
LPI Linux Certification in a Nutshell, 2nd Edition 1

Table of Contents 3

Copyright 8

 Preface 10

Part I: General Linux Exam 101 16

Chapter 1. LPI Exams 17

 Section 1.1. Exam 101 Overview 18

Chapter 2. Exam 101 Study Guide 20

 Section 2.1. Exam Preparation 21

Chapter 2. Hardware and Architecture (Topic 1.101) 24

 Section 3.1. Objective 1: Configure Fundamental BIOS Settings 26

 Section 3.2. Objective 3: Configure Modems and Sound Cards 30

 Section 3.3. Objective 4: Set Up Non-IDE Devices 33

 Section 3.4. Objective 5: Set Up Different PC Expansion Cards 37

 Section 3.5. Objective 6: Configure Communications Devices 40

 Section 3.6. Objective 7: Configure USB Devices 41

Chapter 4. Linux Installation and Package Management (Topic 1.102) 44

 Section 4.1. Objective 1: Design a Hard Disk Layout 46

 Section 4.2. Objective 2: Install a Boot Manager 50

 Section 4.3. Objective 3: Make and Install Programs from Source 57

 Section 4.4. Objective 4: Manage Shared Libraries 63

 Section 4.5. Objective 5: Use Debian Package Management 66

 Section 4.6. Objective 6: Use Red Hat Package Manager (RPM) 75

Chapter 5. GNU and Unix Commands (Topic 1.103) 83

 Section 5.1. Objective 1: Work on the Command Line 85

 Section 5.2. Objective 2: Process Text Streams Using Filters 95

 Section 5.4. Objective 3: Perform Basic File Management 115

 Section 5.5. Objective 4: Use Streams, Pipes, and Redirects 124

 Section 5.6. Objective 5: Create, Monitor, and Kill Processes 129

 Section 5.7. Objective 6: Modify Process Execution Priorities 143

 Section 5.8. Objective 7: Search Text Files Using Regular Expressions 147

 Section 5.9. Objective 8: Perform Basic File Editing Operations Using vi 164

Chapter 6. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104) 168

 Section 6.1. Objective 1: Create Partitions and Filesystems 170

 Section 6.2. Objective 2: Maintain the Integrity of Filesystems 182

 Section 6.3. Objective 3: Control Filesystem Mounting and Unmounting 193

LPI Linux Certification in a Nutshell, 2nd Edition 1

Table of Contents 3

Copyright 8

 Preface 10

Part I: General Linux Exam 101 16

Chapter 1. LPI Exams 17

 Section 1.1. Exam 101 Overview 18

Chapter 2. Exam 101 Study Guide 20

 Section 2.1. Exam Preparation 21

Chapter 2. Hardware and Architecture (Topic 1.101) 24

 Section 3.1. Objective 1: Configure Fundamental BIOS Settings 26

 Section 3.2. Objective 3: Configure Modems and Sound Cards 30

 Section 3.3. Objective 4: Set Up Non-IDE Devices 33

 Section 3.4. Objective 5: Set Up Different PC Expansion Cards 37

 Section 3.5. Objective 6: Configure Communications Devices 40

 Section 3.6. Objective 7: Configure USB Devices 41

Chapter 4. Linux Installation and Package Management (Topic 1.102) 44

 Section 4.1. Objective 1: Design a Hard Disk Layout 46

 Section 4.2. Objective 2: Install a Boot Manager 50

 Section 4.3. Objective 3: Make and Install Programs from Source 57

 Section 4.4. Objective 4: Manage Shared Libraries 63

 Section 4.5. Objective 5: Use Debian Package Management 66

 Section 4.6. Objective 6: Use Red Hat Package Manager (RPM) 75

Chapter 5. GNU and Unix Commands (Topic 1.103) 83

 Section 5.1. Objective 1: Work on the Command Line 85

 Section 5.2. Objective 2: Process Text Streams Using Filters 95

 Section 5.4. Objective 3: Perform Basic File Management 115

 Section 5.5. Objective 4: Use Streams, Pipes, and Redirects 124

 Section 5.6. Objective 5: Create, Monitor, and Kill Processes 129

 Section 5.7. Objective 6: Modify Process Execution Priorities 143

 Section 5.8. Objective 7: Search Text Files Using Regular Expressions 147

 Section 5.9. Objective 8: Perform Basic File Editing Operations Using vi 164

Chapter 6. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104) 168

 Section 6.1. Objective 1: Create Partitions and Filesystems 170

 Section 6.2. Objective 2: Maintain the Integrity of Filesystems 182

 Section 6.3. Objective 3: Control Filesystem Mounting and Unmounting 193

 Section 6.4. Objective 4: Set and View Disk Quotas 202

 Section 6.5. Objective 5: Use File Permissions to Control Access to Files 213

 Section 6.6. Setting Up a Workgroup Directory 223

 Section 6.7. Objective 6: Manage File Ownership 225

 Section 6.8. Objective 7: Create and Change Hard and Symbolic Links 227

 Section 6.9. Objective 8: Find System Files and Place Files in the Correct Location 234

Chapter 7. The X Window System (Topic 1.1.10) 248

 Section 7.1. An Overview of X 249

 Section 7.2. Objective 1: Install and Configure X11 250

 Section 7.3. Objective 2: Set Up a Display Manager 261

 Section 7.4. Objective 4: Install and Customize a Window Manager Environment 265

Chapter 8. Exam 101 Review Questions and Exercises 271

 Section 8.1. Hardware and Architecture (Topic 1.101) 272

 Section 8.2. Linux Installation and Package Management (Topic 1.102) 274

 Section 8.3. GNU and Unix Commands (Topic 1.103) 276

 Section 8.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104) 281

 Section 8.5. The X Window System (Topic 1.110) 285

Chapter 9. Exam 101 Practice Test 287

 Section 9.1. Questions 288

 Section 9.2. Answers 305

Chapter 10. Exam 101 Highlighter's Index 309

 Section 10.1. Hardware and Architecture 310

 Section 10.2. Linux Installation and Package Management 314

 Section 10.3. GNU and Unix Commands 317

 Section 10.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard 329

 Section 10.5. The X Window System 339

Part II: General Linux Exam 102 342

 Chapter 11. Exam 102 Overview 343

Chapter 12. Exam 102 Study Guide 345

 Section 12.1. Exam Preparation 346

Chapter 13. Kernel (Topic 1.105) 349

 Section 13.1. Objective 1: Manage/Query Kernel and Kernel Modules at Runtime 350

 Section 13.2. Objective 2: Reconfigure, Build, and Install a Custom Kernel and Kernel Modules 362

Chapter 14. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106) 372

 Section 14.1. Objective 1: Boot the System 373

 Section 14.2. Objective 2: Change Runlevels and Shut Down or Reboot System 376

Chapter 15. Printing (Topic 1.107) 385

 Section 15.1. An Overview of Printing 386

 Section 15.2. Objective 2: Manage Printers and Print Queues 388

 Section 15.3. Objective 3: Print Files 396

 Section 15.4. Objective 4: Install and Configure Local and Remote Printers 399

Chapter 16. Documentation (Topic 1.108) 406

 Section 16.1. Objective 1: Use and Manage Local System Documentation 407

 Section 16.2. Objective 2: Find Linux Documentation on the Internet 413

 Section 16.3. Objective 5: Notify Users on System-related Issues 418

Chapter 17. Shells, Scripting, Programming, and Compiling (Topic 1.109) 420

 Section 17.1. Objective 1: Customize and Use the Shell Environment 421

 Section 17.2. Objective 2: Customize or Write Simple Scripts 433

Chapter 18. Administrative Tasks (Topic 1.111) 451

 Section 18.1. Objective 1: Manage Users and Group Accounts and Related System Files 453

 Section 18.2. Objective 2: Tune the User Environment and System Environment Variables 462

Section 18.3. Objective 3: Configure and Use System Log Files to Meet Administrative and Security
Needs

465

Section 18.4. Objective 4: Automate System Administration Tasks by Scheduling Jobs to Run in the
Future

470

 Section 18.5. Objective 5: Maintain an Effective Data Backup Strategy 476

 Section 18.6. Objective 6: Maintain System Time 488

Chapter 19. Networking Fundamentals (Topic 1.112) 496

 Section 19.1. Objective 1: Fundamentals of TCP/IP 498

 Section 19.2. Objective 3: TCP/IP Configuration and Troubleshooting 510

 Section 19.3. Objective 4: Configure Linux as a PPP Client 527

Chapter 20. Networking Services (Topic 1.113) 537

 Section 20.1. Objective 1: Configure and Manage inetd, xinetd, and Related Services 539

 Section 20.2. Objective 2: Operate and Perform Basic Configuration of Mail Transfer Agent (MTA) 548

 Section 20.3. Objective 3: Operate and Perform Basic Configuration of Apache 551

 Section 20.4. Objective 4: Properly Manage the NFS and Samba Daemons 554

 Section 20.5. Objective 5: Set Up and Configure Basic DNS Services 560

 Section 20.6. Objective 7: Set Up Secure Shell (OpenSSH) 567

Chapter 21. Security (Topic 1.114) 568

 Section 21.1. Objective 1: Perform Security Administration Tasks 569

 Section 21.2. Objective 2: Set Up Host Security 581

 Section 21.3. Objective 3: Set Up User-level Security 584

Chapter 22. Exam 102 Review Questions and Exercises 586

 Section 22.1. Kernel (Topic 1.105) 587

 Section 22.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106) 588

 Section 22.3. Printing (Topic 1.107) 590

 Section 22.4. Documentation (Topic 1.108) 591

 Section 22.5. Shells, Scripting, Programming, and Compiling (Topic 1.109) 594

 Section 22.6. Administrative Tasks (Topic 1.111) 595

 Section 22.7. Networking Fundamentals (Topic 1.112) 598

 Section 22.8. Networking Services (Topic 1.113) 600

 Section 22.9. Security (Topic 1.114) 602

Chapter 23. Exam 102 Practice Test 603

 Section 23.1. Questions 604

 Section 23.2. Answers 617

Chapter 24. Exam 102 Highlighter's Index 620

 Section 24.1. Kernel (Topic 1.105) 621

 Section 24.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106) 623

 Section 24.3. Printing (Topic 1.107) 627

 Section 24.4. Documentation (Topic 1.108) 630

 Section 24.5. Shells, Scripting, Programming, and Compiling 633

 Section 24.6. Administrative Tasks (Topic 1.111) 635

 Section 24.7. Networking Fundamentals (Topic 1.112) 641

 Section 24.8. Networking Services (Topic 1.113) 644

 Section 24.9. Security (Topic 1.114) 647

Part III: General Linux Exam 201 649

Chapter 25. Linux Kernel 650

 Section 25.1. Objective 1: Kernel Components 651

 Section 25.2. Objective 2: Compiling a Kernel 655

 Section 25.3. Objective 3: Patching a Kernel 662

 Section 25.4. Objective 4: Customizing a Kernel 666

Chapter 26. System Startup 668

 Section 26.1. Objective 1: Customizing System Startup and Boot Processes 669

 Section 26.2. Objective 2: System Recovery 681

Chapter 27. Filesystem 685

 Section 27.1. Objective 1: Operating the Linux Filesystem 686

 Section 27.2. Objective 2: Maintaining a Linux Filesystem 695

 Section 27.3. Objective 3: Creating and Configuring Filesystem Options 703

Chapter 28. Hardware (Topic 2.204) 715

 Section 28.1. Objective 1: Configuring RAID 716

 Section 28.2. Objective 2: Adding New Hardware 720

 Section 28.3. Objective 3: Software and Kernel Configuration 723

 Section 28.4. Objective 4: Configuring PCMCIA Devices 739

Chapter 29. File and Service Sharing (Topic 2.209) 747

 Section 29.1. Objective 1: Configuring a Samba Server 748

 Section 29.2. Objective 2: Configuring an NFS Server 756

Chapter 30. System Maintenance (Topic 2.211) 763

 Section 30.1. Objective 1: System Logging 764

 Section 30.2. Objective 2: Packaging Software 768

 Section 30.3. Objective 3: Backup Operations 781

Chapter 31. System Customization and Automation (Topic 2.213) 783

 Section 31.1. Objective 1: Automating Tasks Using Scripts 784

Chapter 32. Troubleshooting (Topic 2.214) 807

 Section 32.1. Objective 1: Creating Recovery Disks 808

 Section 32.2. Objective 2: Identifying Boot Stages 809

 Section 32.3. Objective 3: Troubleshooting Boot Loaders 811

 Section 32.4. Objective 4: General Troubleshooting 813

 Section 32.5. Objective 5: Troubleshooting System Resources 817

 Section 32.6. Objective 6: Troubleshooting Environment Configurations 821

Chapter 33. LPI Exam 201 Review Questions and Exercises 824

 Section 33.1. Linux Kernel (Topic 2.201) 825

 Section 33.2. System Startup (Topic 2.202) 829

 Section 33.3. Filesystem (Topic 2.203) 832

 Section 33.4. Hardware (Topic 2.204) 836

 Section 33.5. File and Service Sharing (Topic 2.209) 838

 Section 33.6. System Maintenance (Topic 2.211) 841

 Section 33.7. System Customization and Automation (Topic 2.213) 844

 Section 33.8. Troubleshooting (Topic 2.214) 846

Chapter 34. Exam 201 Practice Test 849

 Section 34.1. Questions 850

 Section 34.2. Answers 866

Part IV: General Linux Exam 202 871

Chapter 35. Networking Configuration (Topic 2.205) 872

 Section 35.1. Objective 1: Basic Networking Configuration 873

 Section 35.2. Objective 2: Advanced Network Configuration and Troubleshooting 901

Chapter 36. Mail and News (Topic 2.206) 915

 Section 36.1. Objective 2: Using Sendmail 916

 Section 36.2. Objective 3: Managing Mail Traffic 939

 Section 36.3. Objective 1: Configuring Mailing Lists 945

 Section 36.4. Objective 4: Serving News 952

 Section 36.5. Conclusion 959

Chapter 37. DNS (Topic 2.207) 960

 Section 37.1. Objective 1: Basic DNS Server Configuration 961

 Section 37.2. Objective 2: Create and Maintain DNS Zones 965

 Section 37.3. Objective 3: Securing a DNS Server 972

Chapter 38. Web Services (Apache and Squid, Topic 2.208) 976

 Section 38.1. Installing Apache 977

 Section 38.2. Configuring Apache 984

 Section 38.3. Squid: History and Overview 1002

 Section 38.4. Squid Authentication 1009

 Section 38.5. Squid as Web Accelerator 1011

Chapter 39. Network Client Management (Topic 2.210) 1014

 Section 39.1. Objective 1: DHCP Configuration 1015

 Section 39.2. Objective 2: NIS Configuration 1021

 Section 39.3. Objective 3: LDAP Configuration 1029

 Section 39.4. Objective 4: PAM Authentication 1036

Chapter 40. System Security (Topic 2.212) 1041

 Section 40.1. Objective 2: Configuring a Router 1043

 Section 40.2. Objective 3: Securing FTP Servers 1058

 Section 40.3. Objective 4: Secure Shell (SSH) 1061

 Section 40.4. Objective 5: TCP Wrappers 1068

 Section 40.5. Objective 6: Security Tasks 1072

Chapter 41. Network Troubleshooting (Topic 214) 1097

 Section 41.1. Network Troubleshooting Essentials 1098

 Section 41.2. Common Troubleshooting Commands 1100

 Section 41.3. Hardware Problems 1106

 Section 41.4. Network Device Configuration Files 1110

 Section 41.5. DNS Errors 1114

 Section 41.6. Determining the Cause of Inaccessible Services 1115

 Section 41.7. Conclusion 1117

Chapter 42. Exam 202 Review Questions and Exercises 1118

 Section 42.1. Networking Configuration (Topic 2.205) 1119

 Section 42.2. Mail and News (Topic 2.206) 1122

 Section 42.3. DNS (Topic 2.207) 1125

 Section 42.4. Web Services (Topic 2.208) 1128

 Section 42.5. Answers 1129

 Section 42.6. Network Client Management (Topic 2.210) 1132

 Section 42.7. System Security (Topic 2.212) 1135

 Section 42.8. Network Troubleshooting (Topic 2.214) 1138

Chapter 43. Exam 202 Practice Test 1141

 Section 43.1. Questions 1142

 Section 43.2. Answers 1155

About the Authors 1160

Colophon 1161

Index 1162

 SYMBOL 1163

 A 1165

 B 1168

 C 1171

 D 1175

 E 1180

 F 1185

 G 1189

 H 1191

 I 1194

 J 1198

 K 1199

 L 1201

 M 1205

 N 1209

 O 1213

 P 1214

 Q 1220

 R 1221

 S 1225

 T 1234

 U 1237

 V 1239

 W 1241

 X 1243

 Y 1245

 Z 1246

LPI Linux Certification in a Nutshell, 2nd Edition

By Jeff Dean, Bruno Gomes Pessanha, Nicolai Langfeldt, Steven Pritchard, James Stanger

...

Publisher: O'Reilly

Pub Date: July 2006

Print ISBN-10: 0-596-00528-8

Print ISBN-13: 978-0-59-600528-3

Pages: 978

Table of Contents | Index

LPI Linux Certification in a Nutshell,
Second Edition is an invaluable resource for determining what you need
to practice to pass the Linux Professional Institute exams. This book
will help
you determine when you're ready to take the exams, which are
technically challenging and designed to reflect the skills that
administrators need
in real working environments.

As more corporations adopt Linux as the networking backbone for their
IT systems, the demand for certified technicians will become
even greater. Passing the LPI exams will broaden your career options
because the LPIC
is the most widely known and respected Linux certification program in
the
world. Linux Journal recognized the LPI as the best
Training and
Certification Program. The exams were developed by the Linux
Professional Institute,
an international, volunteer-driven organization with affiliates in a
dozen countries.

The core LPI exams cover two levels. Level 1 tests a basic knowledge of
Linux installation, configuration, and command-line
skills. Level 2 goes into much more depth regarding system
troubleshooting and
network services such as email and the Web. The second edition of LPI
Linux
Certification in a Nutshell is a thoroughly researched
reference to these exams. The book is divided into four parts, one for
each of the
LPI exams. Each part features not only a summary of the core skills you
need, but sample exercises and test questions, along with helpful hints

to let
you focus your energies.

Major topics include:

GNU and Unix commands

Linux installation and package management

Devices, filesystems, and kernel configuration

Text editing, processing, and printing

The X Window System

Networking fundamentals and troubleshooting

Security, including intrusion detection, SSH, Kerberos, and
more

DNS, DHCP, file sharing, and other networking infrastructure

Email, FTP, and Web services

Praise for the first edition:
"Although O'Reilly's Nutshell series are intended as 'Desktop
Reference' manuals, I have to recommend this one as a good
all-round read; not only as a primer for LPI certification, but as an
excellent introductory text on GNU/Linux. In all, this is a valuable
addition to
O'Reilly's already packed stable of Linux titles and I look forward to
more from the author."
--First Monday

LPI Linux Certification in a Nutshell, 2nd Edition

By Jeff Dean, Bruno Gomes Pessanha, Nicolai Langfeldt, Steven Pritchard, James Stanger

...

Publisher: O'Reilly

Pub Date: July 2006

Print ISBN-10: 0-596-00528-8

Print ISBN-13: 978-0-59-600528-3

Pages: 978

Table of Contents | Index

 Copyright

 Preface

 Part I: General Linux Exam 101

 Chapter 1. LPI Exams

 Section 1.1. Exam 101 Overview

 Chapter 2. Exam 101 Study Guide

 Section 2.1. Exam Preparation

 Chapter 2. Hardware and Architecture (Topic 1.101)

 Section 3.1. Objective 1: Configure Fundamental BIOS Settings

 Section 3.2. Objective 3: Configure Modems and Sound Cards

 Section 3.3. Objective 4: Set Up Non-IDE Devices

 Section 3.4. Objective 5: Set Up Different PC Expansion Cards

 Section 3.5. Objective 6: Configure Communications Devices

 Section 3.6. Objective 7: Configure USB Devices

 Chapter 4. Linux Installation and Package Management (Topic 1.102)

 Section 4.1. Objective 1: Design a Hard Disk Layout

 Section 4.2. Objective 2: Install a Boot Manager

 Section 4.3. Objective 3: Make and Install Programs from Source

 Section 4.4. Objective 4: Manage Shared Libraries

 Section 4.5. Objective 5: Use Debian Package Management

 Section 4.6. Objective 6: Use Red Hat Package Manager (RPM)

 Chapter 5. GNU and Unix Commands (Topic 1.103)

 Section 5.1. Objective 1: Work on the Command Line

 Section 5.2. Objective 2: Process Text Streams Using Filters

 Section 5.4. Objective 3: Perform Basic File Management

 Section 5.5. Objective 4: Use Streams, Pipes, and Redirects

 Section 5.6. Objective 5: Create, Monitor, and Kill Processes

 Section 5.7. Objective 6: Modify Process Execution Priorities

 Section 5.8. Objective 7: Search Text Files Using Regular Expressions

 Section 5.9. Objective 8: Perform Basic File Editing Operations Using vi

 Chapter 6. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104)

 Section 6.1. Objective 1: Create Partitions and Filesystems

 Section 6.2. Objective 2: Maintain the Integrity of Filesystems

 Section 6.3. Objective 3: Control Filesystem Mounting and Unmounting

 Section 6.4. Objective 4: Set and View Disk Quotas

 Section 6.5. Objective 5: Use File Permissions to Control Access to Files

 Section 6.6. Setting Up a Workgroup Directory

 Section 6.7. Objective 6: Manage File Ownership

 Section 6.8. Objective 7: Create and Change Hard and Symbolic Links

 Section 6.9. Objective 8: Find System Files and Place Files in the Correct Location

 Chapter 7. The X Window System (Topic 1.1.10)

 Section 7.1. An Overview of X

 Section 7.2. Objective 1: Install and Configure X11

 Section 7.3. Objective 2: Set Up a Display Manager

 Section 7.4. Objective 4: Install and Customize a Window Manager Environment

 Chapter 8. Exam 101 Review Questions and Exercises

 Section 8.1. Hardware and Architecture (Topic 1.101)

 Section 8.2. Linux Installation and Package Management (Topic 1.102)

 Section 8.3. GNU and Unix Commands (Topic 1.103)

 Section 8.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104)

 Section 8.5. The X Window System (Topic 1.110)

 Chapter 9. Exam 101 Practice Test

 Section 9.1. Questions

 Section 9.2. Answers

 Chapter 10. Exam 101 Highlighter's Index

 Section 10.1. Hardware and Architecture

 Section 10.2. Linux Installation and Package Management

 Section 10.3. GNU and Unix Commands

 Section 10.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard

 Section 10.5. The X Window System

 Part II: General Linux Exam 102

 Chapter 11. Exam 102 Overview

 Chapter 12. Exam 102 Study Guide

 Section 12.1. Exam Preparation

 Chapter 13. Kernel (Topic 1.105)

