- The Control-V tells bash that you want to insert a "real" tab rather than
perform command expansion. It's clearer, especially in scripts, to use the '[[:space:]]' command class.

OK, now on to the second regexp. '/^}' will match a '}' character that appears at the beginning of a new line. If your code is
formatted nicely, this will match the closing brace of your main() function. If it's not, it won't -- one of the tricky things about
performing pattern matching.

The 'p' command does what it always does, explicitly telling sed to print out the line, since we are in '-n' quiet mode. Try
running the command on a C source file -- it should output the entire main() { } block, including the initial "main()" and the
closing '}'.

Next time
Now that we've touched on the basics, we'll be picking up the pace for the next two articles. If you're in the mood for some
meatier sed material, be patient -- it's coming! In the meantime, you might want to check out the following sed and regular
expression resources.

Resources

● Read Daniel's other sed articles on developerWorks: Common threads: Sed by example, Part 2 and Part 3.

● Check out Eric Pement's excellent sed FAQ.

● You can find the sources to sed 3.02 at ftp://ftp.gnu.org/pub/gnu/sed.

● You'll find the nice, new sed 3.02.80 at alpha.gnu.org.

● Eric Pement also has a handy list of sed one-liners that any aspiring sed guru should definitely look at.

● If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition would be wonderful choice.

● Maybe you'd like to read 7th edition UNIX's sed man page (circa 1978!).

● Take Felix von Leitner's short sed tutorial.

● Read David Mertz's article on "Text processing in Python" on developerWorks.

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (5 of 6)08/02/2005 04:14:30 p.m.

http://www.cornerstonemag.com/sed/sedfaq.html
ftp://ftp.gnu.org/pub/gnu/sed
ftp://alpha.gnu.org/pub/gnu/sed
http://www.cornerstonemag.com/sed/sed1line.txt
http://www.oreilly.com/catalog/sed2/
http://www.softlab.ntua.gr/unix/docs/sed.txt
http://www.math.fu-berlin.de/~leitner/sed/tutorial.html
http://www-106.ibm.com/developerworks/linux/library/l-python5.html

Common threads: Sed by example, Part 1

● Brush up on using regular expressions to find and modify patterns in text in this free, dW-exclusive tutorial.

● See the regular expressions how-to document from Python.org.

● Refer to an overview of regular expressions from the University of Kentucky.

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for
the PC, and the Portage system, a next-generation ports system for Linux. He has also served as a contributing author for the Macmillan books Caldera
OpenLinux Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers in some fashion since the second grade,
when he was first exposed to the Logo programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his new baby daughter,
Hadassah. You can contact Daniel at drobbins@gentoo.org.

Rate this article

This content was helpful to me:

Strongly disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly agree (5)

Comments?

developerWorks > Linux >

 About IBM | Privacy | Terms of use | Contact

http://www-106.ibm.com/developerworks/linux/library/l-sed1.html (6 of 6)08/02/2005 04:14:30 p.m.

http://www2.software.ibm.com/developer/education.nsf/linux-onlinecourse-bytitle/6C2B4863702F592B8625696200589C5B?OpenDocument
http://www.python.org/doc/howto/regex/regex.html
http://www.uky.edu/ArtsSciences/Classics/regex.html
http://www.gentoo.org/
http://www.psygnosis.com/
mailto:drobbins@gentoo.org
ftp://www6.software.ibm.com/software/developer/library/l-sed1.pdf
javascript:void newWindow()
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
http://www.ibm.com/ibm/
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

Common threads: Sed by example, Part 2

 Country/region [select] Terms of use

 Home Products Services & solutions Support & downloads My account

developerWorks > Linux >

Common threads: Sed by example, Part 2
Contents:

Substitution!

Regexp snafus

More character matching

Advanced substitution stuff

Those wonderful backslashed parentheses

Mixing things up

Multiple commands for one address

Append, insert, and change line

Next time

Resources

About the author

Rate this article

Subscriptions:
dW newsletters

dW Subscription
(CDs and downloads)

How to further take advantage of the UNIX text editor

Daniel Robbins (drobbins@gentoo.org)
President/CEO, Gentoo Technologies, Inc.
01 Oct 2000

Sed is a very powerful and compact text stream editor. In this article, the
second in the series, Daniel shows you how to use sed to perform string
substitution; create larger sed scripts; and use sed's append, insert, and
change line commands.

Sed is a very useful (but often forgotten) UNIX stream editor. It's ideal for batch-editing
files or for creating shell scripts to modify existing files in powerful ways. This article
builds on my previous article introducing sed.