 Section 13.1. Objective 1: Manage/Query Kernel and Kernel Modules at Runtime

 Section 13.2. Objective 2: Reconfigure, Build, and Install a Custom Kernel and Kernel Modules

 Chapter 14. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

 Section 14.1. Objective 1: Boot the System

 Section 14.2. Objective 2: Change Runlevels and Shut Down or Reboot System

 Chapter 15. Printing (Topic 1.107)

 Section 15.1. An Overview of Printing

 Section 15.2. Objective 2: Manage Printers and Print Queues

 Section 15.3. Objective 3: Print Files

 Section 15.4. Objective 4: Install and Configure Local and Remote Printers

 Chapter 16. Documentation (Topic 1.108)

 Section 16.1. Objective 1: Use and Manage Local System Documentation

 Section 16.2. Objective 2: Find Linux Documentation on the Internet

 Section 16.3. Objective 5: Notify Users on System-related Issues

 Chapter 17. Shells, Scripting, Programming, and Compiling (Topic 1.109)

 Section 17.1. Objective 1: Customize and Use the Shell Environment

 Section 17.2. Objective 2: Customize or Write Simple Scripts

 Chapter 18. Administrative Tasks (Topic 1.111)

 Section 18.1. Objective 1: Manage Users and Group Accounts and Related System Files

 Section 18.2. Objective 2: Tune the User Environment and System Environment Variables

 Section 18.3. Objective 3: Configure and Use System Log Files to Meet Administrative and Security Needs

 Section 18.4. Objective 4: Automate System Administration Tasks by Scheduling Jobs to Run in the Future

 Section 18.5. Objective 5: Maintain an Effective Data Backup Strategy

 Section 18.6. Objective 6: Maintain System Time

 Chapter 19. Networking Fundamentals (Topic 1.112)

 Section 19.1. Objective 1: Fundamentals of TCP/IP

 Section 19.2. Objective 3: TCP/IP Configuration and Troubleshooting

 Section 19.3. Objective 4: Configure Linux as a PPP Client

 Chapter 20. Networking Services (Topic 1.113)

 Section 20.1. Objective 1: Configure and Manage inetd, xinetd, and Related Services

 Section 20.2. Objective 2: Operate and Perform Basic Configuration of Mail Transfer Agent (MTA)

 Section 20.3. Objective 3: Operate and Perform Basic Configuration of Apache

 Section 20.4. Objective 4: Properly Manage the NFS and Samba Daemons

 Section 20.5. Objective 5: Set Up and Configure Basic DNS Services

 Section 20.6. Objective 7: Set Up Secure Shell (OpenSSH)

 Chapter 21. Security (Topic 1.114)

 Section 21.1. Objective 1: Perform Security Administration Tasks

 Section 21.2. Objective 2: Set Up Host Security

 Section 21.3. Objective 3: Set Up User-level Security

 Chapter 22. Exam 102 Review Questions and Exercises

 Section 22.1. Kernel (Topic 1.105)

 Section 22.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

 Section 22.3. Printing (Topic 1.107)

 Section 22.4. Documentation (Topic 1.108)

 Section 22.5. Shells, Scripting, Programming, and Compiling (Topic 1.109)

 Section 22.6. Administrative Tasks (Topic 1.111)

 Section 22.7. Networking Fundamentals (Topic 1.112)

 Section 22.8. Networking Services (Topic 1.113)

 Section 22.9. Security (Topic 1.114)

 Chapter 23. Exam 102 Practice Test

 Section 23.1. Questions

 Section 23.2. Answers

 Chapter 24. Exam 102 Highlighter's Index

 Section 24.1. Kernel (Topic 1.105)

 Section 24.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

 Section 24.3. Printing (Topic 1.107)

 Section 24.4. Documentation (Topic 1.108)

 Section 24.5. Shells, Scripting, Programming, and Compiling

 Section 24.6. Administrative Tasks (Topic 1.111)

 Section 24.7. Networking Fundamentals (Topic 1.112)

 Section 24.8. Networking Services (Topic 1.113)

 Section 24.9. Security (Topic 1.114)

 Part III: General Linux Exam 201

 Chapter 25. Linux Kernel

 Section 25.1. Objective 1: Kernel Components

 Section 25.2. Objective 2: Compiling a Kernel

 Section 25.3. Objective 3: Patching a Kernel

 Section 25.4. Objective 4: Customizing a Kernel

 Chapter 26. System Startup

 Section 26.1. Objective 1: Customizing System Startup and Boot Processes

 Section 26.2. Objective 2: System Recovery

 Chapter 27. Filesystem

 Section 27.1. Objective 1: Operating the Linux Filesystem

 Section 27.2. Objective 2: Maintaining a Linux Filesystem

 Section 27.3. Objective 3: Creating and Configuring Filesystem Options

 Chapter 28. Hardware (Topic 2.204)

 Section 28.1. Objective 1: Configuring RAID

 Section 28.2. Objective 2: Adding New Hardware

 Section 28.3. Objective 3: Software and Kernel Configuration

 Section 28.4. Objective 4: Configuring PCMCIA Devices

 Chapter 29. File and Service Sharing (Topic 2.209)

 Section 29.1. Objective 1: Configuring a Samba Server

 Section 29.2. Objective 2: Configuring an NFS Server

 Chapter 30. System Maintenance (Topic 2.211)

 Section 30.1. Objective 1: System Logging

 Section 30.2. Objective 2: Packaging Software

 Section 30.3. Objective 3: Backup Operations

 Chapter 31. System Customization and Automation (Topic 2.213)

 Section 31.1. Objective 1: Automating Tasks Using Scripts

 Chapter 32. Troubleshooting (Topic 2.214)

 Section 32.1. Objective 1: Creating Recovery Disks

 Section 32.2. Objective 2: Identifying Boot Stages

 Section 32.3. Objective 3: Troubleshooting Boot Loaders

 Section 32.4. Objective 4: General Troubleshooting

 Section 32.5. Objective 5: Troubleshooting System Resources

 Section 32.6. Objective 6: Troubleshooting Environment Configurations

 Chapter 33. LPI Exam 201 Review Questions and Exercises

 Section 33.1. Linux Kernel (Topic 2.201)

 Section 33.2. System Startup (Topic 2.202)

 Section 33.3. Filesystem (Topic 2.203)

 Section 33.4. Hardware (Topic 2.204)

 Section 33.5. File and Service Sharing (Topic 2.209)

 Section 33.6. System Maintenance (Topic 2.211)

 Section 33.7. System Customization and Automation (Topic 2.213)

 Section 33.8. Troubleshooting (Topic 2.214)

 Chapter 34. Exam 201 Practice Test

 Section 34.1. Questions

 Section 34.2. Answers

 Part IV: General Linux Exam 202

 Chapter 35. Networking Configuration (Topic 2.205)

 Section 35.1. Objective 1: Basic Networking Configuration

 Section 35.2. Objective 2: Advanced Network Configuration and Troubleshooting

 Chapter 36. Mail and News (Topic 2.206)

 Section 36.1. Objective 2: Using Sendmail

 Section 36.2. Objective 3: Managing Mail Traffic

 Section 36.3. Objective 1: Configuring Mailing Lists

 Section 36.4. Objective 4: Serving News

 Section 36.5. Conclusion

 Chapter 37. DNS (Topic 2.207)

 Section 37.1. Objective 1: Basic DNS Server Configuration

 Section 37.2. Objective 2: Create and Maintain DNS Zones

 Section 37.3. Objective 3: Securing a DNS Server

 Chapter 38. Web Services (Apache and Squid, Topic 2.208)

 Section 38.1. Installing Apache

 Section 38.2. Configuring Apache

 Section 38.3. Squid: History and Overview

 Section 38.4. Squid Authentication

 Section 38.5. Squid as Web Accelerator

 Chapter 39. Network Client Management (Topic 2.210)

 Section 39.1. Objective 1: DHCP Configuration

 Section 39.2. Objective 2: NIS Configuration

 Section 39.3. Objective 3: LDAP Configuration

 Section 39.4. Objective 4: PAM Authentication

 Chapter 40. System Security (Topic 2.212)

 Section 40.1. Objective 2: Configuring a Router

 Section 40.2. Objective 3: Securing FTP Servers

 Section 40.3. Objective 4: Secure Shell (SSH)

 Section 40.4. Objective 5: TCP Wrappers

 Section 40.5. Objective 6: Security Tasks

 Chapter 41. Network Troubleshooting (Topic 214)

 Section 41.1. Network Troubleshooting Essentials

 Section 41.2. Common Troubleshooting Commands

 Section 41.3. Hardware Problems

 Section 41.4. Network Device Configuration Files

 Section 41.5. DNS Errors

 Section 41.6. Determining the Cause of Inaccessible Services

 Section 41.7. Conclusion

 Chapter 42. Exam 202 Review Questions and Exercises

 Section 42.1. Networking Configuration (Topic 2.205)

 Section 42.2. Mail and News (Topic 2.206)

 Section 42.3. DNS (Topic 2.207)

 Section 42.4. Web Services (Topic 2.208)

 Section 42.5. Answers

 Section 42.6. Network Client Management (Topic 2.210)

 Section 42.7. System Security (Topic 2.212)

 Section 42.8. Network Troubleshooting (Topic 2.214)

 Chapter 43. Exam 202 Practice Test

 Section 43.1. Questions

 Section 43.2. Answers

 About the Authors

 Colophon

 Index

LPI Linux Certification in a Nutshell, Second Edition

by Steven Pritchard, Bruno Gomes Pessanha, Nicolai Langfeldt, James Stanger, and Jeff Dean

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tim O'Reilly

Developmental Editor: Andy Oram

Production Editor: Philip Dangler

Copyeditor: Norma Emory

Indexer: Ellen Troutman

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

June 2001: First Edition.

July 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, LPI Linux Certification in a Nutshell, the
image of a bull, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00528-8

[C]

Preface
Certification of professionals is a time-honored tradition in many fields, including medicine and law.
As small computer systems and networks proliferated over the last decade, Novell and Microsoft
produced extremely popular technical certification products for their respective operating system
and network technologies. These two programs are often cited as having popularized a certification
market for products that had previously been highly specialized and relatively rare. These programs
have become so popular that a huge training and preparation industry has formed to service a
constant stream of new certification candidates.

Certification programs, offered by vendors such as Sun and Hewlett-Packard, have existed in the
Unix world for some time. However, since Solaris and HP-UX aren't commodity products, those
programs don't draw the crowds that the PC platform does. Linux, however, is different. Linux is
both a commodity operating system and is PC- based, and its popularity continues to grow at a
rapid pace. As Linux deployment increases, so too does the demand for qualified and certified Linux
system administrators.

A number of programs such as the Linux Professional Institute (LPI), the Red Hat Certified Engineer
(RHCE) program, and CompTIA's Linux+ have formed over the last few years to service this new
market. Each of these programs seek to provide objective measurements of a Linux administrator's
skills, but they approach the problem in different ways.

The RHCE program requires that candidates pass multiple exam modules, including two hands-on
and one written, whose goals are to certify individuals to use their brand of products. The Linux+
program requires a single exam and is focused at entry-level candidates with six months'
experience. LPI's program is a job-based certification and currently consists of two levels that focus
on two-year (Level 1) and four-year (Level 2) experienced candidates.

The Linux Professional Institute

The Linux Professional Institute (http://www.lpi.org) is a nonprofit organization formed with the
single goal of providing a standard for vendor-neutral certification. This goal is being achieved by
certifying Linux administrators through a modified open source development process. LPI seeks
input from the public for its exam Objectives and questions, and anyone is welcome to participate. It
has both paid and volunteer staff and receives funding from some major names in the computer
industry. The result is a vendor-neutral, publicly developed program that is offered at a reasonable
price.

LPI currently organizes its Linux Professional Institute Certification (LPIC) series in two levels: LPIC
Levels 1 and 2. Each level consists of two exams that are priced at about U.S. $100 each (prices
vary by continent). This book covers the LPIC Level 1 Exams 101 and 102 in Parts I and II, while
LPIC Level 2 Exams, 201 and 202 are covered in Parts III and IV.

LPI is in the process of building a third level of exams, which will focus on specialty fields. It is also
working with other organizations to start building certification modules based on the LPI standard.

Level 1 is aimed at junior to midlevel Linux administrators with about two years of practical system
administration experience. The Level 1 candidate should be comfortable with Linux at the command

http://www.lpi.org

line as well as capable of performing simple tasks, including system installation and troubleshooting.
Level 1 certification is required prior to obtaining Level 2 certification status.

Level 2 is for senior Linux system administrators and team leaders. A Level 2 administrator is likely
to have four or more years of practical administration experience. Beyond the ability to work
effectively with native tools on standard Linux distributions, Level 2 covers customizing all aspects of
your Linux systems, from the kernel to its filesystems, as well as implementing a number of network
applications for Linux servers. At a glance, Level 2 Objectives may appear to overlap several areas
of content with Level 1; however, the depth and expertise level required is much higher. Often, a
Level 2 candidate is expected to be the individual that a Level 1 candidate would refer to for higher-
level projects or problems within a production environment.

Level 2 certification will be required prior to obtaining the future Level 3 certification status.

All of LPI's exams are based on a published set of technical Objectives. These technical Objectives
are posted on LPI's web site and for your convenience printed at the beginning of each chapter
within this book. Each Objective set forth by LPI is assigned a numeric weight, which acts as an
indicator of the importance of the Objective. Weights run between 1 and 8, with higher numbers
indicating more importance. An Objective carrying a weight of 1 can be considered relatively
unimportant and isn't likely to be covered in much depth on the exam. Objectives with larger
weights are sure to be covered on the exam, so you should study these closely. The weights of the
Objectives are provided at the beginning of each chapter.

Audience for This Book

The primary audience for this book is, of course, candidates seeking the LPIC certification. These
may range from administrators of other operating systems looking for a Linux certification to
complement an MSCE certification to Unix administrators wary of a growing pool of Linux-certified
job applicants. In any case, this book will help you with the specific information you require to be
successful with both the Level 1 and Level 2 Exams. Don't be fooled, however, as book study will not
be enough to pass your exams. Remember, practice makes perfect!

Due to the breadth of knowledge required by the LPI Objectives and the book's one-to-one
coverage, it also makes an excellent reference for skills and methods required for the day-to-day use
of Linux. If you have a basic working understanding of Linux administration, the material in this
book will help fill gaps in your knowledge while at the same time preparing you for the LPI Exams,
should you choose to take them.

This book should also prove to be a valuable introduction for new Linux users and administrators
looking for a broad, detailed introduction to Linux. Part of the LPI exam-creation process includes a
survey of Linux professionals in the field. The survey results drive much of the content found on the
exams. Therefore, unlike general-purpose introductory Linux books, all of the information in this
book applies directly to running Linux in the real world.

Organization

This book is designed to exactly follow the Topics and Objectives established by LPI for Levels 1 and
2. That means that the presentation doesn't look like any other Linux book you've read. Instead, you
can directly track the LPI Objectives and easily measure your progress as you prepare.

The book is presented in four parts. Part I covers Exam 101 and Part II covers Exam 102. New for
the second edition, we have added Parts III and IV to cover Exams 201 and 202 for LPI's Level 2

Exams. Each part contains chapters dedicated to the LPI Topics, and each of those sections contains
information on all of the Objectives set forth for the Topic. In addition, each part contains a practice
exam (with answers), review questions and exercises, and a handy highlighter's index that can help
you review important details.

Book Chapters

Each part of this book contains some combination of the following materials:

Exam overview

Here you find an introduction to the exam along with details about the format of the
questions.

Study guide

This chapter offers a few tips to prepare for the LPI Exams and introduces the Objectives
contained in the Topic chapters that follow.

Topic chapters

A separate chapter covers each of the Topic areas on the exam. These chapters provide
background information and in-depth coverage for each Objective, with On the Exam tips
dispersed throughout.

Review questions and exercises

This chapter reinforces important study areas with review questions. The purpose of this
section is to provide you with a series of exercises that can be used on a running Linux system
to give you valuable hands-on experience before you take the exams.

Practice test

The practice test is designed to be similar in format and content to the actual LPI Exams. You
should be able to attain at least an 80% score on the sample test before attempting the live
exam.

Highlighter's index

This unique chapter contains highlights and important facts culled from the Topic chapters.
You can use this as review and reference material prior to taking the actual exams. This
chapter was omitted from parts II and IV due to the variety and complexity of topics
disscussed in those sections.

There is also a glossary at the back of the book, which you can use to help familiarize yourself with
different Linux-related terms.

Conventions Used in This Book

This book follows certain typographical conventions:

Italic

Italic is used to indicate URLs, filenames, directories, commands, options, system components
(such as usernames), and to highlight comments in examples.

Constant Width

Used to show the contents of files or the output from commands.

Constant Width Bold

Used in examples and tables to show commands or other text that should be typed literally by
the user.

Constant Width Italic

Used to show arguments and variables that should be replaced with user-supplied values.

#, $

Used in some examples as the root shell prompt (#) and as the user prompt ($) under the
Bourne or Bash shell.

On the Exam

Provides information about areas you should focus on when studying for the exam.

Tip: Indicates a tip, suggestion, or general note.

Warning: Indicates a warning or caution.

A final word about syntax: in many cases, the space between an option and its argument can be
omitted. In other cases, the spacing (or lack of spacing) must be followed strictly. For example, -wn

(no intervening space) might be interpreted differently from -w n. It's important to notice the

spacing used in option syntax.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "LPI Linux Certification in a Nutshell by Steven Pritchard et al.
Copyright 2006 O'Reilly Media, Inc., 0-596-00528-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free
to contact us at permissions@oreilly.com.

Safari Enabled

 When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf. Safari offers a
solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). As a reader of this book and as
an LPI examinee, you can help us to improve future editions. Please let us know about any errors
you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

There is a web page for this book where you can find errata, examples, and any additional
information. You can access this page at: http://www.oreilly.com/catalog/lpicertnut2

To comment or ask technical questions about this book, email: bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site: http://www.oreilly.com

If you have taken one or all of the LPIC Exams after preparing with this book and find that parts of
this book could better address your exam experience, we'd like to hear about it. Of course, you are
under obligation to LPI not to disclose specific exam details, but comments regarding the coverage

http://safari.oreilly.com
http://www.oreilly.com/catalog/lpicertnut2
http://www.oreilly.com

of the LPI Objectives, level of detail, and relevance to the exam will be most helpful. We take your
comments seriously and will do whatever we can to make this book as useful as it can be.

Acknowledgments

The size and complexity of the LPI tests required the collaboration of numerous authors and

reviewers to get this edition done. Material was contributed by Bj rn Ruberg (Sendmail, DNS,
networking, printing), Adam Haeder (file and service sharing, web services), and Faber Fedor
(troubleshooting).

For the second edition, we thank reviewers Keith Burgess, Donald L. Corbet, Chander Kant, and Rick
Rezinas.

Bruno dedicates his work to his grandfather, Oswaldo Cabral Pessanha, in memorium.

Part I: General Linux Exam 101
Part I covers the Topics and Objectives for the LPI's General Linux Certification for Exam 101
and includes the following sections:

Chapter 1, LPI Exams

Chapter 2, Exam 101 Study Guide

Chapter 3, Hardware and Architecture (Topic 1.101)

Chapter 4, Linux Installation and Package Management (Topic 1.102)

Chapter 5, GNU and Unix Commands (Topic 1.103)

Chapter 6, Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104)

Chapter 7, The X Window System (Topic 1.1.10)

Chapter 8, Exam 101 Review Questions and Exercises

Chapter 9, Exam 101 Practice Test

Chapter 10, Exam 101 Highlighter's Index

Chapter 1. LPI Exams
LPI offers its exams through Pearson VUE (http://www.vue.com), Thomson Prometric
(http://www.prometric.com), and at on-site locations at special Linux events, such as tradeshows.
Before registering for any of these testing methods, you need to obtain an LPI ID number by
registering directly with LPI. To obtain your LPI ID, visit http://www.lpi.org/en/register.html. Once
you've received your LPI ID, you may continue your registration by registering with a testing center
or special event. You can link to any of these registration options through LPI's registration web site.

In testing centers, the exams are delivered using a PC-based automated examination program. As of
this writing, the exams are available in both English and Japanese. Exam questions are presented in
multiple-choice single-answer, multiple-choice multiple-answer, and fill-in-the-blank styles.
However, the majority of the questions on the exams are multiple-choice single-answer.

For security purposes, multiple forms of each exam are available at testing centers to help minimize
memorization and brain dumps of exams if candidates take them multiple times. Due to this, actual
question numbers may vary slightly. LPI's psychometric team develops these forms and adjusts the
scoring appropriately so all forms are equally difficult.

http://www.vue.com
http://www.prometric.com
http://www.lpi.org/en/register.html

1.1. Exam 101 Overview

LPI Exam 101 is one of two exams required for the LPIC Level 1 certification. In total, 14 major
Topic areas are specified for Level 1; this exam tests your knowledge on 5 of them.

Exam Topics are numbered using a level.topic notation (e.g., 1.101, 1.102, 1.113). In LPI's early
stages of development, Topics were assigned to exams based on a different scheme than we see
today. When the scheme changed, the Topics were redistributed to Exams 101 and 102, but the
pairing of Topic numbers to exams was dropped. As a result, LPI has 1.x and 2.x Topics in both
Level 1 Exams. In the 2002 revision of the Objectives , LPI decided to reformat the numbering
scheme to be more scalable for its multiple levels of certifications. Therefore, the exams now use an
x.y.z numbering scheme where x equals the LPIC level (e.g., 1 or 2), y equals the Objective Topic
(e.g., 101, 102, 201, 202, etc.) which are unique to all levels of LPI exams, and z equals the
Objective number within the Topic area (e.g., 1, 2, 3, 4, and so on).

The Level 1 Topics are distributed between the two exams to create tests of similar length and
difficulty without subject matter overlap. As a result, there's no requirement for or advantage to
taking them in sequence.

Each Topic contains a series of Objectives covering specific areas of expertise. Each of these
Objectives is assigned a numeric weight, which acts as an indicator of the importance of the
Objective. Weights typically run between 1 and 8, with higher numbers indicating more importance.
An Objective carrying a weight of 1 can be considered relatively unimportant and isn't likely to be
covered in much depth on the exam. Objectives with larger weights are sure to be covered more
heavily on the exam, so you should study these Topics closely. The weights of the Objectives are
provided at the beginning of each Topic section.

The Topics for Exam 101 are listed in Table 1-1.

Table 1-1. LPI Topics for Exam 101

Name
Number of
objectives Description

Hardware and
Architecture

4 These Objectives cover all the fundamentals of working with
common types of hardware on Linux. The Objectives included
configuring PC system BIOS and IDE hard drives, installing plug-
and-play-based modems and sound cards, setting up SCSI-
based devices, and configuring USB hardware.

Linux Installation
and Package
Management

6 Objectives for this Topic include the basics of getting any LSB-
compliant Linux distribution installed and installing applications.
Some of the basics include partitioning hard drives, installing
your choice of boot managers, installing programs from source,
managing shared libraries, and using package management
systems such as Debian and Red Hat (RPM).

GNU and Unix
Commands

8 This heavily weighted Topic addresses the most utilized
command- line tools used on standard Linux systems as well as

Name
Number of
objectives Description Commands command- line tools used on standard Linux systems as well as

most commercial Unix systems. The Objectives detail working on
a command line, processing text streams using command-line
tools, managing files, manipulating text with pipes and redirects,
monitoring system processes, managing task priorities, using
regular expressions, and editing files with vi. lilo, syslog,
runlevels, shutdown, and reboot.

Devices, Linux
Filesystems, and
the Filesystem
Hierarchy
Standard

8 Objectives for this Topic include the creation of partitions and
filesystems, filesystem integrity, mounting, quotas, permissions,
ownership, links, and file location tasks.

The X Window
System

3 The X-based Objectives cover only subjects that every Level 1
sysadmin are expected to encounter. Some of these tasks include
installing and configuring XFree86, setting up a display manager
such as XDM, GDM, or KDM, and installing and customizing
Window Manager Environments.

As you can see from Table 1-1, the Topic numbers assigned by the LPI are not necessarily
sequential. This is due to various modifications made by the LPI to its exam program as it
developed. The Topic numbers serve only as reference and are not used on the exam.

Exam 101 lasts a maximum of 90 minutes and contains approximately 65 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. The majority of the exam is made up of multiple-choice single-answer questions. These
questions have only one correct answer and are answered using radio buttons. Some of them
present a scenario needing administrative action. Others seek appropriate commands for a
particular task or proof of understanding of a particular concept.

About 10 percent of the exam questions are multiple-choice multiple-answer questions, which are
answered using checkboxes. These questions specify that they have multiple correct responses, each
of which must be checked to get the item correct. There is no partial credit for partially answered
items. This is probably the most difficult question style because the multiple answers increase the
likelihood of mistakes. But they also are a good test of your knowledge of Unix commands, since an
incorrect response on any one of the possible answers causes you to miss the entire question.

The exam also has fill-in-the-blank questions. These questions provide a one-line text area input box
for you to fill in your answer. These questions check your knowledge of concepts such as important
files and commands, plus common facts that you are expected to be aware of. The second release of
the LPI Level 1 exams included more of these types of items since the psychometric evaluation LPI
uses for exam development determined that the fill-in-the-blank type of questions were the best
indicators for truly competant administrators. Don't let this scare you, however, since most of these
items accept multiple answers. Unless specified otherwise they are not case-sensitive and do not
require full paths in your answers.

Commands command- line tools used on standard Linux systems as well as
most commercial Unix systems. The Objectives detail working on
a command line, processing text streams using command-line
tools, managing files, manipulating text with pipes and redirects,
monitoring system processes, managing task priorities, using
regular expressions, and editing files with vi. lilo, syslog,
runlevels, shutdown, and reboot.

Devices, Linux
Filesystems, and
the Filesystem
Hierarchy
Standard

8 Objectives for this Topic include the creation of partitions and
filesystems, filesystem integrity, mounting, quotas, permissions,
ownership, links, and file location tasks.

The X Window
System

3 The X-based Objectives cover only subjects that every Level 1
sysadmin are expected to encounter. Some of these tasks include
installing and configuring XFree86, setting up a display manager
such as XDM, GDM, or KDM, and installing and customizing
Window Manager Environments.

As you can see from Table 1-1, the Topic numbers assigned by the LPI are not necessarily
sequential. This is due to various modifications made by the LPI to its exam program as it
developed. The Topic numbers serve only as reference and are not used on the exam.

Exam 101 lasts a maximum of 90 minutes and contains approximately 65 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. The majority of the exam is made up of multiple-choice single-answer questions. These
questions have only one correct answer and are answered using radio buttons. Some of them
present a scenario needing administrative action. Others seek appropriate commands for a
particular task or proof of understanding of a particular concept.

About 10 percent of the exam questions are multiple-choice multiple-answer questions, which are
answered using checkboxes. These questions specify that they have multiple correct responses, each
of which must be checked to get the item correct. There is no partial credit for partially answered
items. This is probably the most difficult question style because the multiple answers increase the
likelihood of mistakes. But they also are a good test of your knowledge of Unix commands, since an
incorrect response on any one of the possible answers causes you to miss the entire question.

The exam also has fill-in-the-blank questions. These questions provide a one-line text area input box
for you to fill in your answer. These questions check your knowledge of concepts such as important
files and commands, plus common facts that you are expected to be aware of. The second release of
the LPI Level 1 exams included more of these types of items since the psychometric evaluation LPI
uses for exam development determined that the fill-in-the-blank type of questions were the best
indicators for truly competant administrators. Don't let this scare you, however, since most of these
items accept multiple answers. Unless specified otherwise they are not case-sensitive and do not
require full paths in your answers.

Chapter 2. Exam 101 Study Guide
Part I of this book contains a section for each of the five Topics found on LPI Exam 101. Each section
details certain Objectives, which are described here and on the LPI web site, http://www.lpi.org/p-
obj-101rel2.html.

http://www.lpi.org/p-

2.1. Exam Preparation

LPI Exam 101 is thorough, but you should find it fairly straightforward if you have a solid foundation
in Linux concepts. You won't come across questions that intend to trick you, and you're unlikely to
find ambiguous questions.

Exam 101 mainly tests your knowledge of facts, including commands and their common options,
important file locations, configuration syntax, and common procedures. Your recollection of these
details, regardless of your level of Linux administration experience, will directly influence your
results.

For clarity, the material in the following sections is presented in the same order as the LPI Topics
and Objectives. However, you may choose to study the Topics in any order you wish. To assist you
with your preparation, Tables 2-1 through 2-5 list the Topics and Objectives found on Exam 101.
Objectives within each Topic occupy rows of the corresponding table, including the Objective's
number, description, and weight. The LPI assigns a weight for each Objective to indicate the relative
importance of that Objective on the exam on a scale of 1 to 8. We recommend that you use the
weights to prioritize what you decide to study in preparation for the exams. After you complete your
study of each Objective, simply check it off here to measure and organize your progress.

Table 2-1. Hardware and architecture (Topic 1.101)

Objective Weight Description

1 1 Configure Fundamental BIOS Settings

3 1 Configure Modem and Sound Cards

4 1 Set Up Non-IDE Devices

5 3 Set Up Different PC Expansion Cards

6 1 Configure Communication Devices

7 1 Configure USB Devices

Table 2-2. Linux installation and package management (Topic 1.102)

Objective Weight Description

1 5 Design Hard Disk Layout

2 1 Install a Boot Manager

3 5 Make and Install Programs from Source

4 3 Manage Shared Libraries

5 8 Use Debian Package Management

Objective Weight Description

6 8 Use Red Hat Package Manager

Table 2-3. GNU and Unix commands (Topic 1.103)

Objective Weight Description

1 5 Work on the Command Line

2 6 Process Text Streams Using Filters

3 5 Perform Basic File Management

4 5 Using Streams, Pipes, and Redirects

5 5 Create, Monitor, and Kill Processes

6 3 Modify Process Execution Priorities

7 3 Search Text Files Using Regular Expressions

8 1 Perform Basic File Editing Operations Using vi

Table 2-4. Devices, Linux filesystems, and the Filesystem Hierarchy
Standard (Topic 1.104)

Objective Weight Description

1 3 Create Partitions and Filesystems

2 3 Maintain the Integrity of Filesystems

3 3 Control Mounting and Unmounting Filesystems

4 3 Managing Disk Quota

5 5 Use File Permissions to Control Access to Files

6 1 Manage File Ownership

7 1 Create and Change Hard and Symbolic Links

8 5 Find System Files and Place Files in the Correct Location

Table 2-5. The X Window System (Topic 1.110)

Objective Weight Description

1 5 Install and Configure X11

2 3 Set Up a Display Manager

4 5 Install and Customize a Window Manager Environment

6 8 Use Red Hat Package Manager

Table 2-3. GNU and Unix commands (Topic 1.103)

Objective Weight Description

1 5 Work on the Command Line

2 6 Process Text Streams Using Filters

3 5 Perform Basic File Management

4 5 Using Streams, Pipes, and Redirects

5 5 Create, Monitor, and Kill Processes

6 3 Modify Process Execution Priorities

7 3 Search Text Files Using Regular Expressions

8 1 Perform Basic File Editing Operations Using vi

Table 2-4. Devices, Linux filesystems, and the Filesystem Hierarchy
Standard (Topic 1.104)

Objective Weight Description

1 3 Create Partitions and Filesystems

2 3 Maintain the Integrity of Filesystems

3 3 Control Mounting and Unmounting Filesystems

4 3 Managing Disk Quota

5 5 Use File Permissions to Control Access to Files

6 1 Manage File Ownership

7 1 Create and Change Hard and Symbolic Links

8 5 Find System Files and Place Files in the Correct Location

Table 2-5. The X Window System (Topic 1.110)

Objective Weight Description

1 5 Install and Configure X11

2 3 Set Up a Display Manager

4 5 Install and Customize a Window Manager Environment

Chapter 2. Hardware and Architecture
(Topic 1.101)
This Topic requires general knowledge of fundamental PC architecture facts that you must know
before attempting any operating system installation. It includes these Objectives:

Objective 1: Configure Fundamental BIOS Settings

This Objective states that candidates should be able to configure fundamental system
hardware by making the correct settings in the system BIOS. This Objective includes a proper
understanding of BIOS configuration issues such as the use of LBA on integrated device
electronics (IDE) hard disks larger than 1024 cylinders, enabling or disabling integrated
peripherals, and configuring systems with (or without) external peripherals such as keyboards.
It also includes the correct setting for IRQs, DMAs, and I/O addresses for all BIOS
administrated ports and settings for error handling. Weight: 1.

Objective 3: Configure Modem and Sound Cards

An LPI 101 Candidate must ensure devices meet compatibility requirements (particularly that
the modem is not a winmodem). The candidate should also verify that both the modem and
sound card are using unique and correct IRQs, DMAs, and I/O addresses; if the sound card is
plug-and-play (PnP), install and run sndconfig and isapnp; configure the modem for outbound
PPP, SLIP, and CSLIP connections; and set the serial port speeds. Weight: 1.

Objective 4: Set Up Non-IDE Devices

This Objective states that the candidate should be able to configure SCSI (pronounced
"scuzzy") devices using the SCSI BIOS as well as the necessary Linux tools. He should also be
able to differentiate between the various types of SCSI. This Objective includes manipulating
the SCSI BIOS to detect used and available SCSI IDs and setting the correct ID number for
different devices, especially the boot device. It also includes managing the settings in the
computer's BIOS to determine the desired boot sequence if both SCSI and IDE drives are
used. Weight: 1.

Objective 5: Set Up Different PC Expansion Cards

This Objective states that a candidate should be able to configure various cards for the various
expansion slots. She should know the differences between ISA and PCI cards with respect to
configuration issues. This Objective includes the correct settings of IRQs, DMAs, and I/O ports
of the cards, especially to avoid conflicts between devices. It also includes using isapnp if the
card is an ISA PnP device. Weight: 3.

Objective 6: Configure Communication Devices

The candidate should be able to install and configure different internal and external
communication devices such as modems, ISDN adapters, and DSL switches. This Objective
includes verification of compatibility requirements (especially important if that modem is a
winmodem), necessary hardware settings for internal devices (IRQs, DMAs, and I/O ports),
and loading and configuring suitable device drivers. It also includes communication device and
interface configuration requirements, such as the right serial port for 115.2 Kbps and the
correct modem settings for outbound PPP connections. Weight: 1.

Objective 7: Configure USB Devices

Candidates should be able to activate USB support, use and configure different USB devices.
This Objective includes the correct selection of the USB chipset and corresponding module. It
also includes knowledge of the basic architecture of the layer model of USB as well as the
different modules used in the different layers. Weight: 1.

3.1. Objective 1: Configure Fundamental BIOS Settings

Setting up a PC for Linux (or any other operating system) requires some familiarity with the devices
installed in the system and their configuration. Items to be aware of include modems, serial and
parallel ports, network adapters, SCSI adapters, hard drives, USB controllers, and sound cards.
Many of these devices, particularly older ones, require manual configuration of some kind to avoid
conflicting resources. The rest of the configuration for the system hardware is done in the PC's
firmware, or Basic Input/Output System (BIOS).

3.1.1. BIOS

The firmware located in a PC, commonly called the BIOS, is responsible for bringing all of the
system hardware to a state at which it is ready to boot an operating system. Systems vary, but this
process usually includes system initialization, the testing of memory and other devices, and
ultimately locating an operating system from among several storage devices. In addition, the BIOS
provides a low-level system configuration interface, allowing the user to choose such things as boot
devices and resource assignments. Quite a few BIOS firmware vendors provide customized versions
of their products for various PC system architectures. Exams do require an understanding of the
basics. For example, a laptop BIOS may differ significantly from a desktop system of similar
capability from the same manufacturer. Due to these variations, it's impossible to test specifics, but
the LPIC Level 1 exams do require an understanding of the basics

At boot time, most PCs display a method of entering the BIOS configuration utility, usually by
entering a specific keystroke during startup. Once the utility is started, a menu-based screen in
which system settings can be configured appears. Depending on the BIOS vendor, these will include
settings for disks, memory behavior, on-board ports (such as serial and parallel ports), the clock, as
well as many others.

3.1.1.1. Date and time

One of the basic functions of the BIOS is to manage the on-board hardware clock. This clock is
initially set in the BIOS configuration by entering the date and time in the appropriate fields. Once
set, the internal clock keeps track of time and makes the time available to the operating system. The
operating system can also set the hardware clock, which is often useful if an accurate external time
reference, such as an NTPD server (see Chapter 18), is available on the network while the system is
running.

3.1.1.2. Disks and boot devices

Another fundamental configuration item required in BIOS settings is the selection of storage devices.
Modern PCs can contain a variety of removable and fixed media, including floppy disks, hard disks,
CD-ROMs, CD-RWs, DVD-ROMs, and Zip and/or Jaz drives. Newer systems are able to detect and
properly configure much of this hardware automatically. However, older BIOS versions require
manual configuration. This may include the selection of floppy disk sizes and disk drive parameters.

Most PCs have at least three bootable media types: an internal hard disk (IDE or SCSI, or perhaps
both), a CD-ROM drive (again IDE or SCSI), and a floppy disk. After initialization, the BIOS seeks an
operating system (or an operating system loader, such as the Linux Loader [LILO]) on one or more
of these media. By default, many BIOS configurations enable booting from the floppy or CD-ROM
first, then the hard disk, but the order is configurable in the BIOS settings.

In addition to these default media types, many server motherboard BIOS (as well as high-end
system motherboards) support booting from a network device such as a NIC with a bootable ROM.
This is often used when booting diskless workstations such as Linux-based terminals.

On the Exam

You should be familiar with the general configuration requirements and layout of the
BIOS configuration screens for a typical PC.

3.1.2. Resource Assignments

Some of the details in the BIOS configuration pertain to the internal resources of the PC
architecture, including selections for interrupts (also called IRQs), I/O addresses, and Direct Memory
Access (DMA) channels. Interrupts are electrical signals sent to the PC's microprocessor, instructing
it to stop its current activity and respond to an asynchronous event (a keystroke, for example).
Modern devices in PCs often share interrupts, but older hardware requires manual verification that
interrupt settings are unique to avoid conflicts with other devices.

I/O addresses are locations in the microprocessor's memory map (a list of defined memory
addresses) reserved for input/output devices such as network interfaces. The microprocessor can
write to the devices in the same way it writes to memory, which simplifies the device interface. If
multiple devices inadvertently share the same I/O address, the system might behave oddly or crash.

DMA allows some devices to work directly with memory through a DMA channel, freeing the
microprocessor for other tasks. Without DMA, data must be read from I/O ports for a device and
stored in memory, all by the microprocessor. A device that has DMA capabilities has direct access to
memory and writes its own data there when the microprocessor is busy with computation. This can
improve performance.

These are all finite resources, and it is important to avoid conflicting settings. Common devices such
as serial and parallel ports have standard assignments, as shown in Table 3-1.

Table 3-1. Common device settings

Device I/O address IRQ DMA

ttyS0 (COM1) 3f8 4 NA[a]

ttyS1 (COM2) 2f8 3 NA

ttyS2 (COM3) 3e8 4 NA

ttyS3 (COM4) 2e8 3 NA

Device I/O address IRQ DMA

lp0 (LPT1) 378-37f 7 NA

lp1 (LPT2)[b] 278-27f 5 NA

fd0, fd1 (floppies 1 and 2) 3f0-3f7 6 2

fd2, fd3 (floppies 3 and 4) 370-377 10 3

[a]

[b]

[a] NA: not applicable.

[b] lp1 uses IRQ 5. Some older PC audio devices commonly use this interrupt, which could be a problem if two parallel ports are

required.

Most PCs don't contain all of these devices. For example, a typical configuration includes two serial
ports, ttyS0 and ttyS1. These two ports can be used to attach external modems or terminals and
occupy interrupts 4 and 3, respectively. For systems with additional serial ports installed, ttyS0 and
ttyS2 share interrupt 4, and ttyS1 and ttyS3 share interrupt 3. However, the system design does not
allow these ports to concurrently share the interrupt and exchange serial data. Otherwise,
communications would fail if both ports from either pair were used together.

On the Exam

You don't have to memorize all the possible device settings for the PC architecture, but
you should be ready to answer specific questions regarding some of the more common
ones, such as interrupt settings for serial and parallel ports. You should also be able to
identify conflicting I/O and IRQ assignments given a scenario.

3.1.3. 1024-Cylinder Limit

With most PC operating systems, data loaded by the BIOS to boot the operating system is found at
the beginning of the disk in the Master Boot Record (MBR). Windows users rarely have to think
about the MBR because there is no alternate location for the boot record. With Linux, however, the
user can place the boot loader (LILO or GRUB) into either the MBR or the root partition. This
flexibility can lead to a problem for the BIOS and boot loader, and it can cause a failure at boot
time. The failure can occur because the BIOS must load the boot loader into memory and start it,
but the BIOS can't always access portions of the disk beyond the 1024th cylinder. If the BIOS can't
read all of the boot loader, the boot fails. Also, older versions of LILO must have a kernel image
located within the first 1024 cylinders for similar reasons. These limitations aren't significant, but do
require planning during the partitioning of disks at installation time. This Topic is discussed further
in Objective 2 of Chapter 14.

On the Exam

Be aware that LILO and kernels should be installed below cylinder 1024 on larger disks.

lp0 (LPT1) 378-37f 7 NA

lp1 (LPT2)[b] 278-27f 5 NA

fd0, fd1 (floppies 1 and 2) 3f0-3f7 6 2

fd2, fd3 (floppies 3 and 4) 370-377 10 3

[a]

[b]

[a] NA: not applicable.

[b] lp1 uses IRQ 5. Some older PC audio devices commonly use this interrupt, which could be a problem if two parallel ports are

required.

Most PCs don't contain all of these devices. For example, a typical configuration includes two serial
ports, ttyS0 and ttyS1. These two ports can be used to attach external modems or terminals and
occupy interrupts 4 and 3, respectively. For systems with additional serial ports installed, ttyS0 and
ttyS2 share interrupt 4, and ttyS1 and ttyS3 share interrupt 3. However, the system design does not
allow these ports to concurrently share the interrupt and exchange serial data. Otherwise,
communications would fail if both ports from either pair were used together.

On the Exam

You don't have to memorize all the possible device settings for the PC architecture, but
you should be ready to answer specific questions regarding some of the more common
ones, such as interrupt settings for serial and parallel ports. You should also be able to
identify conflicting I/O and IRQ assignments given a scenario.

3.1.3. 1024-Cylinder Limit

With most PC operating systems, data loaded by the BIOS to boot the operating system is found at
the beginning of the disk in the Master Boot Record (MBR). Windows users rarely have to think
about the MBR because there is no alternate location for the boot record. With Linux, however, the
user can place the boot loader (LILO or GRUB) into either the MBR or the root partition. This
flexibility can lead to a problem for the BIOS and boot loader, and it can cause a failure at boot
time. The failure can occur because the BIOS must load the boot loader into memory and start it,
but the BIOS can't always access portions of the disk beyond the 1024th cylinder. If the BIOS can't
read all of the boot loader, the boot fails. Also, older versions of LILO must have a kernel image
located within the first 1024 cylinders for similar reasons. These limitations aren't significant, but do
require planning during the partitioning of disks at installation time. This Topic is discussed further
in Objective 2 of Chapter 14.

On the Exam

Be aware that LILO and kernels should be installed below cylinder 1024 on larger disks.

3.2. Objective 3: Configure Modems and Sound Cards

Modems and sound cards, while non-essential, are two of the most common pieces of hardware
installed in a Linux system; unfortunately, they are also two of the most problematic to configure.
This Objective covers the tasks required to complete modem and sound card configuration.

3.2.1. Modems

A modem (a word derived from modulate and demodulate) is that familiar device that modulates a
digital signal into an analog signal for transmitting information via telephone lines. A modem on the
other end of the connection demodulates the signal back into its digital form. Modems can also add
digital compression and error correction capabilities to increase speed and reliability.

3.2.1.1. Modem types

Modems are serial devices, where data enters and exits one bit at a time. Traditionally, modems
were external devices attached via cable to industry standard RS-232 serial ports, such as those still
found on most PCs. This arrangement continues to work well, because the data rates of telephone
connections are still below the maximum rate of the serial ports. As a result, external devices yield
solid performance. Internal modems (ISA or PCI bus cards that reside inside a PC) were developed
to reduce costs associated with external modems (namely, the case, power supply, and shipping
charges) and offer the same functionality as an external modem.

Most internal modems present themselves to the PC as a standard serial port. In a typical PC with
the first two serial ports built in (/dev/ttyS0 and /dev/ttyS1), an internal modem will appear as the
third port (/dev/ttys2). This means that from a programming point of view, internal modems are
indistinguishable from external modems. While there is some variation in modem configuration
across manufacturers, the differences are small, and most serial-port-style modems will work with
Linux. One exception is a modem designed specifically to work with the Windows operating system.
These so-called winmodems rely on the CPU and a special software driver to handle some of the
communications processing, and thus lack the full hardware capabilities of standard modems. As
such, winmodems are not compatible with Linux unless a Linux-specific driver is available.
Information on such support is available from http://www.linmodems.org.

3.2.1.2. Modem hardware resources

As with any add-on card, particularly cards configured manually, the user must be careful to avoid
resource conflicts. Modems shouldn't cause much difficulty since they're simple serial ports.
However, you should confirm that the correct interrupt and I/O addresses are set on your modem. If
the modem shares an interrupt with another serial port, that port cannot be used at the same time
as the modem.

3.2.2. Sound Devices

http://www.linmodems.org

Nearly every laptop and desktop PC shipped today includes a sound device. Fortunately, Linux sound
drivers are available for most sound chipsets, including the old industry standard chipset defined by
Creative Labs with its SoundBlaster series. Today's PC is typically built with AC97 chipset sound
devices built in or include a PCI device with similar chipset. For cards that don't work with the native
kernel modules, you may have to use a tool such as sndconfig or for more ancient ISA hardware,
isapnp. In either case, part of the configuration for a sound card involves correctly specifying the
sound card's resources to the sound driver.