Substitution!
Let's look at one of sed's most useful commands, the substitution command. Using it, we can replace a particular string or
matched regular expression with another string. Here's an example of the most basic use of this command:

$ sed -e 's/foo/bar/' myfile.txt

The above command will output the contents of myfile.txt to stdout, with the first occurrence of 'foo' (if any) on each line
replaced with the string 'bar'. Please note that I said first occurrence on each line, though this is normally not what you
want. Normally, when I do a string replacement, I want to perform it globally. That is, I want to replace all occurrences on
every line, as follows:

$ sed -e 's/foo/bar/g' myfile.txt

The additional 'g' option after the last slash tells sed to perform a global replace.

Here are a few other things you should know about the 's///' substitution command. First, it is a command, and a command
only; there are no addresses specified in any of the above examples. This means that the 's///' command can also be used
with addresses to control what lines it will be applied to, as follows:

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (1 of 8)08/02/2005 04:37:33 p.m.

http://www.ibm.com/
http://www.ibm.com/developerworks/country/
http://www.ibm.com/legal/
http://www.ibm.com/
http://www.ibm.com/products/
http://www.ibm.com/servicessolutions/
http://www.ibm.com/support/
http://www.ibm.com/account/
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/l-sed2.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/newsletter/
http://www-106.ibm.com/developerworks/subscription/
http://www-106.ibm.com/developerworks/subscription/
mailto:drobbins@gentoo.org?cc=&subject=Sed by example, Part 2

Common threads: Sed by example, Part 2

$ sed -e '1,10s/enchantment/entrapment/g' myfile2.txt

The above example will cause all occurrences of the phrase 'enchantment' to be replaced with the phrase 'entrapment', but
only on lines one through ten, inclusive.

$ sed -e '/^$/,/^END/s/hills/mountains/g' myfile3.txt

This example will swap 'hills' for 'mountains', but only on blocks of text beginning with a blank line, and ending with a line
beginning with the three characters 'END', inclusive.

Another nice thing about the 's///' command is that we have a lot of options when it comes to those '/' separators. If we're
performing string substitution and the regular expression or replacement string has a lot of slashes in it, we can change the
separator by specifying a different character after the 's'. For example, this will replace all occurrences of /usr/local with /usr:

$ sed -e 's:/usr/local:/usr:g' mylist.txt

In this example, we're using the colon as a separator. If you ever need to specify the separator character in the regular
expression, put a backslash before it.

Regexp snafus
Up until now, we've only performed simple string substitution. While this is handy, we can also match a regular expression.
For example, the following sed command will match a phrase beginning with '<' and ending with '>', and containing any
number of characters inbetween. This phrase will be deleted (replaced with an empty string):

$ sed -e 's/<.*>//g' myfile.html

This is a good first attempt at a sed script that will remove HTML tags from a file, but it won't work well, due to a regular
expression quirk. The reason? When sed tries to match the regular expression on a line, it finds the longest match on the
line. This wasn't an issue in my previous sed article, because we were using the 'd' and 'p' commands, which would delete
or print the entire line anyway. But when we use the 's///' command, it definitely makes a big difference, because the entire
portion that the regular expression matches will be replaced with the target string, or in this case, deleted. This means that
the above example will turn the following line:

This is what I meant.

into this:

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (2 of 8)08/02/2005 04:37:33 p.m.

Common threads: Sed by example, Part 2

meant.

rather than this, which is what we wanted to do:

This is what I meant.

Fortunately, there is an easy way to fix this. Instead of typing in a regular expression that says "a '<' character followed by
any number of characters, and ending with a '>' character", we just need to type in a regexp that says "a '<' character
followed by any number of non-'>' characters, and ending with a '>' character". This will have the effect of matching the
shortest possible match, rather than the longest possible one. The new command looks like this:

$ sed -e 's/<[^>]*>//g' myfile.html

In the above example, the '[^>]' specifies a "non-'>'" character, and the '*' after it completes this expression to mean "zero or
more non-'>' characters". Test this command on a few sample html files, pipe them to more, and review their results.

More character matching
The '[]' regular expression syntax has some more additional options. To specify a range of characters, you can use a '-' as
long as it isn't in the first or last position, as follows:

'[a-x]*'

This will match zero or more characters, as long as all of them are 'a','b','c'...'v','w','x'. In addition, the '[:space:]' character
class is available for matching whitespace. Here's a fairly complete list of available character classes:

Character class Description

[:alnum:] Alphanumeric [a-z A-Z 0-9]

[:alpha:] Alphabetic [a-z A-Z]

[:blank:] Spaces or tabs

[:cntrl:] Any control characters

[:digit:] Numeric digits [0-9]

[:graph:] Any visible characters (no whitespace)

[:lower:] Lower-case [a-z]

[:print:] Non-control characters

[:punct:] Punctuation characters

[:space:] Whitespace

[:upper:] Upper-case [A-Z]

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (3 of 8)08/02/2005 04:37:33 p.m.

Common threads: Sed by example, Part 2

[:xdigit:] hex digits [0-9 a-f A-F]

It's advantageous to use character classes whenever possible, because they adapt better to nonEnglish speaking locales
(including accented characters when necessary, etc.).