On the Exam

Be aware that the sound driver is a kernel module that has its settings stored in
/etc/modules.conf.

Syntax

sndconfig [options]

Description

sndconfig is a text-based tool used to configure a sound card for your Linux kernel. When
executed, it will probe your system for PnP-based devices. If none are found, you are probed
to select your card and appropriate I/O settings. If you must use this tool, be careful. It is
your responsibility to ensure you don't have conflicting devices since sndconfig won't detect
the problem.

Frequently used options

--help

Prints help information and exits.

--noprobe

Tells sndconfig not to probe for PnP devices.

--noautoconfig

Tells sndconfig not to autoconfigure any PnP devices.

Syntax

isapnp [options] conffile

Description

The isapnp tool is used to configure ISA-based PnP devices. The configuration file (conffile)

can be either a text file or a hyphen (-), which indicates the configuration file should be read
from STDIN.

Frequently used options

-h

Prints help information and exits.

-v

Prints the isapnptools version.

3.3. Objective 4: Set Up Non-IDE Devices

3.3.1. SCSI

SCSI is an interface for streaming devices and block storage devices such as tape drives, hard disks,
CD-ROMs, and other peripheral instruments. SCSI is the standard interface on server-style PCs, Unix
workstations, and many older Apple models (mostly 604 and earlier systems). Desktop PCs and
newer Apple systems (G3 and above) usually opt for the IDE (ATA)-style disk interfaces because
they are less expensive. The advantage that SCSI has over IDE is that it offers much more flexibility
and expandability, as well as faster throughput.

SCSI defines a bus to which multiple devices are connected. The medium is a high-quality cable or a
series of cables connected to daisy-chained devices in series. One of the devices in the chain is the
SCSI controller, which is the host interface to the other connected SCSI devices. The controller and
each of the other devices on the bus is assigned a permanent SCSI address, also known as the SCSI
ID, which defines each SCSI device uniquely on the bus. The controller can access devices
individually by using the unique SCSI address to access a specific device.

3.3.1.1. SCSI types

The world of SCSI can be a little confusing, despite the standards set by ANSI. The original SCSI-1
interface is a 5 MBps 8-bit interface. It uses a 50-pin Centronics connector, similar to but larger than
those found on most printers. This interface is still in popular use today, although the connector is
usually replaced by a 50-pin Micro-D connector. (This connector is similar to the DB-25 used for
serial ports but has a much higher pin density.) As performance demands have escalated,
manufacturers have begun offering enhanced products with faster data transfer rates. Current
interfaces include:

SCSI-1

The original: 8-bit, 5 MBps Centronics 50-pin connector.

SCSI-2

8-bit, 5 MBps Micro-D 50-pin connector. Interchangeable with SCSI-1. This interface is still
adequate for low-end to midrange tape drives but is too slow for current technology disks.

Wide SCSI

16-bit, 10 MBps, Micro-D 68-pin connector. This standard uses a wider cable to support 16-bit
transfers, obtaining faster throughput using the same clock rate.

Fast SCSI

8-bit, 10 MBps, Micro-D 50-pin connector. Higher throughput is obtained by doubling the
original clock rate.

Fast Wide SCSI

16-bit, 20 MBps, Micro-D 68-pin connector. This interface combines both the higher clock rate
and the wider bus.

Ultra SCSI

8-bit, 20 MBps, Micro-D 50-pin connector. Additional changes to clocking yield still better
performance.

Ultra Wide SCSI (also known as SCSI-3)

16-bit, 40 MBps.

Ultra2

8-bit, 40 MBps.

Wide Ultra2

16-bit, 80 MBps.

Recent developments have yielded additional SCSI interface types with up to 160 MBps throughput,
and efforts continue to keep SCSI competitive with other technologies. As performance increases,
however, constraints on cabling and connectors become more significant. Such constraints are a
major factor in deploying large SCSI-based systems. Also, with the variety of connectors, cables,
and transfer rates available in the SCSI standards, it's important to plan carefully. The other
inhibiting factor, at least on the consumer level, is that SCSI hard drives tend to cost two to three
times the amount of similar-sized IDE drives.

3.3.2. SCSI IDs

Each device on a SCSI bus, including the controller, has an address based on a binary reading of the
address lines. The 8-bit SCSI buses have three address lines and thus will accommodate 23=8
devices, including the controller. For the 16-bit buses, there are four address lines resulting in a
possible 24=16 devices. This results in a maximum of 7 and 15 devices, respectively. These
addresses can be configured using jumpers (typical for disk drives) or switches. SCSI addresses run
from 0 to 7 for 8-bit buses and from 0 to 15 for 16-bit buses. It is customary for the controller to
occupy address 7 for both bus widths. Disks and other devices must be assigned a unique address
on the bus, and they must be provided with proper termination, which is discussed later in this
section.

3.3.2.1. SCSI logical unit numbers

Some SCSI devices, such as RAID controllers, appear to the SCSI controller as a disk drive with a

single SCSI address. For the controller to access multiple logical devices using a single SCSI
address, an accompanying logical unit number (LUN), is reported to the controller. Single disks and
tape drives usually only report LUN zero, but sometimes they report the same on all LUNs, and this
must be coped with.

3.3.2.2. Linux SCSI disk device files

On Linux systems, IDE disk devices are known as /dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd. For
SCSI, a similar pattern emerges, with /dev/sda, /dev/sdb, and so on. The first partition on disk
/dev/sda will be /dev/sda1but remember that the partition number has nothing to do with the SCSI
ID. Instead, the letter names of the Linux SCSI devices start with sda and proceed across all SCSI
IDs and LUNs. The numbers are sequentially assigned to partitions on a single ID/LUN combination.

For example, a SCSI-2 bus with two disks, a tape drive, a RAID controller with two LUNs, and the
SCSI controller might be assigned addresses as shown in Table 3-2.

Table 3-2. Sample SCSI configuration

Device SCSI address LUN Linux device

Disk 0 0 - /dev/sda

Disk 1 1 - /dev/sdb

Tape drive 5 - /dev/st0

RAID controller device 0 6 0 /dev/sdc

RAID controller device 1 6 1 /dev/sdd

Controller 7 - -

If a disk on the SCSI bus is to be bootable, you may need to configure the SCSI controller 's BIOS
with the disk's address. By default, address 0 is expected to be a bootable disk.

3.3.2.3. Termination

Another facet of SCSI that can be confusing is termination . A SCSI bus can be considered a cable
with devices connected along its length, but not at the ends. Instead of devices, the ends of the
SCSI bus have terminators, which are simple electrical devices that condition the signal and reduce
electrical noise on the bus. Termination can be particularly problematic if you attempt to mix 8- and
16-bit devices on a single bus and use an 8-bit terminator, leaving half of the 16-bit SCSI bus
unterminated.

Termination devices aren't always separate pieces of equipment. In fact, most device manufacturers
include termination circuitry on their devices, so the application of an external terminator device is
not necessary. SCSI controllers can terminate one end of the SCSI bus while an external terminator
or a disk's internal terminator is used on the other end. Whichever type of terminator is being used,
you must be sure that exactly one terminator is placed at each end of the SCSI bus (for a total of
exactly two terminators), otherwise the bus may fail.

3.3.2.4. SCSI controllers on PCs

Most PCs don't come with integrated SCSI controllers, but a number of add-on cards are available.
SCSI controllers have their own firmware installed along with an accompanying BIOS, which has its
own configuration menus. If you're using SCSI on a PC, it's important to be able to manipulate these
settings appropriately.

Like the BIOS, a SCSI controller BIOS usually has a keyboard combination, announced at boot time,
to enter the setup utility. Once the utility is launched, you can control a number of aspects of the
controller, including:

Controller SCSI address

The default controller address is usually 7, but you may use any address.

Default boot device

Typically this is set to address 0 for a hard disk.

Onboard termination

Depending on how a controller is utilized (internal or external bus, or both) you may elect to
turn on the controller's terminator.

SCSI bus speed

Most SCSI adapters that are capable of higher speeds (Ultra SCSI, for example) can be
manually set to lower speeds to accommodate older devices or longer cable lengths.

On the Exam

Be sure to be familiar with SCSI IDs, termination, and Linux SCSI device naming for
the 102 Exam.

3.4. Objective 5: Set Up Different PC Expansion Cards

As described in Objective 1, when you add hardware to a PC you must accommodate the resource
requirements of all installed devices. Your requirements will depend on the type of card, such as
whether it is Industry Standard Architecture (ISA) or PCI. This Objective covers the technical details
you are required to understand when configuring these types of devices.

3.4.1. Plug and Play

Older hardware, particularly ISA bus hardware, requires manual configuration. Exam 102 requires
familiarity with these configuration problems.

Generally speaking, we may think about device configuration methodologies from one of three
general eras:

Jumper era

This hardware was constructed in such a way that settings were controlled by changing the
position of shorting jumpers on terminal strips. This method is inconvenient in that it requires
internal access to the PC as well as available documentation on the jumper locations. On the
other hand, it is a hardware-only solution, and the settings are obvious to the observer. Many
such devices are still in service on older PCs.

Nonvolatile era

These more recent hardware designs abandoned jumpers in favor of settings that, while still
manually set, are stored in a nonvolatile memory space. This design eliminated the physical
access problem with jumpered hardware, but introduced a requirement that custom
configuration programs be written, supported, and provided to consumers by hardware
vendors. This software was almost always based on MS-DOS. Using these configuration tools
to program a card for use under Linux may require a working MS-DOS machine to provide
initial configuration.

Modern era

Most recent cards work with the PCI bus to automatically configure themselves. The settings
are done during system initialization, prior to loading the operating system. This automation
eliminates manual configuration and frees the user from worrying about device conflicts.

To configure an older device, you may need to set jumpers or possibly run MS-DOS and a
proprietary configuration utility. More often than not, factory default settings can be used with the
Linux networking drivers. However, once manual configuration is accomplished, you'll need to be
sure that you don't have conflicts with IRQs, I/O addresses, and possibly DMA channel assignments.

3.4.1.1. Using the /proc filesystem

When adding new hardware to an existing Linux system, you may wish to verify which resources the
existing devices are using. The /proc filesystem, the kernel's status repository, contains this
information. The proc files, interrupts, dma, and ioports, show how system resources are currently
utilized. (These files may not show devices unless their device files/drivers are open/active. This
may make the problem harder to find if you're experiencing resource conflicts.) The following is an
example of /proc/interrupts from a dual-CPU system with an Adaptec dual-AIC7895 SCSI controller:

cat /proc/interrupts
 CPU0 CPU1
 0: 98663989 0 XT-PIC timer
 1: 34698 34858 IO-APIC-edge keyboard
 2: 0 0 XT-PIC cascade
 5: 7141 7908 IO-APIC-edge MS Sound System
 6: 6 7 IO-APIC-edge floppy
 8: 18098274 18140354 IO-APIC-edge rtc
 10: 3234867 3237313 IO-APIC-level aic7xxx, eth0
 11: 36 35 IO-APIC-level aic7xxx
 12: 233140 216205 IO-APIC-edge PS/2 Mouse
 13: 1 0 XT-PIC fpu
 15: 44118 43935 IO-APIC-edge ide1
NMI: 0
ERR: 0

In this example, you can see that interrupt 5 is used for the sound system, so it isn't available for a
second parallel port. The two SCSI controllers are using interrupts 10 and 11, respectively, while the
Ethernet controller shares interrupt 10. You may also notice that only one of the two standard IDE
interfaces is enabled in the system BIOS, freeing interrupt 14 use for another device.

Here are the /proc/dma and /proc/ioports files from the same system:

cat /proc/dma
0: MS Sound System
1: MS Sound System
2: floppy
4: cascade
cat /proc/ioports
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
02f8-02ff : serial(auto)
0370-0371 : OPL3-SAx
0376-0376 : ide1

0388-0389 : mpu401
03c0-03df : vga+
03f0-03f5 : floppy
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)
0530-0533 : WSS config
0534-0537 : MS Sound System
e800-e8be : aic7xxx
ec00-ecbe : aic7xxx
ef00-ef3f : eth0
ffa0-ffa7 : ide0
ffa8-ffaf : ide1

On the Exam

You should be aware of the default resource assignments listed in Table 3-1. You should
also know how to examine a running Linux system's resource assignments using the
/proc filesystem.

3.5. Objective 6: Configure Communications Devices

In today's world of electronic communications, it's rare to find a computer that isn't connected to the
Internet in some form, either on a local network or via a direct connection such as a modem, DSL,
or even telephony-based circuits such as ISDN or T1. This Objective covers the same details as
Objective 4, but applies it to network connectivity.

3.6. Objective 7: Configure USB Devices

Universal Serial Bus (USB) is a type of interface used to connect various types of peripherals,
ranging from keyboards and mice, to hard drives, scanners, digital cameras, and printers. The USB
Objective covers the general architecture of USB, USB modules, and configuring USB devices .

3.6.1. USB Topology

USB devices are attached to a host in a tree through some number of hub devices. The lsusb
command can be used to see how devices are physically attached to a Linux system.

lsusb -t
Bus# 4
'-Dev# 1 Vendor 0x0000 Product 0x0000
Bus# 3
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x046d Product 0xc501
 '-Dev# 3 Vendor 0x0781 Product 0x0002
Bus# 2
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x0451 Product 0x2036
 | |-Dev# 5 Vendor 0x04b8 Product 0x0005
 | '-Dev# 6 Vendor 0x04b8 Product 0x0602
 '-Dev# 3 Vendor 0x0451 Product 0x2046
 '-Dev# 4 Vendor 0x056a Product 0x0011
Bus# 1
'-Dev# 1 Vendor 0x0000 Product 0x0000

3.6.2. USB Controllers

There are three types of USB host controllers :

Open Host Controller Interface (OHCI)

Universal Host Controller Interface (UHCI)

Enhanced Host Controller Interface (EHCI)

OHCI and UHCI controllers are both USB 1.1 controllers, which are capable of a maximum of 12
Mbps. EHCI controllers are USB 2.0 controllers, which are capable of a theoretical maximum of 480
Mbps. To get greater than USB 1.1 speeds, you must have a USB 2.0 controller, as well as USB 2.0
devices, hubs, and cables. A USB 2.0 device attached to a USB 1.1 hub will only be able to run at
USB 1.1 speeds.

3.6.3. USB Devices

There are several classes of USB devices , including the following:

Human Interface Device (HID)

Input devices (mice, keyboards, etc.)

Communications device

Modems

Mass storage device

Disk devices, flash readers, etc.

Audio

Sound devices

IrDA

Infrared devices

Printer

Printers and USB-to-parallel cables

3.6.4. USB Drivers

USB support was added to the Linux kernel in the 2.3.x development kernel series, then back-ported
to 2.2.x, minus support for USB mass storage devices (due to SCSI changes in 2.3.x). The back-port
was included in the 2.2.18 kernel release.

Tip: There is no kernel USB support in 2.0.x and earlier.

The Linux kernel USB drivers fall into three categories:

Host controller drivers

The USB host controller drivers include usb-ohci.o (OHCI driver), usb-uhci.o (UHCI driver),
uhci.o (old "alternate" UHCI driver), and ehci-hcd.o (EHCI driver).

Class drivers

The USB class drivers include hid.o, usb-storage.o (mass storage driver), acm.o (Automated
Control Model [ACM] communications class driver, which deals with modems that emulate the
standard serial modem AT command interface), printer.o, and audio.o.

Other device drivers

There are many drivers for devices that either don't fit into one of the standard USB classes or
don't work with one of the standard class drivers. Examples include rio500.o (the driver for
the Diamond Rio 500 MP3 player) and pwc.o (the driver for various Philips webcams).

The Linux drivers implement USB support in layers. At the bottom is usbcore.o, which provides all of
the generic USB support for the higher-level drivers as well as USB hub support. The host controller
drivers load in the middle of the stack. On top are the device and class drivers and any modules they
require.

The following is an example of what you might see in /proc/modules (or from the output of lsmod)
on a system with several USB devices:

Module Size Used by
usb-storage 68628 0
scsi_mod 106168 2 [usb-storage]
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [usb-storage printer wacom hid ehci-hcd \
 usb-uhci]

3.6.5. USB Hotplug

Modularized USB drivers are loaded by the generic /sbin/hotplug support in the kernel, which is also
used for other hotplug devices such as CardBus cards.

Tip: While not covered on the LPI exams, the Linux IEEE 1394 (also known as FireWire or i.Link) drivers have a similar design. If you

understand how to set up USB devices, setting up IEEE 1394 devices should be easy.

Chapter 4. Linux Installation and Package
Management (Topic 1.102)
Many resources, such as the book Running linux (O'Reilly) describe linux installation . Despite its
title, this section's Topic and Objectives do not provide an overview for the installation of any
particular Linux distribution. Rather, they focus on four installation Topics and packaging tools as
required for LPI Exam 101.

Tip: As of the Release 2 LPI Exams, knowlege of both Debian (Objective 5) and RPM Package Managers (Objective 6) are no longer required.

Instead, you are given a choice of which package manager you wish to be tested on.

Objective 1: Design Hard Disk Layout

This Objective covers the ability to design a disk partitioning scheme for a Linux system. The
Objective includes allocating filesystems or swap space to separate partitions or disks and
tailoring the design to the intended use of the system. It also includes placing /boot on a
partition that conforms with the BIOS's requirements for booting. Weight: 5.

Objective 2: Install a Boot Manager

An LPIC 1 candidate should be able to select, install, and configure a boot manager . This
Objective includes providing alternative boot locations and backup boot options using either
LILO or GRUB. Weight: 1.

Objective 3: Make and Install Programs from Source

This Objective states that you should be able to build and install an executable program from
source. This includes being able to unpack a source file. Candidates should be able to make
simple customizations to the Makefile such as changing paths or adding extra include
directories. Weight: 5.

Objective 4: Manage Shared Libraries

This Objective includes being able to determine the shared libraries that executable programs
depend on and install them when necessary. The Objective also includes stating where system
libraries are kept. Weight: 3.

Objective 5: Use Debian Package Management

This Objective indicates that candidates should be able to perform package management on
Debian-based systems . This indication includes using both command-line and interactive tools
to install, upgrade, or uninstall packages, as well as find packages containing specific files or
software. Also included is obtaining package information such as version, content,

dependencies, package integrity, and installation status. Weight: 8.

Objective 6: Use Red Hat Package Manager (RPM)

An LPIC 1 candidate should be able to use package management systems based on RPM. This
Objective includes being able to install, reinstall, upgrade, and remove packages as well as
obtain status and version information on packages. Also included is obtaining package version,
status, dependencies, integrity, and signatures. Candidates should be able to determine what
files a package provides as well as find which package a specific file comes from. Weight: 8.

4.1. Objective 1: Design a Hard Disk Layout

Part of the installation process for Linux is the design of the hard disk partitioning scheme. If you're
used to systems that reside on a single partition, this step may seem to complicate the installation.
However, there are advantages to splitting the filesystem into multiple partitions and even onto
multiple disks.

You can find more details about disks, partitions, and Linux filesystem top-level directories in
Chapter 6. This Topic covers considerations for implementing Linux disk layouts.

4.1.1. System Considerations

A variety of factors influence the choice of a disk layout plan for Linux, including:

The amount of disk space

The size of the system

What the system will be used for

How and where backups will be performed

4.1.1.1. Limited disk space

Except for read-only filesystems (such as CD-ROMs or a shared /usr partition), most Linux
filesystems should have some free space available. Filesystems holding user data should be
maintained with a maximum amount of free space to accommodate user activity. When considering
the physical amount of disk space available, you may be forced to make a trade-off between the
number of filesystems in use and the availability of free disk space. Finding the right configuration
depends on system requirements and available disk resources.

When disk space is limited, you may opt to reduce the number of filesystems, thereby combining
free space into a single contiguous pool. For example, installing Linux on a PC with only 1 GB of
available disk space might best be implemented using only a few partitions:

/boot

50 MB. A small /boot filesystem in the first partition ensures that all kernels are below the
1024-cylinder limit.

/

850 MB. A large root partition holds everything on the system that's not in /boot.

swap

100 MB.

The /boot partition could be combined with the root partition as long as the entire root partition fits
within the 1024-cylinder limit (see Chapter 3).

4.1.1.2. Larger systems

On larger platforms, functional issues such as backup strategies and required filesystem sizes can
dictate disk layout. For example, suppose a file server is to be constructed serving 100 GB of
executable data files to end users via NFS. Such a system will need enough resources to
compartmentalize various parts of the directory tree into separate filesystems and might look like
this:

/boot

100 MB. Keep kernels under the 1024-cylinder limit.

swap

1 GB.

/

500 MB (minimum).

/usr

4 GB. All of the executables in /usr are shared to workstations via read-only NFS.

/var

2 GB. Since log files are in their own partition, they won't threaten system stability if the
filesystem is full.

/tmp

500 MB. Since temporary files are in their own partition, they won't threaten system stability if
the filesystem is full.

/home

90 GB. This is the big filesystem, offered to users for their home directories.

On production servers, much of the system is often placed on redundant media, such as mirrored
disks. Large filesystems, such as /home, may be stored on some form of disk array using a
hardware controller.

4.1.1.3. System role

The role of the system also can dictate disk layout. In a traditional Unix-style network with NFS file
servers, most of the workstations won't necessarily need all of their own executable files . In the
days when disk space was at a premium, this represented a significant savings in disk space. While
space on workstation disks isn't the problem it once was, keeping executables on a server still
eliminates the administrative headache of distributing updates to workstations.

4.1.1.4. Backup

Some backup schemes use disk partitions as the basic unit of system backup. In such a scenario,
each of the filesystems listed in /etc/fstab is backed up separately, and they are arranged so that
each filesystem fits within the size of the backup media. For this reason, the available backup device
capabilities can play a role in determining the ultimate size of partitions.

4.1.2. Swap Space

When you install Linux, you're asked to configure a swap, or virtual memory, partition. This special
disk space is used to temporarily store portions of main memory containing programs or program
data that is not needed constantly, allowing more processes to execute concurrently. An old rule of
thumb for Linux is to set the size of the system's swap space to be double the amount of physical
RAM in the machine. For example, if your system has 512 MB of RAM, it would be reasonable to set
your swap size to at least 1 GB. These are just guidelines of course. A system's utilization of virtual
memory depends on what the system does and the number and size of processes it runs. As hard
disk and memory gets cheaper and Linux application footprints grow, the guidelines for determining
swap sizes become more and more about personal preference. However, when in doubt, using twice
the amount of main memory is a good starting point.

4.1.3. General Guidelines

Here are some guidelines for partitioning a Linux system:

Keep the root filesystem (/) simple by distributing larger portions of the directory tree to other
partitions. A simplified root filesystem is less likely to be corrupted.

Separate a small /boot partition below cylinder 1024 for installed kernels used by the system
boot loader.

Separate /var. Make certain it is big enough to handle your logs and their rotation scheme.

Separate /tmp. Its size depends on the demands of the applications you run. It should be large
enough to handle temporary files for all of your users simultaneously.

Separate /usr and make it big enough to accommodate kernel building. Making it standalone
allows you to share it read-only via NFS.

Separate /home for machines with multiple users or any machine where you don't want to
affect data during distribution software upgrades. For even better performance (for multi-user

environments) put /home on a disk array.

Set swap space to at least the same size (double preferred) as the main memory.

On the Exam

Since a disk layout is the product of both system requirements and available resources,
no single example can represent the best configuration. Factors to remember include
placing the kernel below cylinder 1024, effectively utilizing multiple disks, sizing
partitions to hold various directories such as /var and /usr, and the importance of the
root filesystem and swap space size.

4.2. Objective 2: Install a Boot Manager

While it is possible to boot Linux from a floppy disk, most Linux installations boot from the
computer's hard disk. This is a two-step process that begins after the system BIOS is initialized and
ready to run an operating system. Starting Linux consists of the following two basic phases:

Run the boot loader from the boot device

It is LILO 's job to find the selected kernel and get it loaded into memory, including any user-
supplied options.

Launch the Linux kernel and start processes

Your boot loader starts the specified kernel. The boot loader's job at this point is complete and
the hardware is placed under the control of the running kernel, which sets up shop and begins
running processes.

All Linux systems require some sort of boot loader, whether it's simply bootstrap code on a floppy
disk or an application such as LILO or GRUB. Because the popularity of GRUB has grown, LPI has
added it to the second release of the 101 exams.

4.2.1. LILO

The LILO is a small utility designed to load the Linux kernel (or the boot sector of another operating
system) into memory and start it. A program that performs this function is commonly called a boot
loader. While other boot loaders exist, LILO is the most popular and is installed as the default boot
loader on most Linux distributions. LILO consists of two parts:

The boot loader

This part of LILO is a two-stage program intended to find and load a kernel. It's a two-stage
operation because the boot sector of the disk is too small to hold the entire boot loader
program. The code located in the boot sector is compact because its only function is to launch
the second stage, which is the interactive portion. The first stage of LILO usually resides in the
MBR of the hard disk. This is the code that is started at boot time by the system BIOS. It
locates and launches a second, larger stage of the boot loader that resides elsewhere on disk.
The second stage offers a user prompt to allow boot-time and kernel image selection options,
finds the kernel, loads it into memory, and launches it.

The lilo command

Also called the map installer, lilo is used to install and configure the LILO boot loader. The lilo
command reads a configuration file , which describes where to find kernel images, video
information, the default boot disk, and so on. It encodes this information along with physical

disk information and writes it in files for use by the boot loader.

4.2.1.1. The boot loader

When the system BIOS launches, LILO presents you with the following prompt:

LILO:

The LILO prompt is designed to allow you to select from multiple kernels or operating systems
installed on the computer and to pass parameters to the kernel when it is loaded. Pressing the Tab
key at the LILO prompt yields a list of available kernel images. One of the listed images will be the
default as designated by an asterisk next to the name:

LILO: <TAB>
linux* linux_586_smp experimental

Under many circumstances, you won't need to select a kernel at boot time because LILO will boot
the kernel configured as the default during the install process. However, if you later create a new
kernel, have special hardware issues, or are operating your system in a dual-boot configuration, you
may need to use some of LILO's options to load the kernel or operating system you desire.

4.2.1.2. The LILO map installer and its configuration file

Before any boot sequence can complete from your hard disk, the boot loader and associated
information must be installed by the LILO map installer utility. The lilo command writes the portion
of LILO that resides in the MBR, customized for your particular system. Your installation program
will do it, then you'll repeat it manually if you build a new kernel yourself.

Syntax

lilo [options]

The lilo map installer reads a configuration file and writes a map file, which contains information
needed by the boot loader to locate and launch Linux kernels or other operating systems.

Frequently used options

-C config_file

Read the config_file file instead of the default /etc/lilo.conf.

-m map_file

Write map_file in place of the default as specified in the configuration file.

-q

Query the current configuration.

-v

Increase verbosity.

LILO's configuration file contains options and kernel image information. An array of options is
available. Some are global, affecting LILO overall, while others are specific to a particular listed
kernel image. Most basic Linux installations use only a few of the configuration options.Example 4-1
shows a simple LILO configuration file.

Example 4-1. Sample /etc/lilo.conf file

boot = /dev/hda
timeout = 50
prompt
read-only
map = /boot/map
install = /boot/boot.b
image = /boot/vmlinuz-2.2.5-15
 label = linux
 root = /dev/hda1

Each of these lines is described in the following list:

boot

Sets the name of the hard disk partition device that contains the boot sector. For PCs with IDE
disk drives, the devices will be /dev/hda, /dev/hdb, and so on.

timeout

Sets the timeout in tenths of a second (deciseconds) for any user input from the keyboard. To
enable an unattended reboot, this parameter is required if the promptdirective is used.

prompt

Sets the boot loader to prompt the user. This behavior can be stimulated without the prompt
directive if the user holds down the Shift, Ctrl, or Alt key when LILO starts.

read-only

Sets the root filesystem to initially be mounted read-only. Typically, the system startup
procedure will remount it later as read/write.

map

Sets the location of the map file, which defaults to /boot/map.

install

Sets the file to install as the new boot sector, which defaults to /boot/boot.b.

image

Sets the kernel image to offer for boot. It points to a specific kernel file. Multiple image lines
may be used to configure LILO to boot multiple kernels and operating systems.

label

Sets the optional label parameter to be used after an image line and offers a label for that
image. This label can be anything and generally describes the kernel image. Examples include
linux and smp for a multiprocessing kernel.

root

Sets the devices to be mounted as root for specified image (used after each image line).

There is more to configuring and setting up LILO, but a detailed knowledge of LILO is not required
for this LPI Objective. It is important to review one or two sample LILO configurations to make sense
of the boot process. A discussion on using LILO to boot multiple kernels is presented in Chapter 13.

4.2.1.3. LILO locations

During installation, LILO can be placed either in the boot sector of the disk or in your root partition.
If the system is intended as a Linux-only system, you won't need to worry about other boot loaders,
and LILO can safely be placed into the boot sector. However, if you're running another operating
system you should place its boot loader in the boot sector. Multiple-boot and multiple-OS
configurations are beyond the scope of the LPIC Level 1 exams.

On the Exam

It is important to understand the distinction between lilo, the map installer utility run
interactively by the system administrator, and the boot loader, which is launched by the
system BIOS at boot time. Both are parts of the LILO package.

4.2.2. GRUB

GRUB is a multistage boot loader, much like LILO. Unlike LILO, GRUB is very flexible, including
support for booting arbitrary kernels on various filesystem types and support for booting several
different operating systems.

4.2.2.1. GRUB device naming

GRUB refers to disk devices as follows:

(xdn[,m])

The xd above will either be fd or hd for floppy disk or hard disk respectively. The n refers to the
number of the disk as seen by the BIOS, starting at 0. The optional ,m denotes the partition number,

also starting at 0.

The following are examples of valid GRUB device names:

(fd0)

The first floppy disk.

(hd0)

The first hard disk.

(hd0,1)

The second partition on the first hard disk.

Note that GRUB does not distinguish between IDE and SCSI disks. It only refers to the order of the
disks as seen by the BIOS, which means that the device number that GRUB uses for a given disk will
change on a system with both IDE and SCSI if the boot order is changed in the BIOS.

4.2.2.2. Installing GRUB

The simplest way to install GRUB is to use the grub-install script.

For example, to install GRUB on the master boot record of the first hard drive in a system, invoke
grub-install as follows:

grub-install '(hd0)'

grub-install looks for a device map file (/boot/grub/device.map by default) to determine the
mapping from BIOS drives to Linux devices. If this file does not exist, it will attempt to guess what
devices exist on the system and how they should be mapped to BIOS drives. If grub-install guesses
incorrectly, just edit /boot/grub/device.map and re-run grub-install.

The device map file contains any number of lines in this format:

(disk) /dev/device

So, for example, on a system with a floppy and a single SCSI disk, the file would look like this:

(fd0) /dev/fd0
(hd0) /dev/sda

GRUB can also be installed using the grub command. The grub-install example above could also
have been done as follows, assuming /boot is on the first partition of the first hard disk:

grub
grub> root (hd0,0)
grub> setup (hd0)

4.2.2.3. Booting GRUB

If there is no configuration file (or the configuration file does not specify a kernel to load), when

GRUB loads it will display a prompt that looks like this:

grub>

GRUB expects a certain sequence of commands to boot a Linux kernel. They are as follows:

root device1.

2.

3.

1.

kernel filename [options]2.

(optional) initrd filename3.

boot4.

For example, the following sequence would boot a stock Red Hat 8.0 system with /boot on
/dev/hda1 and / on /dev/hda2:

grub> root (hd0,0)
grub> kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
grub> initrd /initrd-2.4.18-14.img
grub> boot

4.2.2.4. The GRUB configuration file

GRUB can be configured to boot into a graphical menu, allowing the user to bypass the GRUB shell
entirely. To display this menu, GRUB needs a specific configuration file, /boot/grub/menu.lst.

Tip: The location of this file may be different on your system. For example, on Red Hat systems the default configuration file is

/boot/grub/grub.conf.The configuration file defines various menu options along with the commands required to boot each option. The earlier

example of booting a stock Red Hat 8.0 system could have been accomplished with the following configuration file:GRUB has many more

features, including serial console support, support for booting other operating systems, and so on. For more information about GRUB, see the

info documentation (info grub or pinfo grub) or the online documentation at http://www.gnu.org/manual/grub.

http://www.gnu.org/manual/grub

4.3. Objective 3: Make and Install Programs from Source

Open source software is credited with offering value that rivals or even exceeds that of proprietary
vendors' products. While binary distributions make installation simple, you sometimes won't have
access to a binary package. In these cases, you'll have to compile the program from scratch.

4.3.1. Getting Open Source and Free Software

Source code for the software that makes up a Linux distribution is available from a variety of
sources. Your distribution media contain both source code and compiled binary forms of many
software projects. Since much of the code that comes with Linux originates from the Free Software
Foundation (FSF), the GNU web site contains a huge array of software. Not just for Linux, either.
Although Linux distributions are largely made up of GNU software, that software runs on many other
Unix and Unix-like operating systems, including the various flavors of BSD (e.g., FreeBSD, NetBSD,
and OpenBSD). Major projects, such as Apache (http://www.apache.org), distribute their own code.
Whatever outlet you choose, the source code must be packaged for your use, and among the most
popular packaging methods for source code is the tarball.

4.3.1.1. What's a tarball?

Code for a significant project that a software developer wishes to distribute is originally stored in a
hierarchical tree of directories. Included are the source code (in the C language), a Makefile, and
some documentation. To share the code, the entire tree must be encapsulated in a way that is
efficient and easy to send and store electronically. A common method of doing this is to use tar to
create a single tarfile containing the directory's contents, and then use gzip or bzip2 to compress it
for efficiency. The resulting compressed file is referred to as a tarball. This method of distribution is
popular because both tar and gzip are widely available and understood, ensuring a wide audience. A
tarball is usually indicated by the use of the multiple extensions .tar and .gz, put together into
.tar.gz. A combined single extension of .tgz is also popular. (bzip2 offers significantly smaller
compressed files at a cost of additional CPU overhead. Files compressed with bzip2 usually use the
extension .bz2.)

4.3.1.2. Opening a tarball

The contents of a tarball are obtained through a two-step process. The file is first uncompressed
with gzip and then extracted with tar. The following is an example, starting with tarball.tar.gz:

$ gzip -d tarball.tar.gz
$ tar xvf tarball.tar

The -d option to gzip indicates "decompress mode." If you prefer, you can use gunzip in place of gzip
-d to do the same thing:

http://www.apache.org

$ gunzip tarball.tar.gz
$ tar xvf tarball.tar

You can also skip the intermediate unzipped file by piping the output of gzip straight into tar:

$ gzip -dc tarball.tar.gz | tar xv

In this case, the -c option to gzip tells it to keep the compressed file in place. This saves disk space.
For even more convenience, avoid using gzip entirely and use the decompression capability in tar
(GNU tar offers compression; older tar programs don't):

$ tar zxvf tarball.tar.gz

Files compressed with bzip2 can be opened with exactly the same options that gzip uses.

$ bzip2 -dc tarball.tar.bz2 | tar xv

Recent versions of GNU tar also support the j option to run bzip2 directly.

$ tar jxvf tarball.tar.bz2

On the Exam

All of these methods achieve the same result. Be sure you understand that tar can
archive directly to files (not just to a tape drive) and that a compressed version of a
tarfile is made with gzip. Be familiar with the various ways you could extract files from
a tarball, including gzip -d ; tar, gunzip ; tar, gzip -d | tar, and tar z. You should be
comfortable using tar and gzip and their more common options.

4.3.2. Compiling Open Source Software

Once you've extracted the source code, you're ready to compile it. You'll need to have the
appropriate tools available on your system, such as gcc and make.

4.3.2.1. configure

Most larger source code packages include a configure script located at the top of the source code
tree. configure is produced for you by the programmer using the autoconf utility. autoconf is beyond
the scope LPIC Level 1 exams. This script needs no modification or configuration from the user.
When it executes, it examines your system to verify the existence of a compiler, libraries, utilities,
and other items necessary for a successful compile. It uses the information it finds to produce a
custom Makefile for the software package on your particular system. If configure finds that
something is missing, it fails and gives you a terse but descriptive message. configure succeeds in
most cases, leaving you ready to begin the actual compile process.

4.3.2.2. make

make is a utility for controlling and scripting software compilation. When multiple source code files
are used in a project, it is rarely necessary to compile all of them for every build of the executable.
Instead, only the source files that have changed since the last compilation really need to be
compiled again.

make works by defining targets and their dependencies as specified in the Makefile. The ultimate
target in a software build is the executable file or files. They depend on object files, which in turn
depend on source code files. When a source file is edited, its date is more recent than that of the last
compiled object. make is designed to automatically handle these dependencies and do the right
thing.

Typical usage for make is:

make [-f makefile]

[option [...]] [target]

Commonly used options include:

-f filename

Use filename as a Makefile.

-j number_of_jobs

Tells make how many processes to run simultaneously.

4.3.2.3. Installing the compiled software

Most mature source code projects come with a predetermined location in the filesystem for the
executable files created by compilation. In many cases, they're expected to go to /usr/local/bin. To
facilitate installation to these default locations, many Makefiles contain a special target called install.
By executing the make install command, files are copied and set with the appropriate attributes.

Warning: The default installation directory included in a project's Makefile may differ from that defined by your Linux distribution. If you upgrade

software you are already using, this could lead to confusion over versions.

On the Exam

A basic understanding of make is sufficient for Exam 101. In addition, be prepared to
add to or modify the contents of variables in a Makefile, such as include directories or
paths. This could be necessary, for example, if additional libraries must be included in
the compilation or if a command must be customized.

4.3.2.4. Example:Compiling bash

GNU's bash shell is presented here as an example of the process of compiling. You can find a
compressed tarball of the bash source at the GNU FTP site, ftp://ftp.gnu.org/gnu/bash/. Multiple
versions might be available. Version 2.03 is used in this example (you will find more recent
versions). The compressed tarball is bash-2.03.tar.gz. As you can see by its name, it is a tar file that
has been compressed with gzip. To uncompress the contents, use the compression option in tar:

tar zxvf bash-2.03.tar.gz
bash-2.03/
bash-2.03/CWRU/
bash-2.03/CWRU/misc/
bash-2.03/CWRU/misc/open-files.c
bash-2.03/CWRU/misc/sigs.c
bash-2.03/CWRU/misc/pid.c
... (extraction continues) ...

Next move into the new directory, take a look around, and read some basic documentation:

cd bash-2.03
ls
AUTHORS NEWS
CHANGES NOTES
COMPAT README
COPYING Y2K
CWRU aclocal.m4
INSTALL alias.c
MANIFEST alias.h
Makefile.in ansi_stdlib.h
... (listing continues) ...
less README

The build process for bash is started by using the dot-slash prefix to launch configure:

./configure
creating cache ./config.cache
checking host system type... i686-pc-linux-gnu

Beginning configuration for bash-2.03 for i686-pc-linux-gnu
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a
 cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking whether large file support needs explicit
 enabling... yes
checking for POSIXized ISC... no
checking how to run the C preprocessor... gcc -E # make
... (configure continues) ...

Next, compile:

make
/bin/sh ./support/mkversion.sh -b -s release -d 2.03 \
 -p 0 -o newversion.h && mv newversion.h version.h

* *
* Making Bash-2.03.0-release for a i686 running linux-gnu
* *

rm -f shell.o
gcc -DPROGRAM='"bash"' -DCONF_HOSTTYPE='"i686"' \
 -DCONF_OSTYPE='"linux-gnu"' -DCONF_MACHTYPE='"i686
-pc-linux-gnu"' -DCONF_VENDOR='"pc"' -DSHELL \
 -DHAVE_CONFIG_H -D_FILE_OFFSET_BITS=64 -I. -I. -I./
lib -I/usr/local/include -g -O2 -c shell.c
rm -f eval.o
... (compile continues) ...

If the compile yields fatal errors, make terminates and the errors must be addressed before
installation. Errors might include problems with the source code (unlikely), missing header files or
libraries, and other problems. Error messages will usually be descriptive enough to lead you to the
source of the problem.

The final step of installation requires that you are logged in as root to copy the files to the system
directories:

make install
/usr/bin/install -c -m 0755 bash /usr/local/bin/bash
/usr/bin/install -c -m 0755 bashbug /usr/local/bin/bashbug
(cd ./doc ; make \
 man1dir=/usr/local/man/man1 man1ext=1 \
 man3dir=/usr/local/man/man3 man3ext=3 \
 infodir=/usr/local/info install)
make[1]: Entering directory '/home/ftp/bash-2.03/doc'
test -d /usr/local/man/man1 || /bin/sh ../support/mkdirs /usr/local/man/man1
test -d /usr/local/info || /bin/sh ../support/mkdirs

 /usr/local/info
/usr/bin/install -c -m 644 ./bash.1
 /usr/local/man/man1/bash.1
/usr/bin/install -c -m 644 ./bashbug.1
 /usr/local/man/man1/bashbug.1
/usr/bin/install -c -m 644 ./bashref.info
 /usr/local/info/bash.info
if /bin/sh -c 'install-info --version'
 >/dev/null 2>&1; then \
 install-info --dir-file=/usr/local/info/dir
 /usr/local/info/bash.info; \
else true; fi
make[1]: Leaving directory '/home/ftp/bash-2.03/doc'

The installation places the new version of bash in /usr/local/bin. Now, two working versions of bash
are available on the system:

which bash
/bin/bash
/bin/bash -version
GNU bash, version 1.14.7(1)
/usr/local/bin/bash -version
GNU bash, version 2.03.0(1)-release (i686-pc-linux-gnu)
Copyright 1998 Free Software Foundation, Inc.

On the Exam

Familiarize yourself with the acquisition, configuration, compilation, and installation of
software from source. Be prepared to answer questions on make and Makefile, the
function of the configure script, gzip, and tar.

4.4. Objective 4: Manage Shared Libraries

When a program is compiled under Linux, many of the functions required by the program are linked
from system libraries that handle disks, memory, and other functions. For example, when printf()
is used in a program, the programmer doesn't provide the printf() source code, but instead
expects that the system already has a library containing such functions. When the compiler needs to
link the code for printf() , it can be found in a system library and copied into the executable. A
program that contains executable code from these libraries is said to be statically linked because it
stands alone, requiring no additional code at runtime.

Statically linked programs can have a few liabilities. First, they tend to get large because they
include executables for all of the library functions linked into them. Also, memory is wasted when
many different programs running concurrently contain the same library functions. To avoid these
problems, many programs are dynamically linked . Such programs utilize the same routines but
don't contain the library code. Instead, they are linked into the executable at runtime. This dynamic
linking process allows multiple programs to use the same library code in memory and makes
executable files smaller. Dynamically linked libraries are shared among many applications and are
thus called shared libraries . A full discussion of libraries is beyond the scope of the LPIC Level 1
exams. However, a general understanding of some configuration techniques is required.

4.4.1. Shared Library Dependencies

Any program that is dynamically linked will require at least a few shared libraries. If the required
libraries don't exist or can't be found, the program will fail to run. This could happen, for example, if
you attempt to run an application written for the GNOME graphical environment but haven't installed
the required GTK+ libraries. Simply installing the correct libraries should eliminate such problems.
The ldd utility can be used to determine which libraries are necessary for a particular executable.

Syntax

ldd programs

Description

Display shared libraries required by each of the programs listed on the command line. The
results indicate the name of the library and where the library is expected to be in the
filesystem.

Example

The bash shell requires three shared libraries:

ldd /bin/bash

/bin/bash:
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40018000)
 libc.so.6 => /lib/libc.so.6 (0x4001c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

4.4.2. Linking Shared Libraries

Dynamically linked executables are examined at runtime by the shared object dynamic linker, ld.so .
This program looks for dependencies in the executable being loaded and attempts to satisfy any
unresolved links to system-shared libraries. If ld.so can't find a specified library, it fails, and the
executable won't run.

To find a new library, ld.so must be instructed to look in /usr/local/lib . There are a few ways to do
this. One simple way is to add a colon-separated list of directories to the shell environment variable
LD_LIBRARY_PATH , which will prompt ld.so to look in any directories it finds there. However, this
method may not be appropriate for system libraries, because users might not set their
LD_LIBRARY_PATH correctly.

To make the search of /usr/local/lib part of the default behavior for ld.so , files in the new directory
must be included in an index of library names and locations. This index is /etc/ld.so.cache . It's a
binary file, which means it can be read quickly by ld.so . To add the new library entry to the cache,
first add its directory to the ld.so.conf file, which contains directories to be indexed by the ldconfig
utility.

Syntax

ldconfig [options] lib_dirs

Description

Update the ld.so cache file with shared libraries specified on the command line in lib_dirs , in
trusted directories /usr/lib and /lib , and in the directories found in /etc/ld.so.conf .

Frequently used options

-p

Display the contents of the current cache instead of recreating it.

-v

Verbose mode. Display progress during execution.

Example 1

Examine the contents of the ld.so library cache:

ldconfig -p
144 libs found in cache '/etc/ld.so.cache'
 libz.so.1 (libc6) => /usr/lib/libz.so.1
 libuuid.so.1 (libc6) => /lib/libuuid.so.1
 libutil.so.1 (libc6, OS ABI: Linux 2.2.5) => /lib/libutil.so.1
 libutil.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libutil.so libthread_db.so.1
(libc6, OS ABI: Linux 2.2.5) => /lib/libthread_db.so.1
 libthread_db.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libthread_db.so
 libtermcap.so.2 (libc6) => /lib/libtermcap.so.2
(... listing continues ...)