Advanced substitution stuff
We've looked at how to perform simple and even reasonably complex straight substitutions, but sed can do even more. We
can actually refer to either parts of or the entire matched regular expression, and use these parts to construct the
replacement string. As an example, let's say you were replying to a message. The following example would prefix each line
with the phrase "ralph said: ":

$ sed -e 's/.*/ralph said: &/' origmsg.txt

The output will look like this:

ralph said: Hiya Jim,
ralph said:
ralph said: I sure like this sed stuff!
ralph said:

In this example, we use the '&' character in the replacement string, which tells sed to insert the entire matched regular
expression. So, whatever was matched by '.*' (the largest group of zero or more characters on the line, or the entire line)
can be inserted anywhere in the replacement string, even multiple times. This is great, but sed is even more powerful.

Those wonderful backslashed parentheses
Even better than '&', the 's///' command allows us to define regions in our regular expression, and we can refer to these
specific regions in our replacement string. As an example, let's say we have a file that contains the following text:

foo bar oni
eeny meeny miny
larry curly moe
jimmy the weasel

Now, let's say we wanted to write a sed script that would replace "eeny meeny miny" with "Victor eeny-meeny Von miny",
etc. To do this, first we would write a regular expression that would match the three strings, separated by spaces:

'.* .* .*'

There. Now, we will define regions by inserting backslashed parentheses around each region of interest:

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (4 of 8)08/02/2005 04:37:33 p.m.

Common threads: Sed by example, Part 2

'\(.*\) \(.*\) \(.*\)'

This regular expression will work the same as our first one, except that it will define three logical regions that we can refer
to in our replacement string. Here's the final script:

$ sed -e 's/\(.*\) \(.*\) \(.*\)/Victor \1-\2 Von \3/' myfile.txt

As you can see, we refer to each parentheses-delimited region by typing '\x', where x is the number of the region, starting at
one. Output is as follows:

Victor foo-bar Von oni
Victor eeny-meeny Von miny
Victor larry-curly Von moe
Victor jimmy-the Von weasel

As you become more familiar with sed, you will be able to perform fairly powerful text processing with a minimum of effort.
You may want to think about how you'd have approached this problem using your favorite scripting language -- could you
have easily fit the solution in one line?

Mixing things up
As we begin creating more complex sed scripts, we need the ability to enter more than one command. There are several
ways to do this. First, we can use semicolons between the commands. For example, this series of commands uses the '='
command, which tells sed to print the line number, as well as the 'p' command, which explicitly tells sed to print the line
(since we're in '-n' mode):

$ sed -n -e '=;p' myfile.txt

Whenever two or more commands are specified, each command is applied (in order) to every line in the file. In the above
example, first the '=' command is applied to line 1, and then the 'p' command is applied. Then, sed proceeds to line 2, and
repeats the process. While the semicolon is handy, there are instances where it won't work. Another alternative is to use
two -e options to specify two separate commands:

$ sed -n -e '=' -e 'p' myfile.txt

However, when we get to the more complex append and insert commands, even multiple '-e' options won't help us. For
complex multiline scripts, the best way is to put your commands in a separate file. Then, reference this script file with the -f
options:

$ sed -n -f mycommands.sed myfile.txt

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (5 of 8)08/02/2005 04:37:33 p.m.

Common threads: Sed by example, Part 2

This method, although arguably less convenient, will always work.

Multiple commands for one address
Sometimes, you may want to specify multiple commands that will apply to a single address. This comes in especially handy
when you are performing lots of 's///' to transform words or syntax in the source file. To perform multiple commands per
address, enter your sed commands in a file, and use the '{ }' characters to group commands, as follows:

1,20{
 s/[Ll]inux/GNU\/Linux/g
 s/samba/Samba/g
 s/posix/POSIX/g
}

The above example will apply three substitution commands to lines 1 through 20, inclusive. You can also use regular
expression addresses, or a combination of the two:

1,/^END/{
 s/[Ll]inux/GNU\/Linux/g
 s/samba/Samba/g
 s/posix/POSIX/g
 p
}

This example will apply all the commands between '{ }' to the lines starting at 1 and up to a line beginning with the letters
"END", or the end of file if "END" is not found in the source file.

Append, insert, and change line
Now that we're writing sed scripts in separate files, we can take advantage of the append, insert, and change line
commands. These commands will insert a line after the current line, insert a line before the current line, or replace the
current line in the pattern space. They can also be used to insert multiple lines into the output. The insert line command is
used as follows:

i\
This line will be inserted before each line

If you don't specify an address for this command, it will be applied to each line and produce output that looks like this:

This line will be inserted before each line
line 1 here
This line will be inserted before each line
line 2 here
This line will be inserted before each line
line 3 here
This line will be inserted before each line
line 4 here

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (6 of 8)08/02/2005 04:37:33 p.m.