Example 2

Look for a specific library entry in the cache:

ldconfig -p | grep ncurses
 libncurses.so.5 (libc6) => /usr/lib/libncurses.so.5

Example 3

Rebuild the cache:

ldconfig

After /usr/local/lib is added, ld.so.conf might look like this:

/usr/lib
/usr/i486-linux-libc5/lib
/usr/X11R6/lib
/usr/local/lib

Next, ldconfig is run to include libraries found in /usr/local/lib in /etc/ld.so.cache . It is important to
run ldconfig after any changes in system libraries to be sure that the cache is up-to-date.

4.5. Objective 5: Use Debian Package Management

The Debian package management system is a versatile and automated suite of tools used to acquire
and manage software packages for Debian Linux. The system automatically handles many of the
management details associated with interdependent software running on your system.

4.5.1. Debian Package Management Overview

Each Debian package contains program and configuration files, documentation, and noted
dependencies on other packages. The names of Debian packages have three common elements,
including:

Package name

A Debian package name is short and descriptive. When multiple words are used in the name,
they are separated by hyphens. Typical names include binutils, kernel-source, and telnet.

Version number

Each package has a version. Most package versions are the same as that of the software they
contain. The format of package versions varies from package to package, but most are
numeric (major.minor.patchlevel).

A file extension

By default, all Debian packages end with .deb file extension.

Figure 4-1 illustrates a Debian package name.

Figure 4-1. The structure of a Debian GNU/Linux package name

4.5.2. Managing Debian Packages

The original Debian package management tool is dpkg, which operates directly on .deb package files
and can be used to automate the installation and maintenance of software packages. The alternative
apt-get tool operates using package names, obtaining them from a predefined source (such as CD-
ROMs, FTP sites, etc.). Both tools work from the command line.

The dselect command offers an interactive menu that allows the administrator to select from a list of
available packages and mark them for subsequent installation. The alien command allows the use of
non-Debian packages, such as the Red Hat RPM format.

For complete information on Debian package management commands, see details in their respective
manpages.

Syntax

dpkg [options] action

Description

The Debian package manager command, dpkg, consists of an action that specifies a major
mode of operation as well as zero or more options, which modify the action's behavior.

The dpkg command maintains package information in /var/lib/dpkg. There are two files that
are of particular interest:

available

The list of all available packages.

status

Contains package attributes, such as whether it is installed or marked for removal.

These files are modified by dpkg, dselect, and apt-get, and it is unlikely that they will
ever need to be edited.

Frequently used options

-E

Do not overwrite a previously installed package of the same version.

-G

Do not overwrite a previously installed package with an older version of that same
package.

-R (also --recursive)

Recursively process package files in specified subdirectories. Works with -i,--install, --
unpack, and so on.

Frequently used options

--configure package

Configure an unpacked package. This involves setup of configuration files.

-i package_file (also --install package_file)

Install the package contained in package_file. This involves backing up old files,

unpacking and installation of new files, and configuration.

-l [pattern] (also --list [pattern])

Display information for installed package names that match pattern.

-L package (also --listfiles package)

List files installed from package.

--print-avail package

Display details found in /var/lib/dpkg/available about package.

--purge package

Remove everything for package.

-r package (also --remove package)

Remove everything except configuration files for package.

-s package (also --status package)

Report the status of package.

-S search_pattern (also --search search_pattern)

Search for a filename matching search_pattern from installed packages.

--unpack package_file

Unpack package_file, but don't install the package it contains.

Example 1

Install a package using dpkg -i with the name of an available package file:

dpkg -i ./hdparm_3.3-3.deb
(Reading database ... 54816 files and directories
 currently installed.)
Preparing to replace hdparm 3.3-3 (using hdparm_3.3-3.deb)
Unpacking replacement hdparm ...
Setting up hdparm (3.3-3) ...

Alternatively, use apt-get install with the name of the package. In this case, the package comes from
the location or locations configured in /etc/apt/sources.list. For this example, the location is
http://http.us.debian.org:

apt-get install elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 libncurses4 xlib6g
The following NEW packages will be installed:
 elvis
2 packages upgraded, 1 newly installed, 0 to remove
 and 376 not upgraded.
Need to get 1678kB of archives. After unpacking 2544kB
 will be used.
Do you want to continue? [Y/n] y
Get:1 http://http.us.debian.org stable/main
 libncurses4 4.2-9 [180kB]
Get:2 http://http.us.debian.org stable/main
 xlib6g 3.3.6-11 [993kB]
Get:3 http://http.us.debian.org stable/main
 elvis 2.1.4-1 [505kB]
Fetched 1678kB in 4m11s (6663B/s)
(Reading database ... 54730 files and directories
 currently installed.)
Preparing to replace libncurses4 4.2-3 (using
 .../libncurses4_4.2-9_i386.deb) ...
Unpacking replacement libncurses4 ...
(installation continues...)

Example 2

Upgrading a package is no different from installing one. However, you should use the -G
option when upgrading with dpkg to ensure that the installation won't proceed if a newer
version of the same package is already installed.

http://http.us.debian.org

Example 3

Use dpkg -r or dpkg --purge to remove a package:

dpkg --purge elvis
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(purge continues...)

Example 4

Use the dpkg -S command to find a package containing specific files. In this example, apt-get
is contained in the apt package:

dpkg -S apt-get
apt: /usr/share/man/man8/apt-get.8.gz
apt: /usr/bin/apt-get

Example 5

Obtain package status information, such as version, content, dependencies, integrity, and
installation status, using dpkg -s:

dpkg -s apt
Package: apt
Status: install ok installed
Priority: optional
Section: admin
Installed-Size: 1388
(listing continues...)

Example 6

List the files in a package using dpkg -L and process the output using grep or less:

dpkg -L apt | grep '^/usr/bin'
/usr/bin
/usr/bin/apt-cache
/usr/bin/apt-cdrom
/usr/bin/apt-config
/usr/bin/apt-get

Example 7

List the installed packages using dpkg -l; if you don't specify a pattern, all packages will be
listed:

dpkg -l xdm
ii xdm 3.3.2.3a-11 X display manager

Example 8

Use dpkg -S to determine the package from which a particular file was installed with the
filename:

dpkg -S /usr/bin/nl
textutils: /usr/bin/nl

Syntax

apt-get [options] [command] [package_name ...]

Description

The apt-get command is part of the Advanced Package Tool (APT) management system. It
does not work directly with .deb files like dpkg, but uses package names instead. apt-get
maintains a database of package information that enables the tool to automatically upgrade
packages and their dependencies as new package releases become available.

Frequently used options

-d

Download files, but do not install. This is useful when you wish to get a large number of
package files but delay their installation to prevent installation errors from stopping the
download process.

-s

Simulate the steps in a package change, but do not actually change the system.

-y

Automatically respond "yes" to all prompts, instead of prompting you for a response
during package installation/removal.

Frequently used commands

dist-upgrade

Upgrade automatically to new versions of Debian Linux.

install

Install or upgrade one or more packages by name.

remove

Remove specified packages.

update

Fetch a list of currently available packages. This is typically done before any changes are
made to existing packages.

upgrade

Upgrade a system's complete set of packages to current versions safely. This command
is conservative and will not process upgrades that could cause a conflict or break an
existing configuration; it also will not remove packages.

Additional commands and options are available. See the apt-get manpage for more
information.

apt-get uses /etc/apt/sources.list to determine where packages should be obtained. The file
should contain one or more lines that look something like this:

deb http://http.us.debian.org/debian stable main contrib non-free

Example

Remove the elvis package using apt-get.

apt-get remove elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
 elvis
0 packages upgraded, 0 newly installed, 1 to remove
 and 376 not upgraded.
Need to get 0B of archives. After unpacking 1363kB
 will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 54816 files and directories
 currently installed.)

Removing elvis ...
(removal continues...)

In this example, the user is required to respond with y when prompted to continue. Using the -y
option to apt-get would eliminate this interaction.

Syntax

dselect

Description

dselect is an interactive, menu-driven, frontend tool for dpkg and is usually invoked without
parameters. The dselect command lets you interactively manage packages by selecting them
for installation, removal, configuration, and so forth. Selections are made from a locally stored
list of available packages, which may be updated while running dselect. Package actions
initiated by dselect are carried out using dpkg.

Syntax

alien [--to-deb] [--patch=patchfile] [options] file

Description

Convert to or install a non-Debian (or "alien") package. Supported package types include Red
Hat .rpm, Stampede .slp, Slackware .tgz, and generic .tar.gz files. rpm must also be installed
on the system to convert an RPM package into a .deb package. The alien command produces
an output package in Debian format by default after conversion.

Frequently used options

-i

Automatically install the output package and remove the converted package file.

-r

Convert package to RPM format.

-t

Convert package to a gzip tar archive.

Example

Install a non-Debian package on Debian system using alien with the -i option:

alien -i package.rpm

On the Exam

dselect, apt-get, and alien are important parts of Debian package management, but
detailed knowledge of dpkg is of primary importance for Exam 101.

4.6. Objective 6: Use Red Hat Package Manager (RPM)

The Red Hat Package Manager is among the most popular methods for the distribution of software
for Linux and is installed by default on most distributions. It automatically handles many of the
management details associated with interdependent software running on your system.

4.6.1. RPM Overview

RPM automates the installation and maintenance of software packages. Built into each package are
program files, configuration files, documentation, and dependencies on other packages. Package
files are manipulated using the rpm command, which maintains a database of all installed packages
and their files. Information from new packages is added to this database, and the database is
consulted on a file-by-file basis for dependencies when packages are removed, queried, and
installed. As with Debian packages, RPM packages have four common elements:

Name

An RPM package name is short and descriptive. If multiple words are used, they are separated
by hyphens (not underscores, as you might expect). Typical names include binutils, caching-
nameserver, cvs, gmc, kernel-source, and telnet.

Version

Each package has a version. Most package versions are the same as that of the software they
contain. The format of package versions varies from package to package, but most are
numeric (major.minor.patchlevel).

Revision

The revision tag is simply a release number for the package. It has no significance except to
determine if one package is newer than another when the version number does not change.

Architecture

Packages containing binary (compiled) files are by their nature specific to a particular type of
system. For PCs, the RPM architecture designation is i386, meaning the Intel 80386 and
subsequent line of microprocessors and compatibles.

Packages optimized for later x86 CPUs will have an architecture tag appropriate for the
specific CPU the code is compiled for, such as i586 for Intel Pentium (and compatible)
processors, i686 for Intel Pentium Pro and later processors (Pentium II, Celeron, Pentium III,
and Pentium 4), or athlon for AMD Athlon.

Other possible architecture tags include alpha, ia64, ppc, and sparc (for the Alpha, Itanium,
PowerPC, and SPARC, respectively). Another arch tag, noarch, is used to indicate packages

that can install on any architecture.

While the filename of an RPM package is not significant, Red Hat does have a standard naming
scheme for its packages that most of the other RPM-based distributions also follow. It is constructed
by tying these elements together in one long string.

4.6.2. Running rpm

The rpm command provides for the installation, removal, upgrade, verification, and other
management of RPM packages. rpm has a bewildering array of options, including the traditional
single-letter style (-i), and the double-dash full word style (--install). In most cases, both styles
exist and are interchangeable.

Although configuring rpm may appear to be a bit daunting, its operation is simplified by being
segmented into modes. rpm modes are enabled using one (and only one) of the mode options.
Within a mode, additional mode-specific options become available to modify the behavior of rpm.
The major modes of rpm and some of the most frequently used mode-specific options follow. For
complete information on how to use and manage RPM packages, see the rpm manpage or the
synopsis offered by rpm --help.

Syntax

rpm -i [options]

(also rpm --install)

rpm -U [options] (also rpm --upgrade)

rpm -e [options] (also rpm --uninstall)

rpm -q [options] (also rpm --query)

rpm -V [options] (also rpm --verify)

Install/upgrade mode

The install mode (rpm -i) is used to install new packages. A variant of install mode is the
upgrade mode (rpm -U), where an installed package is upgraded to a more recent version.
Another variant is the freshen mode (rpm -F), which only upgrades packages where an older
version is already installed on the system. rpm's -F option has historically been of limited
usefulness since it doesn't handle dependency changes at all. In other words, if a new version
of a package requires that another package be installed, -F won't automatically install the new
package, even if it is listed on the command line.

Frequently used install and upgrade options

--force

Allows the replacement of existing packages and of files from previously installed
packages; for upgrades, it allows the replacement of a newer package with an older one.
(Literally, it is equivalent to setting all of the options --replacepkgs, --replacefiles, and --

oldpackage. Use this option with caution.

-h (also --hash)

Prints a string of 50 hash marks (#) during installation as a progress indicator.

--nodeps

Allows you to install a package without checking for dependencies. This command should
be avoided, since it makes the dependency database inconsistent.

--test

Runs through all the motions except for actually writing files; it's useful to verify that a
package will install correctly prior to making the attempt. Note that verbose and hash
options cannot be used with --test, but -vv can.

-v

Sets verbose mode. (Package names are displayed as the packages are being installed.)

-vv

Sets really verbose mode. The manpage describes this as "print lots of ugly debugging
information."

Example 1

To install a new package, simply use the rpm -i command with the name of a package file. If
the new package depends upon another package, the install fails, like this:

rpm -i gcc-2.96-113.i386.rpm
error: failed dependencies:
 binutils >= 2.11.93.0.2-6 is needed by gcc-2.96-113
 cpp = 2.96-113 is needed by gcc-2.96-113
 glibc-devel is needed by gcc-2.96-113

To correct the problem, the dependency must first be satisfied. In this example, gcc is dependent on
binutils, cpp, and glibc-devel, which all must be installed first (or at the same time, as in this
example):

rpm -i binutils-2.11.93.0.2-11.i386.rpm cpp-2.96-113.i386.rpm \
 glibc-devel-2.2.5-44.i386.rpm gcc-2.96-113.i386.rpm

Example 2

Upgrading an existing package to a newer version can be done with the -U option. Upgrade
mode is really a special case of the install mode, where existing packages can be superseded
by newer versions. Using -U, a package can be installed even if it doesn't already exist, in
which case it behaves just like -i:

rpm -U gcc-2.96-113.i386.rpm

Uninstall mode

This mode is used to remove installed packages from the system. By default, rpm uninstalls a
package only if no other packages are dependent on it.

Frequently used uninstall options

--nodeps

rpm skips dependency checking with this option enabled. This command should be
avoided, since it makes the dependency database inconsistent.

--test

This option runs through all the motions except for actually uninstalling things; it's
useful to verify that a package can be uninstalled correctly without breaking other
dependencies prior to making the attempt. Note that verbose and hash options cannot
be used with --test, but -vv can.

Example

Package removal is the opposite of installation and has the same dependency constraints:

rpm -e glibc-devel
error: removing these packages would break dependencies:
 glibc-devel is needed by gcc-2.96-113

Query mode

Installed packages and raw package files can be queried using the rpm -q command. Query-
mode options exist for package and information selection.

Frequently used query package selection options

-a (also --all)

Display a list of all packages installed on the system. This is particularly useful when
piped to grep if you're not sure of the name of a package or when you want to look for
packages that share a common attribute.

-f filename (also --file)

Display the package that contains a particular file.

-p package_filename

Query a package file. Most useful with -i, described next.

Frequently used query information selection options

-c (also --configfiles)

List only configuration files.

-d (also --docfiles)

List only documentation files.

-i package

Not to be confused with the install mode. Display information about an installed
package, or when combined with -p, about a package file. In the latter case, package is

a filename.

-l package (also --list)

List all of the files contained in package. When used with -p, the package is a filename.

-R (also --requires)

List packages on which this package depends.

Example 1

To determine the version of the software contained in an RPM file, use the query and package
information options:

rpm -qpi openssh-3.4p1-2.i386.rpm | grep Version
Version : 3.4p1 Vendor: Red Hat, Inc.

For installed packages, omit the -p option and specify a package name instead of a package
filename. Notice if you have multiple versions of the same package installed, you will get output for
all of the packages:

rpm -qi kernel-source | grep Version

Version : 2.4.9 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.

Example 2

List the files contained in a package:

rpm -qlp gnucash-1.3.0-1.i386.rpm
/usr/bin/gnc-prices
/usr/bin/gnucash
/usr/bin/gnucash.gnome
/usr/doc/gnucash
/usr/doc/gnucash/CHANGES

 (...output continues ...)

For an installed package, enter query mode and use the -l option along with the package name:

rpm -ql kernel-source
/usr/src/linux-2.4.18-14
/usr/src/linux-2.4.18-14/COPYING
/usr/src/linux-2.4.18-14/CREDITS
/usr/src/linux-2.4.18-14/Documentation
/usr/src/linux-2.4.18-14/Documentation/00-INDEX
/usr/src/linux-2.4.18-14/Documentation/BUG-HUNTING
/usr/src/linux-2.4.18-14/Documentation/Changes

 (...output continues ...)

Example 3

List the documentation files in a package:

rpm -qd at
/usr/doc/at-3.1.7/ChangeLog
/usr/doc/at-3.1.7/Copyright
/usr/doc/at-3.1.7/Problems
/usr/doc/at-3.1.7/README
/usr/doc/at-3.1.7/timespec
/usr/man/man1/at.1
/usr/man/man1/atq.1
/usr/man/man1/atrm.1
/usr/man/man1/batch.1
/usr/man/man8/atd.8
/usr/man/man8/atrun.8

Use -p for package filenames.

Example 4

List configuration files or scripts in a package:

rpm -qc at
/etc/at.deny
/etc/rc.d/init.d/atd

Example 5

Determine what package a particular file was installed from. Of course, not all files originate
from packages:

rpm -qf /etc/fstab
file /etc/fstab is not owned by any package

Those that are package members look like this:

rpm -qf /etc/aliases
sendmail-8.11.6-15

Example 6

List the packages that have been installed on the system.

rpm -qa

 (... hundreds of packages are listed ...)

To search for a subset with kernel in the name, pipe the previous command to grep:

rpm -qa | grep kernel
kernel-source-2.4.18-24.7.x
kernel-pcmcia-cs-3.1.27-18
kernel-utils-2.4-7.4
kernel-doc-2.4.18-24.7.x
kernel-2.4.18-24.7.x

Verify mode

Files from installed packages can be compared against their expected configuration from the

RPM database by using rpm -V. The output is described under Objective 1 in Chapter 21.

Frequently used verify options

--nofiles

Ignores missing files.

--nomd5

Ignores MD5 checksum errors.

--nopgp

Ignores PGP checking errors.

On the Exam

Make certain that you are aware of rpm's major operational modes and their commonly
used mode-specific options. Knowledge of specific options will be necessary. Read
through the rpm manpage at least once.

Chapter 5. GNU and Unix Commands (Topic
1.103)
This Topic covers the essential aspect of working interactively with Linux command-line utilities.
While it's true that GUI tools are available to manage just about everything on a Linux system, a
firm understanding of command-line utilities is required to better prepare you to work on any LSB-
compliant Linux distribution.

The family of commands that are part of Linux and Unix systems has a long history. Individuals or
groups that needed specific tools contributed many of the commands in the early days of Unix
development. Those that were popular became part of the system and accepted as default tools
under the Unix umbrella. Today, Linux systems carry new, often more powerful GNU versions of
these historical commands, which are covered in LPI Topic 1.103.

This LPI Topic has eight Objectives :

Objective 1: Work on the Command Line

This Objective states that a candidate should be able to interact with shells and commands
using the command line. This includes typing valid commands and command sequences,
defining, referencing and exporting environment variables, using command history and editing
facilities, invoking commands in the path and outside the path, using command substitution,
applying commands recursively through a directory tree and using man to find out about
commands. Weight: 5.

Objective 2: Process Text Streams Using Filters

This Objective states that a candidate should be able to apply filters to text streams. Tasks
include sending text files and output streams through text utility filters to modify the output,
and using standard Unix commands found in the GNU textutils package. Weight: 6.

Objective 3: Perform Basic File Management

This Objective states that candidates should be able to use the basic Unix commands to copy,
move, and remove files and directories. Tasks include advanced file management operations
such as copying multiple files recursively, removing directories recursively, and moving files
that meet a wildcard pattern. This includes using simple and advanced wildcard specifications
to refer to files, as well as using find to locate and act on files based on type, size, or time.
Weight: 5.

Objective 4: Use Unix Streams, Pipes, and Redirects

This Objective describes that a candidate should be able to redirect streams and connect them
to efficiently process textual data. Tasks include redirecting standard input, standard output,
and standard error. Also included is piping the output of one command to the input of another,

using the output of one command as arguments to another command, and sending output to
both stdout and a file. Weight: 5.

Objective 5: Create, Monitor, and Kill Processes

An LPI 101 candidate should be able to manage processes. This includes knowing how to run
jobs in the foreground and background, bring a job from the background to the foreground
and vice versa, start a process that will run without being connected to a terminal, and signal
a program to continue running after logout. Tasks also include monitoring active processes,
selecting and sorting processes for display, sending signals to processes, killing processes and
identifying and killing X applications that did not terminate after the X sessions were closed.
Weight: 5.

Objective 6: Modify Process Execution Priorities

This Objective states that a candidate should be able to manage process execution priorities .
The tasks include running a program with higher or lower priority, determining the priority of
a process and changing the priority of a running process. Weight: 3.

Objective 7: Search Text Files Using Regular Expressions

This Objective states you should be able to manipulate files and text data using regular
expressions. This Objective includes creating simple regular expressions containing several
notational elements. It also includes using regular expression tools to perform searches
through a filesystem or file content. Weight: 3.

Objective 8: Perform Basic File Editing Operations Using vi

This Objective states a candidate should be able to edit files using vi. This Objective includes vi
navigation, basic vi nodes, inserting, editing, deleting, copying, and finding text. Weight: 1.

The tools and concepts discussed here represent important and fundamental aspects of working with
Linux and are essential for your success on Exam 101.

5.1. Objective 1: Work on the Command Line

Every computer system requires a human interface component. For Linux system administration, a
text interface is typically used. The system presents the administrator with a prompt, which at its
simplest is a single character such as $ or #. The prompt signifies that the system is ready to accept
typed commands, which usually occupy one or more lines of text. This interface is generically called
the command line.

It is the job of a program called a shell to provide the command prompt and to interpret commands.
The shell provides an interface layer between the Linux kernel and the human user, which is how it
gets its name. The original shell for Unix systems was written by Steve Bourne and was called
simply sh. The default Linux shell is bash, the Bourne-Again Shell, which is a GNU variant of sh. The
bash shell is the subject of an entire LPI Topic, covered in Chapter 17. At this point, we are primarily
concerned with our interaction with bash and the effective use of commands.

5.1.1. The Interactive Shell

The shell is a powerful programming environment, capable of automating nearly anything you can
imagine on your Linux system. The shell is also your interactive interface to your system. When you
first start a shell, it does some automated housekeeping to get ready for your use, and then
presents a command prompt. The command prompt tells you that the shell is ready to accept
commands from its standard input device, which is usually the keyboard. Shells can run standalone,
as on a physical terminal, or within a window in a GUI environment. Whichever the case, their use is
the same.