Common threads: Sed by example, Part 2

If you'd like to insert multiple lines before the current line, you can add additional lines by appending a backslash to the
previous line, like so:

i\
insert this line\
and this one\
and this one\
and, uh, this one too.

The append command works similarly, but will insert a line or lines after the current line in the pattern space. It's used as
follows:

a\
insert this line after each line. Thanks! :)

On the other hand, the "change line" command will actually replace the current line in the pattern space, and is used as
follows:

c\
You're history, original line! Muhahaha!

Because the append, insert, and change line commands need to be entered on multiple lines, you'll want to type them in to
text sed scripts and tell sed to source them by using the '-f' option. Using the other methods to pass commands to sed will
result in problems.

Next time
Next time, in the final article of this series on sed, I'll show you lots of excellent real-world examples of using sed for many
different kinds of tasks. Not only will I show you what the scripts do, but why they do what they do. After you're done, you'll
have additional excellent ideas of how to use sed in your various projects. I'll see you then!

Resources

● Read Daniel's other sed articles on developerWorks: Common threads: Sed by example, Part 1 and Part 3.

● Check out Eric Pement's excellent sed faq.

● You can find the sources to sed 3.02 at ftp.gnu.org.

● You'll find the nice, new sed 3.02.80 at alpha.gnu.org.

● Eric Pement also has a handy list of sed one-liners that any aspiring sed guru should definitely take a look at.

● If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition would be wonderful choice.

● Maybe you'd like to read 7th edition UNIX's sed man page (circa 1978!).

● Take Felix von Leitner's short sed tutorial.

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (7 of 8)08/02/2005 04:37:33 p.m.

http://www.cornerstonemag.com/sed/sedfaq.html
ftp://ftp.gnu.org/pub/gnu/sed
ftp://alpha.gnu.org/pub/gnu/sed
http://www.cornerstonemag.com/sed/sed1line.txt
http://www.oreilly.com/catalog/sed2/
http://www.softlab.ntua.gr/unix/docs/sed.txt
http://www.math.fu-berlin.de/~leitner/sed/tutorial.html

Common threads: Sed by example, Part 2

● Brush up on using regular expressions to find and modify patterns in text in this free, dW-exclusive tutorial.

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for
the PC, and the Portage system, a next-generation ports system for Linux. He has also served as a contributing author for the Macmillan books Caldera
OpenLinux Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers in some fashion since the second grade,
when he was first exposed to the Logo programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his new baby daughter,
Hadassah. You can contact Daniel at drobbins@gentoo.org.

Rate this article

This content was helpful to me:

Strongly disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly agree (5)

Comments?

developerWorks > Linux >

 About IBM | Privacy | Terms of use | Contact

http://www-106.ibm.com/developerworks/linux/library/l-sed2.html (8 of 8)08/02/2005 04:37:33 p.m.

http://www2.software.ibm.com/developer/education.nsf/linux-onlinecourse-bytitle/6C2B4863702F592B8625696200589C5B?OpenDocument
http://www.gentoo.org/
http://www.psygnosis.com/
mailto:drobbins@gentoo.org
ftp://www6.software.ibm.com/software/developer/library/l-sed2.pdf
javascript:void newWindow()
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
http://www.ibm.com/ibm/
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

Common threads: Sed by example, Part 3

 Country/region [select] Terms of use

 Home Products Services & solutions Support & downloads My account

developerWorks > Linux >

Common threads: Sed by example, Part 3
Contents:

Muscular sed

Text translation

Reversing lines

Reversal explained

sed QIF magic

A tale of two formats

Starting the process

Refinement

Finishing touches

Don't get confuSed

Resources

About the author

Rate this article

Subscriptions:
dW newsletters

dW Subscription
(CDs and downloads)

Taking it to the next level: Data crunching, sed style

Daniel Robbins (drobbins@gentoo.org)
President/CEO, Gentoo Technologies, Inc.
01 Nov 2000

In this conclusion of the sed series, Daniel Robbins gives you a true taste of the
power of sed. After introducing a handful of essential sed scripts, he'll
demonstrate some radical sed scripting by converting a Quicken .QIF file into a
text-readable format. This conversion script is not only functional, it also serves
as an excellent example of sed scripting power.

Muscular sed
In my second sed article, I offered examples that demonstrated how sed works, but very
few of these examples actually did anything particularly useful. In this final sed article,
it's time to change that pattern and put sed to good use. I'll show you several excellent
examples that not only demonstrate the power of sed, but also do some really neat (and
handy) things. For example, in the second half of the article, I'll show you how I designed a sed script that converts a .QIF
file from Intuit's Quicken financial program into a nicely formatted text file. Before doing that, we'll take a look at some less
complicated yet useful sed scripts.