5.1.1.1. Shell variable basics

During execution, bash maintains a set of shell variables that contain information important to the
execution of bash. Most of these variables are set when bash starts, but they can be set manually at
any time.

The first shell variable of interest in this Topic is called PS1 (which simply stands for Prompt String
1). This special variable holds the contents of the command prompt that are displayed when bash is
ready to accept commands (there is also a PS2 variable, used when bash needs multiple-line input
to complete a command). You can easily display the contents of PS1, or any other shell variable, by
using the echo command with the variable name preceded by the $ symbol:

$ echo $PS1
\$

The \$ output tells us that PS1 contains the two characters \ and $. The backslash character tells the
shell not to interpret the dollar symbol in any special way (that is, as a metacharacter, described
later in this section). A simple dollar sign was the default prompt for sh, but bash offers options to

make the prompt much more informative. On your system, the default prompt stored in PS1 is
probably something like:

[\u@\h \W]\$

Each of the characters preceded by backslashes have a special meaning to bash, while those without
backslashes are interpreted literally. In this example, \u is replaced by the username, \h is replaced
by the system's hostname, \W is replaced by the unqualified path (or basename) of the current
working directory, and \$ is replaced by a $ character. (Unless you are root, in which case \$ is
replaced by #.) This yields a prompt of the form:

[jdean@linuxpc jdean]$

How your prompt is formulated is really just a convenience and does not affect how the shell
interprets your commands. However, adding information to the prompt, particularly regarding
system, user, and directory location, can make life easier when hopping from system to system and
logging in as multiple users (as yourself and root, for example). See the online documentation on

bash for more information on customizing prompts.

Another shell variable that is extremely important during interactive use is PATH , which contains a
list of all the directories that hold commands or other programs you are likely to execute. A default
path is set up for you when bash starts. You may wish to modify the default to add other directories
that hold programs you need to run.

Tip: Every file in the Linux filesystem can be specified in terms of its location. The less program, for example, is located in the directory

/usr/bin. Placing /usr/bin in your PATH enables you to execute less by simply typing less rather than the explicit /usr/bin/less.Also be

aware that . (the current directory) is not included in the PATH either implicitly (as it is in DOS) or explicitly for security reasons. To execute a

program named foo in the current directory, simply run ./foo.

For bash to find and execute the command you enter at the prompt, the command must be one of
the following:

A bash built-in command that is part of bash itself

An executable program located in a directory listed in the PATH variable

Explicitly defined

The shell holds PATH and other variables for its own use. However, many of the shell's variables are
needed during the execution of programs launched from the shell (including other shells). For these
variables to be available, they must be exported, at which time they become environment variables.
Environment variables are passed on to programs and other shells, and together they are said to
form the environment in which the programs execute. PATH is always made into an environment
variable. Exporting a shell variable to turn it into an environment variable is done using the export
command:

$ export MYVAR

When a variable is exported to the environment, it is passed into the environment of all child
processes. That is, it will be available to all programs run by your shell.

5.1.1.2. Entering commands at the command prompt

Commands issued to the shell on a Linux system generally consist of four components:

A valid command (a shell built-in, program, or script found among directories listed in the
PATH, or an explicitly defined program)

Command options, usually preceded by a dash

Arguments

Line acceptance (i.e., pressing the Enter key), which we assume in the examples

Each command has its own unique syntax, although most follow a fairly standard form. At minimum,
a command is necessary:

$ ls

This simple command lists files in the current working directory. It requires neither options nor
arguments. Generally, options are letters or words preceded by a single or double dash and are
added after the command and separated from it by a space:

$ ls -l

The -l option modifies the behavior of ls by listing files in a longer, more detailed format. In most
cases, single-dash options can be either combined or specified separately. To illustrate this, consider
these two equivalent commands:

$ ls -l -a
$ ls -la

By adding the -a option, ls displays files beginning with a dot (which it hides by default). Adding that
option by specifying -la yields the same result. Some commands offer alternative forms for the same
option. In the preceding example, the -a option can be replaced with --all:

$ ls -l --all

These double-dash full-word options are frequently found in programs from the GNU project. They
cannot be combined like the single-dash options can. Both types of options can be freely intermixed.
Although the longer GNU-style options require more typing, they are easier to remember and easier
to read in scripts than the single-letter options.

Adding an argument further refines the command's behavior:

$ ls -l *.c

Now the command will give a detailed listing only of C program source files, if any exist in the
current working directory.

Tip: Using the asterisk in *.c allows any file to match as long as it ends with a .c extension. More information on file globbing and using

wildcards will be discussed later in this chapter.

Sometimes, options and arguments can be mixed in any order:

$ ls --all *.c -l

In this case, ls was able to determine that -l is an option and not another file descriptor.

Some commands, such as tar and ps, don't require the dash preceding an option because at least
one option is expected or required. To be specific, ps doesn't require a dash when it is working like
BSD ps. Since the Linux version of ps is designed to be as compatible as possible with various other
versions of ps, it sometimes does need a dash to distinguish between conflicting options. (As an
example, try ps -e and ps e.)

Also, an option often instructs the command that the subsequent item on the command line is a
specific argument. For example:

$ tar cf mytarfile file1 file2 file3
$ tar -cf mytarfile file1 file2 file3

These equivalent commands use tar to create an archive file named mytarfile and put three files
(file1, file2, and file3) into it. In this case, the f option tells tar that archive filename mytarfile follows
immediately after the option.

Just as any natural language contains exceptions and variations, so does the syntax used for GNU
and Unix commands. You should have no trouble learning the essential syntax for the commands
you need to use often. The capabilities of the command set offered on Linux are extensive, making it
highly unlikely that you'll memorize all of the command syntax you need. Most systems
administrators are constantly learning about features they've never used in commands they use
regularly. It is standard practice to regularly refer to manpages or infopages and other
documentation on commands you're using, so feel free to explore and learn as you go.

5.1.1.3. Entering commands not in the PATH

Occasionally, you will need to execute a command that is not in your path and not built into your
shell. If this need arises often, it may be best to simply add the directory that contains the command
to your path. However, there's nothing wrong with explicitly specifying a command's location and
name completely. For example, the ls command is located in /bin. This directory is most certainly in
your PATH variable (if not, it should be!), which allows you to enter the ls command by itself on the
command line:

$ ls

The shell will look for an executable file named ls in each successive directory listed in your PATH
variable and will execute the first one it finds. Specifying the fully qualified filename for the
command eliminates the directory search and yields identical results:

$ /bin/ls

Any executable file on your system may be started in this way. However, it is important to
remember that some programs may have requirements during execution about what is listed in your
PATH. A program can be launched normally but may fail if it is unable to find a required resource due
to an incomplete PATH.

5.1.1.4. Entering multiple-line commands interactively

In addition to its interactive capabilities, the shell also has a complete programming language of its
own. Many programming features can be very handy at the interactive command line as well.
Looping constructs, including for, until, and while are often used this way. (Shell syntax is covered in
more detail in Chapter 17.) When you begin a command such as these, which normally spans
multiple lines, bash prompts you for the subsequent lines until a valid command has been
completed. The prompt you receive in this case is stored in shell variable PS2, which by default is >.
For example, if you wanted to repetitively execute a series of commands each time with a different
argument from a known series, you could enter the following:

$...series of commands on arg1...

command output

$...series of commands on arg2...

command output

$...series of commands on arg2...

command output

Rather than entering each command manually, you can interactively use bash's for loop construct to
do the work for you. Note that indented style, such as what you might use in traditional
programming, isn't necessary when working interactively with the shell:

$ for var in arg1 arg2 arg3
> do
> echo $var

> ...series of commands...
> done
arg1

command output
arg2

command output
arg3

command output

5.1.1.5. Entering command sequences

There may be times when it is convenient to place multiple commands on a single line. Normally,
bash assumes you have reached the end of a command (or the end of the first line of a multiple-line
command) when you press Return. To add more than one command to a single line, separate the
commands and enter them sequentially with the command separator, a semicolon. Using this
syntax, the following commands:

$ ls
$ ps

are, in essence, identical to and will yield the same result as the following single-line
command that employs the command separator:

$ ls ; ps

On the Exam

Command syntax and the use of the command line is very important. Pay special
attention to the use of options and arguments and how they are differentiated. Also be
aware that some commands expect options to be preceded by a dash while other
commands do not. The LPI exams do not concentrate on command options, so don't
feel like you need to memorize every obscure option for every command before taking
the exams.

5.1.2. Command History and Editing

If you consider interaction with the shell as a kind of conversation, it's a natural extension to refer
back to things "mentioned" previously. You may type a long and complex command that you want to
repeat, or perhaps you need to execute a command multiple times with slight variation.

If you work interactively with the original Bourne shell, maintaining such a "conversation" can be a
bit difficult. Each repetitive command must be entered explicitly, each mistake must be retyped, and
if your commands scroll off the top of your screen, you have to recall them from memory. Modern
shells such as bash include a significant feature set called command history, expansion, and editing.
Using these capabilities, referring back to previous commands is painless and your interactive shell
session becomes much simpler and more effective.

The first part of this feature set is command history. When bash is run interactively, it provides
access to a list of commands previously typed. The commands are stored in the history list prior to
any interpretation by the shell. That is, they are stored before wildcards are expanded or command
substitutions are made. The history list is controlled by the HISTSIZE shell variable. By default,
HISTSIZE is set to 500 lines, but you can control that number by simply adjusting HISTSIZE's value.
In addition to commands entered in your current bash session, commands from previous bash
sessions are stored by default in a file called ~/.bash_history (or the file named in shell variable
HISTFILE).

Tip: If you use multiple shells in a windowed environment (as just about everyone does), the last shell to exit will write its history to

~/.bash_history. For this reason you may wish to use one shell invocation for most of your work.

To view your command history, use the bash built-in history command. A line number will precede
each command. This line number may be used in subsequent history expansion. History expansion
uses either a line number from the history or a portion of a previous command to re-execute that
command. History expansion also allows a fair degree of command editing using syntax you'll find in
the bash documentation. Table 5-1 lists the basic history expansion designators. In each case, using
the designator as a command causes a command from the history to be executed again.

Table 5-1. Command history expansion designators

Designator Description

!! Spoken as bang-bang, this command refers to the most recent command. The
exclamation point is often called bang on Linux and Unix systems.

!n Refer to command n from the history. Use the history command to display these

numbers.

!-n Refer to the current command minus n from the history.

!string Refer to the most recent command starting with string.

!?string Refer to the most recent command containing string.

^string1^string2 Quick substitution . Repeat the last command, replacing the first occurrence of
string1 with string2.

While using history substitution can be useful for executing repetitive commands, command history
editing is much more interactive. To envision the concept of command history editing, think of your
entire bash history (including that obtained from your ~/.bash_history file) as the contents of an
editor's buffer. In this scenario, the current command prompt is the last line in an editing buffer, and
all of the previous commands in your history lie above it. All of the typical editing features are
available with command history editing, including movement within the "buffer," searching, cutting,
pasting, and so on. Once you're used to using the command history in an editing style, everything
you've done on the command line becomes available as retrievable, reusable text for subsequent
commands. The more familiar you become with this concept, the more useful it can be.

By default, bash uses key bindings like those found in the Emacs editor for command history editing.
(An editing style similar to the vi editor is also available.) If you're familiar with Emacs, moving
around in the command history will be familiar and very similar to working in an Emacs buffer. For
example, the key command Ctrl-p (depicted as C-p) will move up one line in your command history,
displaying your previous command and placing the cursor at the end of it. This same function is also
bound to the up arrow key. The opposite function is bound to C-n (and the down arrow). Together,
these two key bindings allow you to examine your history line by line. You may re-execute any of
the commands shown simply by pressing Return when it is displayed. For the purposes of Exam 101,
you'll need to be familiar with this editing capability, but detailed knowledge is not required. Table
5-2 lists some of the common Emacs key bindings you may find useful in bash. Note that C-
indicates the Ctrl key, while M- indicates the Meta key, which is usually Alt on PC keyboards (since
PC keyboards do not actually have a Meta key).

Tip: In circumstances where the Alt key is not available, such as on a terminal, using the Meta key means pressing the Escape (Esc) key,

releasing it, and then pressing the defined key. The Esc key is not a modifier, but applications will accept the Esc key sequence as equivalent to

Meta key.

Table 5-2. Basic command history editing Emacs key bindings

Key Description

C-p Previous line (also up arrow)

C-n Next line (also down arrow)

C-b Back one character (also left arrow)

C-f Forward one character (also right arrow)

C-a Beginning of line

C-e End of line

C-l Clear the screen, leaving the current line at the top of the screen

M-< Top of history

M-> Bottom of history

C-d Delete character from right

C-k Delete (kill) text from cursor to end of line

C-y Paste (yank) text previously cut (killed)

M-d Delete (kill) word

C-rtext Reverse search for text

C-stext Forward search for text

5.1.2.1. Command substitution

bash offers a handy ability to do command substitution. This feature allows you to replace the result
of a command with a script. For example, wherever $(command) is found, its output will be

substituted. This output could be assigned to a variable, as in the number of lines in the .bashrc file:

$ RCSIZE=$(wc -l ~/.bashrc)

Another form of command substitution is 'command'. The result is the same, except that the back
quote syntax has some special rules regarding metacharacters that the $(command) syntax avoids.

5.1.2.2. Applying commands recursively through a directory tree

There are many times when it is necessary to execute commands recursively. That is, you may need
to repeat a command throughout all the branches of a directory tree. Recursive execution is very
useful but also can be dangerous. It gives a single interactive command the power to operate over a
much broader range of your system than your current directory, and the appropriate caution is
necessary. Think twice before using these capabilities, particularly when operating as the superuser.

Some of the GNU commands on Linux systems have built-in recursive capabilities as an option. For
example, chmod modifies permissions on files in the current directory:

$ chmod g+w *.c

In this example, all files with the .c extension in the current directory are modified with the group-
write permission. However, there may be a number of directories and files in hierarchies that require
this change. chmod contains the -R option (note the uppercase option letter; you may also use --
recursive), which instructs the command to operate not only on files and directories specified on the
command line, but also on all files and directories contained under the specified directories. For
example, this command gives the group-write permission to all files in a source-code tree named
src:

$ chmod -R g+w src

Provided you have the correct privileges, this command will descend into each subdirectory in the
src directory and add the requested permission to each file and directory it finds. Other example
commands with this ability include cp (copy), ls (list files), and rm (remove files).

A more general approach to recursive execution through a directory is available by using the find
command. find is inherently recursive and is intended to descend through directories looking for files
with certain attributes or executing commands. At its simplest, find displays an entire directory
hierarchy when you simply enter the command with a target directory. (If no action arguments are
given to find, it prints each file it finds, as if the option -print were specified.):

$ find src

...files and directories are listed recursively...

As an example of a more specific use, add the -name option to search the same directories for C files

(this can be done recursively with the ls command as well):

$ find src -name "*.c"

....c files are listed recursively ...

find can also be used to execute commands against specific files by using the -exec option. The
arguments following -exec are taken as a command to run on each find match. They must be
terminated with a semicolon (;), which needs to be escaped (\;, for example) since it is a shell
metacharacter. The string { } is replaced with the filename of the current match anywhere it is
found in the command.

To take the previous example a little further, rather than execute chmod recursively against all files
in the src directory, find can execute it against the C files only, like this:

$ find src -name "*.c" -exec chmod g+w { } \;

The find command is capable of much more than this simple example and can locate files with
particular attributes such as dates, protections, file types, access times, and others. While the syntax
can be confusing, the results are worth some study of find.

5.2. Objective 2: Process Text Streams Using Filters

Many of the commands on Linux systems are intended to be used as filters , which modify text in
helpful ways. Text fed into the command's standard input or read from files is modified in some
useful way and sent to standard output or to a new file leaving the original source file unmodified.
Multiple commands can be combined to produce text streams , which are modified at each step in a
pipeline formation. This section describes basic use and syntax for the filtering commands important
for Exam 101. Refer to a Linux command reference for full details on each command and the many
other available commands.

Syntax

cut options [files]

Description

Cut out (that is, print) selected columns or fields from one or more files . The source file is

not changed. This is useful if you need quick access to a vertical slice of a file. By default, the
slices are delimited by a tab character.

Frequently used options

-b list

Print bytes in list positions.

-c list

Print characters in list columns.

-d delim

Set field delimiter for -f .

-f list

Print list fields.

Example

Show usernames (in the first colon-delimited field) from /etc/passwd :

$ cut -d: -f1 /etc/passwd

Syntax

expand [options] [files]

Description

Convert tabs to spaces. Sometimes the use of tab characters can make output that is
attractive on one output device look bad on another. This command eliminates tabs and
replaces them with the equivalent number of spaces. By default, tabs are assumed to be eight
spaces apart.

Frequently used options

-t number

Specify tab stops, in place of default 8.

-i

Initial; convert only at start of lines.

Syntax

fmt [options] [files]

Description

Format text to a specified width by filling lines and removing newline characters. Multiple
files from the command line are concatenated.

Frequently used options

-u

Use uniform spacing: one space between words and two spaces between sentences.

-w width

Set line width to width . The default is 75 characters.

Syntax

head [options] [files]

Description

Print the first few lines of one or more files (the "head" of the file or files). When more than
one file is specified, a header is printed at the beginning of each file, and each is listed in
succession.

Frequently used options

-c n

Print the first n bytes, or if n is followed by k or m , print the first n kilobytes or

megabytes, respectively.

-n n

Print the first n lines. The default is 10.

Syntax

join [options] file1 file2

Description

Print a line for each pair of input lines, one each from file1 and file2 , that have identical

join fields . This function could be thought of as a very simple database table join, where the
two files share a common index just as two tables in a database would.

Frequently used options

-j1 field

Join on field of file1 .

-j2 field

Join on field of file2 .

-j field

Join on field of both file1 and file2 .

Example

Suppose file1 contains the following:

1 one
2 two
3 three

and file2 contains:

1 11
2 22
3 33

Issuing the command:

$ join -j 1 file1 file2

yields the following output:

1 one 11
2 two 22
3 three 33

Syntax

nl [options] [files]

Description

Number the lines of files , which are concatenated in the output. This command is used for

numbering lines in the body of text, including special header and footer options normally
excluded from the line numbering. The numbering is done for each logical page , which is

defined as having a header, a body, and a footer. These are delimited by the special strings
\:\:\:, \:\: , and \: , respectively.

Frequently used options

-b style

Set body numbering style to style , t by default.

-f style

Set footer number style to style , n by default.

-h style

Set header numbering style to style , n by default.

Styles can be in these forms:

A

Number all lines.

t

Only number non-empty lines.

n

Do not number lines.

p REGEXP

Only number lines that contain a match for regular expression REGEXP .

Example

Suppose file file1 contains the following text:

\:\:\:
header
\:\:
line1
line2
line3
\:
footer
\:\:\:

header
\:\:
line1
line2
line3
\:
footer

If the following command is given:

$ nl -h a file1

the output would yield numbered headers and body lines but no numbering on footer lines. Each
new header represents the beginning of a new logical page and thus a restart of the numbering
sequence:

1 header
2 line1
3 line2
4 line3
footer
1 header
2 line1
3 line2
4 line3
footer

Syntax

od [options] [files]

Description

Dump files in octal and other formats. This program prints a listing of a file's contents in a
variety of formats. It is often used to examine the byte codes of binary files but can be used
on any file or input stream. Each line of output consists of an octal byte offset from the start of
the file followed by a series of tokens indicating the contents of the file. Depending on the
options specified, these tokens can be ASCII, decimal, hexadecimal, or octal representations
of the contents.

Frequently used options

-t type

Specify the type of output. Typical types include:

A

Named character

c

ASCII character or backslash escape

O

Octal (the default)

x

Hexadecimal

Example

If file1 contains:

a1\n
A1\n

where \n stands for the newline character. The od command specifying named characters yields the
following output:

$ od -t a file1
00000000 a 1 nl A 1 nl
00000006

A slight nuance is the ASCII character mode. This od command specifying named characters yields
the following output with backslash-escaped characters rather than named characters:

$ od -t c file1
00000000 a 1 \n A 1 \n
00000006

With numeric output formats, you can instruct od on how many bytes to use in interpreting each
number in the data. To do this, follow the type specification by a decimal integer. This od command
specifying single-byte hex results yields the following output:

$ od -t x1 file1
00000000 61 31 0a 41 31 0a

00000006

Doing the same thing in octal notation yields:

$ od -t o1 file1
00000000 141 061 012 101 061 012
00000006

If you examine an ASCII chart with hex and octal representations, you'll see that these results
match those tables.

Syntax

paste [options] [files]

Description

Paste together corresponding lines of one or more files into vertical columns.

Frequently used options

-d n

Separate columns with character n in place of the default tab.

-s

Merge lines from one file into a single line. When multiple files are specified, their
contents are placed on individual lines of output, one per file.

For the following three examples, file1 contains:

1

2

3

and file2 contains:

A

B

C

Example 1

A simple paste creates columns from each file in standard output:

$ paste file1 file2
1 A
2 B
3 C

Example 2

The column separator option yields columns separated by the specified character:

$ paste -d'@' file1 file2
1@A
2@B
3@C

Example 3

The single-line option (-s) yields a line for each file:

$ paste -s file1 file2
1 2 3
A B C

Syntax

pr [options] [file]

Description

Convert a text file into a paginated, columnar version, with headers and page fills. This
command is convenient for yielding nice output, such as for a line printer from raw
uninteresting text files. The header will consist of the date and time, the filename, and a page
number.

Frequently used options

-d

Double space.

-h header

Use header in place of the filename in the header.

-l lines

Set page length to lines . The default is 66.

-o width

Set the left margin to width .

Syntax

sort [options] [files]

Description

Write input to stdout , sorted alphabetically.

Frequently used options

-f

Case-insensitive sort.

-k POS1 [,POS2]

Sort on the key starting at POS1 and (optionally) ending at POS2 .

-n

Sort numerically.

-r

Sort in reverse order.

-t SEP

Use SEP as the key separator. The default is to use whitespace as the key separator.

Example

Sort all processes on the system by resident size (RSS in ps):

$ ps aux | sort -k 6 -n
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? SW Feb08 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SWN Feb08 0:00 [ksoftirqd_CPU0]
root 4 0.0 0.0 0 0 ? SW Feb08 0:01 [kswapd]
root 5 0.0 0.0 0 0 ? SW Feb08 0:00 [bdflush]
root 6 0.0 0.0 0 0 ? SW Feb08 0:00 [kupdated]
root 7 0.0 0.0 0 0 ? SW Feb08 0:00 [kjournald]
root 520 0.0 0.3 1340 392 tty0 S Feb08 0:00 /sbin/mingetty tt
root 335 0.0 0.3 1360 436 ? S Feb08 0:00 klogd -x
root 1 0.0 0.3 1372 480 ? S Feb08 0:18 init
daemon 468 0.0 0.3 1404 492 ? S Feb08 0:00 /usr/sbin/atd
root 330 0.0 0.4 1424 560 ? S Feb08 0:01 syslogd -m 0
root 454 0.0 0.4 1540 600 ? S Feb08 0:01 crond
root 3130 0.0 0.5 2584 664 pts/0 R 13:24 0:00 ps aux
root 402 0.0 0.6 2096 856 ? S Feb08 0:00 xinetd -stayalive
root 385 0.0 0.9 2624 1244 ? S Feb08 0:00 /usr/sbin/sshd
root 530 0.0 0.9 2248 1244 pts/0 S Feb08 0:01 -bash
root 3131 0.0 0.9 2248 1244 pts/0 R 13:24 0:00 -bash
root 420 0.0 1.3 4620 1648 ? S Feb08 0:51 sendmail: accepti
root 529 0.0 1.5 3624 1976 ? S Feb08 0:06 /usr/sbin/sshd

Syntax

split [option] [infile] [outfile]

Description

Split infile into a specified number of line groups, with output going into a succession of
files, outfile aa, outfile ab, and so on (the default is xaa , xab , etc.). The infile remains

unchanged. This command is handy if you have a very long text file that needs to be reduced
to a succession of smaller files. This was often done to email large files in smaller chunks,
because at one time it was considered bad practice to a send single large email message.