Text translation
Our first practical script converts UNIX-style text to DOS/Windows format. As you probably know, DOS/Windows-based text
files have a CR (carriage return) and LF (line feed) at the end of each line, while UNIX text has only a line feed. There may
be times when you need to move some UNIX text to a Windows system, and this script will perform the necessary format
conversion for you.

$ sed -e 's/$/\r/' myunix.txt > mydos.txt

In this script, the '$' regular expression will match the end of the line, and the '\r' tells sed to insert a carriage return right
before it. Insert a carriage return before a line feed, and presto, a CR/LF ends each line. Please note that the '\r' will be
replaced with a CR only when using GNU sed 3.02.80 or later. If you haven't installed GNU sed 3.02.80 yet, see my first
sed article for instructions on how to do this.

I can't tell you how many times I've downloaded some example script or C code, only to find that it's in DOS/Windows
format. While many programs don't mind DOS/Windows format CR/LF text files, several programs definitely do -- the most
notable being bash, which chokes as soon as it encounters a carriage return. The following sed invocation will convert DOS/
Windows format text to trusty UNIX format:

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (1 of 8)08/02/2005 04:48:21 p.m.

http://www.ibm.com/
http://www.ibm.com/developerworks/country/
http://www.ibm.com/legal/
http://www.ibm.com/
http://www.ibm.com/products/
http://www.ibm.com/servicessolutions/
http://www.ibm.com/support/
http://www.ibm.com/account/
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/l-sed3.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/newsletter/
http://www-106.ibm.com/developerworks/subscription/
http://www-106.ibm.com/developerworks/subscription/
mailto:drobbins@gentoo.org?cc=&subject=Sed by example, Part 3

Common threads: Sed by example, Part 3

$ sed -e 's/.$//' mydos.txt > myunix.txt

The way this script works is simple: our substitution regular expression matches the last character on the line, which
happens to be a carriage return. We replace it with nothing, causing it to be deleted from the output entirely. If you use this
script and notice that the last character of every line of the output has been deleted, you've specified a text file that's
already in UNIX format. No need for that!

Reversing lines
Here's another handy little script. This one will reverse lines in a file, similar to the "tac" command that's included with most
Linux distributions. The name "tac" may be a bit misleading, because "tac" doesn't reverse the position of characters on the
line (left and right), but rather the position of lines in the file (up and down). Tacing the following file:

foo
bar
oni

....produces the following output:

oni
bar
foo

We can do the same thing with the following sed script:

$ sed -e '1!G;h;$!d' forward.txt > backward.txt

You'll find this sed script useful if you're logged in to a FreeBSD system, which doesn't happen to have a "tac" command.
While handy, it's also a good idea to know why this script does what it does. Let's dissect it.

Reversal explained
First, this script contains three separate sed commands, separated by semicolons: '1!G', 'h' and '$!d'. Now, it's time to get
an good understanding of the addresses used for the first and third commands. If the first command were '1G', the 'G'
command would be applied only to the first line. However, there is an additional '!' character -- this '!' character negates the
address, meaning that the 'G' command will apply to all but the first line. For the '$!d' command, we have a similar situation.
If the command were '$d', it would apply the 'd' command to only the last line in the file (the '$' address is a simple way of
specifying the last line). However, with the '!', '$!d' will apply the 'd' command to all but the last line. Now, all we need to to is
understand what the commands themselves do.

When we execute our line reversal script on the text file above, the first command that gets executed is 'h'. This command
tells sed to copy the contents of the pattern space (the buffer that holds the current line being worked on) to the hold space
(a temporary buffer). Then, the 'd' command is executed, which deletes "foo" from the pattern space, so it doesn't get
printed after all the commands are executed for this line.

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (2 of 8)08/02/2005 04:48:21 p.m.

Common threads: Sed by example, Part 3

Now, line two. After "bar" is read into the pattern space, the 'G' command is executed, which appends the contents of the
hold space ("foo\n") to the pattern space ("bar\n"), resulting in "bar\n\foo\n" in our pattern space. The 'h' command puts this
back in the hold space for safekeeping, and 'd' deletes the line from the pattern space so that it isn't printed.

For the last "oni" line, the same steps are repeated, except that the contents of the pattern space aren't deleted (due to the
'$!' before the 'd'), and the contents of the pattern space (three lines) are printed to stdout.

Now, it's time to do some powerful data conversion with sed.

sed QIF magic
For the last few weeks, I've been thinking about purchasing a copy of Quicken to balance my bank accounts. Quicken is a
very nice financial program, and would certainly perform the job with flying colors. But, after thinking about it, I decided that
I could easily write some software that would balance my checkbook. After all, I reasoned, I'm a software developer!

I developed a nice little checkbook balancing program (using awk) that calculates by balance by parsing a text file
containing all my transactions. After a bit of tweaking, I improved it so that I could keep track of different credit and debit
categories, just like Quicken can. But, there was one more feature I wanted to add. I recently switched my accounts to a
bank that has an online Web account interface. One day, I noticed that my bank's Web site allowed me to to download my
account information in Quicken's .QIF format. In very little time, I decided that it would be really neat if I could convert this
information into text format.

A tale of two formats
Before we look at the QIF format, here's what my checkbook.txt format looks like:

28 Aug 2000 food - - Y Supermarket 30.94
25 Aug 2000 watr - 103 Y Check 103 52.86

In my file, all fields are separated by one or more tabs, with one transaction per line. After the date, the next field lists the
type of expense (or "-" if this is an income item). The third field lists the type of income (or "-" if this is an expense item).
Then, there's a check number field (again, "-" if empty), a transaction cleared field ("Y" or "N"), a comment and a dollar
amount. Now, we're ready to take a look at the QIF format. When I viewed my downloaded QIF file in a text viewer, this is
what I saw:

!Type:Bank
D08/28/2000
T-8.15
N
PCHECKCARD SUPERMARKET
^
D08/28/2000
T-8.25
N
PCHECKCARD PUNJAB RESTAURANT
^
D08/28/2000
T-17.17
N
PCHECKCARD SUPERMARKET

After scanning the file, wasn't very hard to figure out the format -- ignoring the first line, the format is as follows:

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (3 of 8)08/02/2005 04:48:21 p.m.

http://www.intuit.com/

Common threads: Sed by example, Part 3

D<date>
T<transaction amount>
N<check number>
P<description>
^
 (this is the field separator)

Starting the process
When you're tackling a significant sed project like this, don't get discouraged -- sed allows you to gradually massage the
data into its final form. As you progress, you can continue to refine your sed script until your output appears exactly as
intended. You don't need to get it exactly right on the first try.

To start off, I created a file called "qiftrans.sed", and started massaging the data:

1d
/^^/d
s/[[:cntrl:]]//g

The first '1d' command deletes the first line, and the second command removes those pesky '^' characters from the output.
The last line removes any control characters that may exist in the file. Since I'm dealing with a foreign file format, I want to
eliminate the risk of encountering any control characters along the way. So far, so good. Now, it's time to add some
processing punch to this basic script:

1d
/^^/d
s/[[:cntrl:]]//g
/^D/ {
 s/^D\(.*\)/\1\tOUTY\tINNY\t/
 s/^01/Jan/
 s/^02/Feb/
 s/^03/Mar/
 s/^04/Apr/
 s/^05/May/
 s/^06/Jun/
 s/^07/Jul/
 s/^08/Aug/
 s/^09/Sep/
 s/^10/Oct/
 s/^11/Nov/
 s/^12/Dec/
 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:
}

First, I add a '/^D/' address so that sed will only begin processing when it encounters the first character of the QIF date field,
'D'. All of the commands in the curly braces will execute in order as soon as sed reads such a line into its pattern space.

The first line in the curly braces will transform a line that looks like:

D08/28/2000

into one that looks like thist:

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (4 of 8)08/02/2005 04:48:21 p.m.

Common threads: Sed by example, Part 3

08/28/2000 OUTY INNY

Of course, this format isn't perfect right now, but that's OK. We'll gradually refine the contents of the pattern space as we
go. The next 12 lines have the net effect of transforming the date to a three-letter format, with the last line removing the
three slashes from the date. We end up with this line:

Aug 28 2000 OUTY INNY

The OUTY and INNY fields are serving as placeholders and will get replaced later. I can't specify them just yet, because if
the dollar amount is negative, I'll want to set OUTY and INNY to "misc" and "-", but if the dollar amount is positive, I'll want
to change them to "-" and "inco" respectively. Since the dollar amount hasn't been read yet, I need to use placeholders for
the time being.

Refinement
Now, it's time for some further refinement:

1d
/^^/d
s/[[:cntrl:]]//g
/^D/ {
 s/^D\(.*\)/\1\tOUTY\tINNY\t/
 s/^01/Jan/
 s/^02/Feb/
 s/^03/Mar/
 s/^04/Apr/
 s/^05/May/
 s/^06/Jun/
 s/^07/Jul/
 s/^08/Aug/
 s/^09/Sep/
 s/^10/Oct/
 s/^11/Nov/
 s/^12/Dec/
 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:
 N
 N
 N
 s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/
 s/NUMNUM/-/
 s/NUM\([0-9]*\)NUM/\1/
 s/\([0-9]\),/\1/
}

The next seven lines are a bit complicated, so we'll cover them in detail. First, we have three 'N' commands in a row. The
'N' command tells sed to read in the next line in the input and append it to our current pattern space. The three 'N'
commands cause the next three lines to be appended to our current pattern space buffer, and now our line looks like this:

28 Aug 2000 OUTY INNY \nT-8.15\nN\nPCHECKCARD SUPERMARKET

Sed's pattern space got ugly -- we need to remove the extra newlines and perform some additional formatting. To do this,

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (5 of 8)08/02/2005 04:48:21 p.m.

Common threads: Sed by example, Part 3

we'll use the substitution command. The pattern we want to match is:

'\nT.*\nN.*\nP.*'

This will match a newline, followed by a 'T', followed by zero or more characters, followed by a newline, followed by an 'N',
followed by any number of characters and a newline, followed by a 'P', followed by any number of characters. Phew! This
regexp will match the entire contents of the three lines we just appended to the pattern space. But we want to reformat this
region, not replace it entirely. The dollar amount, check number (if any) and description need to reappear in our
replacement string. To do this, we surround those "interesting parts" with backslashed parentheses, so that we can refer to
them in our replacement string (using '\1', '\2\, and '\3' to tell sed where to insert them). Here is the final command:

s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/

This command transforms our line into:

28 Aug 2000 OUTY INNY NUMNUM Y CHECKCARD SUPERMARKET AMT-8.15AMT

While this line is getting better, there are a few things that at first glance appear a bit...er...interesting. The first is that silly
"NUMNUM" string -- what purpose does that serve? You'll find out as you inspect the next two lines of the sed script, which
will replace "NUMNUM" with a "-", while "NUM"<number>"NUM" will be replaced with <number>. As you can see,
surrounding the check number with a silly tag allows us to conveniently insert a "-" if the field is empty.

Finishing touches
The last line removes a comma following a number. This converts dollar amounts like "3,231.00" to "3231.00", which is the
format I use. Now, it's time to take a look at the final, production script:

1d
/^^/d
s/[[:cntrl:]]//g
/^D/ {
 s/^D\(.*\)/\1\tOUTY\tINNY\t/
 s/^01/Jan/
 s/^02/Feb/
 s/^03/Mar/
 s/^04/Apr/
 s/^05/May/
 s/^06/Jun/
 s/^07/Jul/
 s/^08/Aug/
 s/^09/Sep/
 s/^10/Oct/
 s/^11/Nov/
 s/^12/Dec/
 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:
 N
 N
 N
 s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/
 s/NUMNUM/-/
 s/NUM\([0-9]*\)NUM/\1/
 s/\([0-9]\),/\1/
 /AMT-[0-9]*.[0-9]*AMT/b fixnegs
 s/AMT\(.*\)AMT/\1/

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (6 of 8)08/02/2005 04:48:21 p.m.

Common threads: Sed by example, Part 3

 s/OUTY/-/
 s/INNY/inco/
 b done
:fixnegs
 s/AMT-\(.*\)AMT/\1/
 s/OUTY/misc/
 s/INNY/-/
:done
}

The additional eleven lines use substitution and some branching functionality to perfect the output. We'll want to take a look
at this line first:

 /AMT-[0-9]*.[0-9]*AMT/b fixnegs

This line contains a branch command, which is of the format "/regexp/b label". If the pattern space matches the regexp, sed
will branch to the fixnegs label. You should be able to easily spot this label, which appears as ":fixnegs" in the code. If the
regexp doesn't match, processing continues as normal with the next command.

Now that you understand the workings of the command itself, let's take a look at the branches. If you look at the branch
regular expression, you'll see that it will match the string 'AMT', followed by a '-', followed by any number of digits, a '.', any
number of digits and 'AMT'. As I'm sure you've figured out, this regexp deals specifically with a negative dollar amount.
Earlier, we surrounded our dollar amount with 'AMT' strings so we could easily find it later. Because the regexp only
matches dollar amounts that begin with a '-', our branch will only happen if we happen to be dealing with a debit. If we are
dealing with a debit, OUTY should be set to 'misc', INNY should be set to '-', and the negative sign in front of the debit
amount should be removed. If you follow the code, you'll see that this is exactly what happens. If the branch isn't executed,
OUTY gets replaced with '-', and INNY gets replaced with 'inco'. We're finished! Our output line is now perfect:

28 Aug 2000 misc - - Y CHECKCARD SUPERMARKET -8.15

Don't get confuSed
As you can see, converting data using sed isn't all that hard, as long as you approach the problem incrementally. Don't try
to do everything with a single sed command, or all at once. Instead, gradually work your way toward the goal, and continue
to enhance your sed script until your output looks just the way you want it to. Sed packs a lot of punch, and I hope that
you've become very familiar with its inner workings and that you'll continue to grow in your sed mastery!

Resources

● Read Daniel's previous sed articles on developerWorks: Common threads: Sed by example, Part 1 and Part 2.

● Check out Eric Pement's excellent sed faq.

● You can find the sources to sed 3.02 at ftp.gnu.org.

● You'll find the nice, new sed 3.02.80 at alpha.gnu.org.

● Eric Pement also has a handy list of sed one-liners that any aspiring sed guru should definitely take a look at.

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (7 of 8)08/02/2005 04:48:21 p.m.

http://www.cornerstonemag.com/sed/sedfaq.html
ftp://ftp.gnu.org/pub/gnu/sed
ftp://alpha.gnu.org/pub/gnu/sed
http://www.cornerstonemag.com/sed/sed1line.txt

Common threads: Sed by example, Part 3

● If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition would be a wonderful choice.

● Maybe you'd like to read 7th edition UNIX's sed man page (circa 1978!).

● Take Felix von Leitner's short sed tutorial.

● Brush up on using regular expressions to find and modify patterns in text in this free, dW-exclusive tutorial.

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for
the PC, and the Portage system, a next-generation ports system for Linux. He has also served as a contributing author for the Macmillan books Caldera
OpenLinux Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers in some fashion since the second grade,
when he was first exposed to the Logo programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his new baby daughter,
Hadassah. You can contact Daniel at drobbins@gentoo.org.

Rate this article

This content was helpful to me:

Strongly disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly agree (5)

Comments?

developerWorks > Linux >

 About IBM | Privacy | Terms of use | Contact

http://www-106.ibm.com/developerworks/linux/library/l-sed3.html (8 of 8)08/02/2005 04:48:21 p.m.

http://www.oreilly.com/catalog/sed2/
http://www.softlab.ntua.gr/unix/docs/sed.txt
http://www.math.fu-berlin.de/~leitner/sed/tutorial.html
http://www2.software.ibm.com/developer/education.nsf/linux-onlinecourse-bytitle/6C2B4863702F592B8625696200589C5B?OpenDocument
http://www.gentoo.org/
http://www.psygnosis.com/
mailto:drobbins@gentoo.org
ftp://www6.software.ibm.com/software/developer/library/l-sed3.pdf
javascript:void newWindow()
http://www-136.ibm.com/developerworks/
http://www-136.ibm.com/developerworks/linux
http://www-136.ibm.com/developerworks/
http://www.ibm.com/ibm/
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

	Table of Contents
	Before you start
	About this tutorial
	About the authors

	Regular expressions
	What is a regular expression?
	Glob comparison
	The simple substring
	Understanding the simple substring
	Metacharacters
	Using []
	Using [^]
	Differing syntax
	The "*" metacharacter
	Beginning and end of line
	Full-line regexes

	FHS and finding files
	Filesystem Hierarchy Standard
	The two independent FHS categories
	Secondary hierarchy at /usr
	Finding files
	The PATH
	Modifying PATH
	All about "which"
	"which -a"
	whereis
	find
	find and wildcards
	Ignoring case with find
	find and regular expressions
	find and types
	find and mtimes
	The -daystart option
	The -size option
	Processing found files
	locate
	Using updatedb
	slocate

	Process control
	Staring xeyes
	Stopping a process
	fg and bg
	Using "&"
	Multiple background processes
	Introducing signals
	SIGTERM and SIGINT
	The big kill
	nohup
	Using ps to list processes
	Seeing the forest and the trees
	The "u" and "l" ps options
	Using "top"
	nice
	renice

	Text processing
	Redirection revisited
	A pipe example
	The decompression pipeline
	A longer pipeline
	The text processing whirlwind begins
	cat, sort, and uniq
	wc, head, and tail
	tac, expand, and unexpand
	cut, nl, and pr
	tr, awk, and sed
	od, split, and fmt
	Paste, join, and tee
	Whirlwind over! Redirection
	Using >>

	Kernel modules
	Meet "uname"
	More uname madness
	The kernel release
	The kernel
	Introducing kernel modules
	Kernel modules in a nutshell
	lsmod
	Modules listing, part 1
	Modules listing, part 2
	Third-party modules
	depmod and friends
	How you get modules
	Using depmod
	Locating kernel modules
	insmod vs. modprobe
	rmmod and modprobe in action
	Your friend modinfo and modules.conf
	modules.conf gotchas

	Summary and resources
	Summary
	Resources
	Your feedback

	ibm.com
	Common threads: Sed by example, Part 1
	Common threads: Sed by example, Part 2
	Common threads: Sed by example, Part 3

	FKBEMDLGEOBOOICCHDCGPELNBABIHNJP:
	form1:
	x:
	f1: 1
	f2: dW
	f3: [dW]
	f4:

	f5:

	form2:
	x:
	f1: Common threads: Sed by example, Part 1
	f2: Linux
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

	BHLBDPFPGNKAMMKPNODIBEIEAGDNPNAP:
	form1:
	x:
	f1: 1
	f2: dW
	f3: [dW]
	f4:

	f5:

	form2:
	x:
	f1: Common threads: Sed by example, Part 2
	f2: Linux
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

	KICLIHKKADPLMGMPEBBAMGGNHCKNMLON:
	form1:
	x:
	f1: 1
	f2: dW
	f3: [dW]
	f4:

	f5:

	form2:
	x:
	f1: Common threads: Sed by example, Part 3
	f2: Linux
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