Frequently used option

-n

Split the infile into n -line segments. The default is 1,000.

Example

Suppose file1 contains:

1 one
2 two
3 three
4 four
5 five
6 six

Then the command:

$ split -2 file1 splitout_

yields as output three new files, splitout_aa, splitout_ab , and splitout_ac . The file splitout_aa
contains:

1 one
2 two

splitout_ab contains:

3 three
4 four

and splitout_ac contains:

5 five
6 six

Syntax

tac [file]

Description

This command is named as an opposite for the cat command, which simply prints text files to
standard output. In this case, tac prints the text files to standard output with lines in reverse
order.

Example

Suppose file1 contains:

1 one
2 two
3 three

Then the command:

$ tac file1

yields as output:

3 three
2 two
1 one

Syntax

tail [options] [files]

Description

Print the last few lines of one or more files (the "tail" of the file or files). When more than

one file is specified, a header is printed at the beginning of each file, and each is listed in
succession.

Frequently used options

-c n

This option prints the last n bytes, or if n is followed by k or m , the last n kilobytes or

megabytes, respectively.

-n m

Prints the last m lines. The default is 10.

-f

Continuously display a file as it is actively written by another process. This is useful for
watching log files as the system runs.

Syntax

tr [options] [string1 [string2]]

Description

Translate characters from string1 to the corresponding characters in string2 . tr does not

have file arguments and therefore must use standard input and output.

Note that string1 and string2 should contain the same number of characters since the first
character in string1 will be replaced with the first character in string2 and so on.

Either string1 or string2 can contain several types of special characters. Some examples

follow, although a full list can be found in the tr manpage.

a - z

All characters from a to z .

\\

A backslash (\) character.

\ nnn

The ASCII character with the octal value nnn .

\ x

Various control characters:

\a bell
\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab

[: class :]

A POSIX character class:

[:alnum:] alphanumeric characters (letters and digits)
[:aplha:] alpha (letter) characters
[:blank:] horizontal whitespace (space or tab)
[:cntrl:] control characters
[:digit:] numeric (digit) characters
[:graph:] printable characters, not including space
[:lower:] lower case alpha characters
[:print:] all printable characters
[:punct:] punctuation characters
[:space:] all whitespace, horizontal, or vertical (space,tab, newline, etc.)
[:upper:] upper case alpha characters
[:xdigit:] hexadecimal digits

Tip: The actual contents of the POSIX character classes varies based on locale.

Frequently used options

-c

Use the complement of (or all characters not in) string1 .

-d

Delete characters in string1 from the output.

-s

Squeeze out repeated output characters in string1 .

Example 1

To change all lowercase characters in file1 to uppercase, use:

$ cat file1 | tr a-z A-Z

or:

$ cat file1 | tr '[:lower:]' '[:upper:]'

Example 2

To suppress repeated whitespace characters from file1

$ cat file1 | tr -s '[:blank:]'

Example 3

To remove all non-printable characters from file1 (except the newline character):

$ cat file1 | tr -dc '[:print:]\n'

Syntax

unexpand [options] [files

Description

Convert spaces to tabs. This command performs the opposite action of expand . By default,
tab stops are assumed to be every eight spaces.

Frequently used options

-a

Convert all spaces, not just leading spaces. Normally unexpand will only work on spaces
at the beginning of each line of input. Using the -a option causes it to replace spaces
anywhere in the input.

Tip: This behavior of unexpand differs from expand . By default, expand converts all tabs to spaces. It requires the -i option to convert

only leading spaces.

-t number

Specify tab stops, in place of default 8.

Syntax

uniq [options] [input [output]]

Description

Writes input (or stdin) to output (or stdout), eliminating adjacent duplicate lines.

Since uniq works only on adjacent lines of its input, it is most often used in conjunction with
sort .

Frequently used options

-d

Print only non-unique (repeating) lines.

-u

Print only unique (non-repeating) lines.

Example

Suppose file containts the following:

b

b

a

a

c

d

c

Issuing the command uniq with no options:

$ uniq file

yields the following output:

b

a

c

d

c

Notice that the line with c is repeated, since the duplicate lines were not adjacent in the input file. To
eliminate duplicate lines regardless of where they appear in the input, use sort on the input first:

$ sort file | uniq
a
b
c
d

To print only lines that never repeat in the input, use the -u option:

$ sort file | uniq -u

d

To print only lines that do repeat in the input, use the -d option:

$ sort file | uniq -d
a
b
c

Syntax

wc [options] [files]

Description

Print counts of characters, words, and lines for files . When multiple files are listed, statistics

for each file output on a separate line with a cumulative total output last.

Frequently used options

-c

Print the character count only.

-l

Print the line count only.

-w

Print the word count only.

Example 1

Show all counts and totals for file1 , file2 , and file3 :

$ wc file[123]

Example 2

Count the number of lines in file1 :

$ wc -l file1

Syntax

xargs [options] [command] [initial-arguments]

Description

Execute command followed by its optional initial-arguments and append additional arguments

found on standard input. Typically, the additional arguments are filenames in quantities too
large for a single command line. xargs runs command multiple times to exhaust all arguments

on standard input.

Frequently used options

-n maxargs

Limit the number of additional arguments to maxargs for each invocation of command .

-p

Interactive mode. Prompt the user for each execution of command .

Example

Use grep to search a long list of files, one by one, for the word "linux":

$ find / -type f | xargs -n 1 grep -H linux

find searches for normal files (-type f) starting at the root directory. xargs executes grep once for
each of them due to the -n 1 option. grep will print the matching line preceded by the filename
where the match occurred (due to the -H option).

5.4. Objective 3: Perform Basic File Management

This section covers basic file and directory management, including filesystems, files and directories,
standard file management commands, their recursive capabilities (where applicable), and wildcard
patterns.

5.4.1. Filesystem Objects

Nearly every operating system that has ever been devised structures its collection of stored objects
in a hierarchy, which is a tree of objects containing other objects. This hierarchy allows a sane
organization of objects and allows identically named objects to appear in multiple locationsthis is
essential for multiuser systems like Linux. Information about each object in the filesystem is stored
in a table (which itself is part of the filesystem), and each object is numbered uniquely within that
table. Although there are a few special object types on Linux systems, the two most common are
directories and files.

5.4.1.1. Directories and files

A directory is a container intended to hold objects such as files and other directories. A directory's
purpose is primarily for organization. A file, on the other hand, exists within the directory and its
purpose is to be responsible for raw data

storage. At the top of all Linux filesystem hierarchies is a directory depicted simply by /; this is
known as the root directory. Beneath / are named directories and files in an organized and well-
defined tree. To describe these objects, you simply refer to them by name separated by the /
character. For example, the object ls is an executable program stored in a directory called /bin
under the root directory; it is depicted simply as /bin/ls.

Tip: Don't confuse root directory with the username root, which is separate and distinct. There's also often a directory named /root for the root

user. Keeping /, /root, and the root user straight in a conversation can be a challenge.

5.4.1.2. Inodes

The identification information for a filesystem object is known as its inode. Inodes carry information
about objects, such as where they are located on disk, their modification time, security settings, and
so forth. Each Linux ext2 filesystem is created with a finite number of inodes that is calculated based
on the size of the filesystem and other options that are given to mke2fs. Multiple objects in the
filesystem can share the same inode; this concept is called linking.

5.4.1.3. File and directory management commands

Once a hierarchy is defined, there is a constant need to manage the objects in the filesystem.
Objects are constantly created, read, modified, copied, moved, and deleted, so wisely managing the
filesystem is one of the most important tasks of a system administrator. In this section, we discuss
the basic command-line utilities used for file and directory management. While there are GUI tools
for this task, the LPI Level 1 exams only test on command-line tools.

Syntax

cp [options] file1 file2

cp [options] files directory

Description

In the first command form, copy file1 to file2. If file2 exists and you have appropriate
privileges, it will be overwritten without warning (unless you use the -i option). Both file1
and file2 can be any valid filename, either fully qualified or in the local directory. In the
second command form, copy files to directory. Note that the presence of multiple files
implies that you wish to copy the files to a directory. If directory doesn't exist, an error

message will be printed. This command form can get you in trouble if you attempt to copy a
single file into a directory that doesn't exist, as the command will be interpreted as the first
form and you'll end up with file2 instead of directory.

Frequently used options

-f

Force an overwrite of existing files in the destination.

-i

Prompt interactively before overwriting destination files. It is common practice (and
advised) to alias the cp command to cp -i to prevent accidental overwrites. You may find
that this is already done for you for root on your Linux system.

-p

Preserve all information, including owner, group, permissions, and timestamps. Without
this option, the copied file or files will have the present date and time, default
permissions, owner, and group.

-r, -R

Recursively copy directories. You may use either upper or lowercase for this option. If
file1 is actually a directory instead of a file and the recursive option is specified, file2
will be a copy of the entire hierarchy under directory file1.

-v

Display the name of each file verbosely before copying.

Example 1

Copy the messages file to the local directory (specified by .):

$ cp /var/log/messages .

Example 2

Make an identical copy, including preservation of file attributes, of directory src in new
directory src2:

$ cp -Rp src src2

Copy file1, file2, file5, file6, and file7 from the local directory into your home directory (in

bash):

$ cp file1 file2 file[567] ~

On the Exam

Be sure to know the difference between a file destination and a directory destination
and how to force an overwrite of existing objects.

Syntax

mkdir [options] directories

Description

Create one or more directories. You must have write permission in the directory where
directories are to be created.

Frequently used options

-mmode

Set the access mode for directories.

-p

Create intervening parent directories if they don't exist.

Examples

Create a read-only directory named personal:

$ mkdir -m 444 personal

Create a directory tree in your home directory, as indicated with a leading tilde (~), using a single
command:

$ mkdir -p ~/dir1/dir2/dir3

In this case, all three directories are created. This is faster than creating each directory individually.

On the Exam

Verify your understanding of the tilde (~) shortcut for the home directory.

Syntax

mv [options] source target

Description

Move or rename files and directories. For targets on the same filesystem (partition), moving a

file doesn't relocate the contents of the file itself. Rather, the directory entry for the target is
updated with the new location. For targets on different filesystems, such a change can't be

made, so files are copied to the target location and the original sources are deleted.

If a target file or directory does not exist, source is renamed to target. If a target file already
exists, it is overwritten with source. If target is an existing directory, source is moved into
that directory. If source is one or more files and target is a directory, the files are moved into

the directory.

Frequently used options

-f

Force the move even if target exists, suppressing warning messages.

-i

Query interactively before moving files.

Syntax

rm [options] files

Description

Delete one or more files from the filesystem. To remove a file, you must have write permission
in the directory that contains the file, but you do not need write permission on the file itself.
The rm command also removes directories when the -d, -r, or -R option is used.

Frequently used options

-d

Remove directories even if they are not empty. This option is reserved for privileged
users.

-f

Force removal of write-protected files without prompting.

-i

Query interactively before removing files.

-r,-R

If the file is a directory, recursively remove the entire directory and all of its contents,
including subdirectories.

Syntax

rmdir [option] directories

Description

Delete directories, which must be empty.

Frequently used option

-p

Remove directories and any intervening parent directories that become empty as a

result. This is useful for removing subdirectory trees.

On the Exam

Remember that recursive remove using rm -R removes directories too, even if they're
not empty.

Syntax

touch [options] files

Description

Change the access and/or modification times of files. This command is used to refresh

timestamps on files. Doing so may be necessary, for example, to cause a program to be
recompiled using the date-dependant make utility.

Frequently used options

-a

Change only the access time.

-m

Change only the modification time.

-t timestamp

Instead of the current time, use timestamp in the form of [[CC]YY]MMDDhhmm[.ss]. For

example, the timestamp for January 12, 2001, at 6:45 p.m. is 200101121845.

5.4.2. File-Naming Wildcards

When working with files on the command line, you'll often run into situations in which you need to
perform operations on many files at once. For example, if you are developing a C program, you may
want to touch all of your .c files in order to be sure to recompile them the next time you issue the
make utility to build your program. There will also be times when you need to move or delete all the
files in a directory or at least a selected group of files. At other times, filenames may be long or
difficult to type, and you'll want to find an abbreviated alternative to typing the filenames for each
command you issue (see Table 5-3).

To make these operations simpler, all shells on Linux offer file-naming wildcards ().

Tip: Wildcards are expanded by the shell, not by commands. When a command is entered with wildcards included, the shell first expands all

the wildcards (and other types of expansion) and passes the full result on to the command. This process is invisible to you.

Rather than explicitly specifying every file or typing long filenames, you can use wildcard characters
in place of portions of the filenames can usually do the work for you. For example, the shell expands
things like *.txt to a list of all the files that end in .txt. File wildcard constructs like this are called file
globs, and their use is awkwardly called globbing. Using file globs to specify multiple files is certainly
a convenience, and in many cases is required to get anything useful accomplished. Wildcards for
shell globbing are listed in Table 5-3.

Table 5-3. Common file-naming wildcards

Wildcard Description

* Commonly thought to "match anything," it actually will match zero or
more characters (which includes "nothing"!). For example, x* matches
files or directories x, xy, xyz, x.txt, xy.txt, xyz.c, and so on.

? Match exactly one character. For example, x? matches files or
directories xx, xy, xz, but not x and not xyz. The specification x??
matches xyz, but not x and xy.

[characters] Match any single character from among characters listed between the
brackets. For example, x[yz] matches xy and xz.

[!characters] Match any single character other than characters listed between the

brackets. For example, x[!yz] matches xa and x1 but does not match xy
or xz.

[a-z] Match any single character from among the range of characters listed
between the brackets and indicated by the dash (the dash character is
not matched). For example, x[0-9] matches x0 and x1, but does not
match xx. Note that to match both upper- and lowercase letters (Linux

filenames are case-sensitive), you specify [a-zA-Z]. Using x[a-zA-Z]
matches xa and xA.

Wildcard Description

[!a-z] Match any single character from among the characters not in the range
listed between the brackets.

{frag1,frag2,frag3,...} Create strings frag1, frag2, frag3, etc. For example,
file_{one,two,three} yields the strings file_one, file_two, and
file_three. This is a special operator named brace expansion that can

be used to match filenames but isn't specifically a file wildcard operator
and does not examine directories for existing files to match. Instead, it
will expand any string.

For example, it can be used with echo to yield strings totally unrelated
to existing filenames:

$ echo string_{a,b,c}
string_a string_b string_c

The following are a few common applications for wildcards:

If you remember part of a filename but not the whole thing, use wildcards with the portion you
remember to help find the file. For example, if you're working in a directory with a large
number of files and you know you're looking for a file named for Linux, you may enter a
command like this:

$ ls -l *inux*

When working with groups of related files, wildcards can be used to help separate the groups.
For example, suppose you have a directory full of scripts you've written. Some are Perl scripts,
for which you've used an extension of .pl, and some are Python, with a .py extension. You may
wish to separate them into new separate directories for the two languages like this:

$ mkdir perl python
$ mv *.pl perl
$ mv *.py python

Wildcards match directory names as well. Suppose you have a tree of directories starting with
contracting, where you've created a directory for each month (that is, contracting/january,
contracting/february, through contracting/december). In each of these directories are stored
invoices, named simply invoice_custa_01.txt, invoice_custa_02.txt, invoice_custb_01.txt, and
so on, where custa and custb are customer names of some form. To display all of the invoices,

wildcards can be used:

$ ls con*/*/inv*.txt

The con* matches contracting. The second matches all directories under the contracting

[!a-z] Match any single character from among the characters not in the range
listed between the brackets.

{frag1,frag2,frag3,...} Create strings frag1, frag2, frag3, etc. For example,
file_{one,two,three} yields the strings file_one, file_two, and
file_three. This is a special operator named brace expansion that can

be used to match filenames but isn't specifically a file wildcard operator
and does not examine directories for existing files to match. Instead, it
will expand any string.

For example, it can be used with echo to yield strings totally unrelated
to existing filenames:

$ echo string_{a,b,c}
string_a string_b string_c

The following are a few common applications for wildcards:

If you remember part of a filename but not the whole thing, use wildcards with the portion you
remember to help find the file. For example, if you're working in a directory with a large
number of files and you know you're looking for a file named for Linux, you may enter a
command like this:

$ ls -l *inux*

When working with groups of related files, wildcards can be used to help separate the groups.
For example, suppose you have a directory full of scripts you've written. Some are Perl scripts,
for which you've used an extension of .pl, and some are Python, with a .py extension. You may
wish to separate them into new separate directories for the two languages like this:

$ mkdir perl python
$ mv *.pl perl
$ mv *.py python

Wildcards match directory names as well. Suppose you have a tree of directories starting with
contracting, where you've created a directory for each month (that is, contracting/january,
contracting/february, through contracting/december). In each of these directories are stored
invoices, named simply invoice_custa_01.txt, invoice_custa_02.txt, invoice_custb_01.txt, and
so on, where custa and custb are customer names of some form. To display all of the invoices,

wildcards can be used:

$ ls con*/*/inv*.txt

The con* matches contracting. The second matches all directories under the contracting

directory (january through december). The last matches all the customers and each invoice
number for each customer.

See the bash manpages or info page for additional information on how bash handles
expansions and on other expansion forms.

5.5. Objective 4: Use Streams, Pipes, and Redirects

Among the many beauties of Linux and Unix systems is the notion that everything is a file. Things
such as disk drives and their partitions, tape drives, terminals, serial ports, the mouse, and even
audio are mapped into the filesystem. This mapping allows programs to interact with many different
devices and files in the same way, simplifying their interfaces. Each device that uses the file
metaphor is given a device file, which is a special object in the filesystem that provides an interface
to the device. The kernel associates device drivers with various device files, which is how the system
manages the illusion that devices can be accessed as if they were files. Using a terminal as an
example, a program reading from the terminal's device file will receive characters typed at the
keyboard. Writing to the terminal causes characters to appear on the screen. While it may seem odd
to think of your terminal as a file, the concept provides a unifying simplicity to Linux and Linux
programming.

5.5.1. Standard I/O and Default File Descriptors

Standard I/O is a capability of the shell, used with all text-based Linux utilities to control and direct
program input, output, and error information. When a program is launched, it is automatically
provided with three file descriptors. File descriptors are regularly used in programming and serve as
a "handle" of sorts to another file. Standard I/O creates the following file descriptors:

Standard input (abbreviated stdin)

This file descriptor is a text input stream. By default it is attached to your keyboard. When you
type characters into an interactive text program, you are feeding them to standard input. As
you've seen, some programs take one or more filenames as command-line arguments and
ignore standard input. Standard input is also known as file descriptor 0.

Standard output (abbreviated stdout)

This file descriptor is a text output stream for normal program output. By default it is attached
to your terminal (or terminal window). Output generated by commands is written to standard
output for display. Standard output is also known as file descriptor 1.

Standard error (abbreviated stderr)

This file descriptor is also a text output stream, but it is used exclusively for errors or other
information unrelated to the successful results of your command. By default, standard error is
attached to your terminal just like standard output. This means that standard output and
standard error are commingled in your display, which can be confusing. You'll see ways to
handle this later. Standard error is also known as file descriptor 2.

Standard output and standard error are separated because it is often useful to process normal
program output differently than errors.

The standard I/O file descriptors are used in the same way as those created during program
execution to read and write disk files. They enable you to tie commands together with files and
devices, managing command input and output in exactly the way you desire. The difference is they
are provided to the program by the shell by default and do not need to be explicitly created.

5.5.2. Pipes

From a program's point of view there is no difference between reading text data from a file and
reading it from your keyboard. Similarly, writing text to a file and writing text to a display are
equivalent operations. As an extension of this idea, it is also possible to tie the output of one
program to the input of another. This is accomplished using a pipe (|) to join two or more
commands together. For example:

$ grep "01523" order* | less

This command searches through all files whose names begin with order to find lines containing the
word 01523. By creating this pipe, the standard output of grep is sent to the standard input of less.
The mechanics of this operation are handled by the shell and are invisible to the user. Pipes can be
used in a series of many commands. When more than two commands are put together, the resulting
operation is known as a pipeline or text stream, implying the flow of text from one command to the
next.

As you get used to the idea, you'll find yourself building pipelines naturally to extract specific
information from text data sources. For example, suppose you wish to view a sorted list of inode
numbers from among the files in your current directory. There are many ways you could achieve
this. One way would be to use awk in a pipeline to extract the inode number from the output of ls,
then send it on to the sort command and finally to a pager for viewing (don't worry about the syntax
or function of these commands at this point):

$ ls -i * | awk '{print $1}' | sort -nu | less

The pipeline concept in particular is a feature of Linux and Unix that draws on the fact that your
system contains a diverse set of tools for operating on text. Combining their capabilities can yield
quick and easy ways to extract otherwise hard to handle information.

5.5.3. Redirection

Each pipe symbol in the previous pipeline example instructs the shell to feed output from one
command into the input of another. This action is a special form of redirection, which allows you to
manage the origin of input streams and the destination of output streams. In the previous example,
individual programs are unaware that their output is being handed off to or from another program
because the shell takes care of the redirection on their behalf.

Redirection can also occur to and from files. For example, rather than sending the output of an inode
list to the pager less, it could easily be sent directly to a file with the > redirection operator:

$ ls -i * | awk '{print $1}' | sort -nu > in.txt

When you change the last redirection operator, the shell creates an empty file (in.txt), opens it for
writing, and the standard output of sort places the results in the file instead of on the screen. Note
that, in this example, anything sent to standard error is still displayed on the screen. In addition, if
your specified file, in.txt, already existed in your current directory it would be overwritten.

Since the > redirection operator creates files, the >> redirection operator can be used to append to
existing files. For example, you could use the following command to append a one-line footnote to
in.txt:

$ echo "end of list" >> in.txt

Since in.txt already exists, the quote will be appended to the bottom of the existing file. If the file
didn't exist, the >> operator would create the file and insert the text "end of list" as its contents.

It is important to note that when creating files, the output redirection operators are interpreted by
the shell before the commands are executed. This means that any output files created through
redirection are opened first. For this reason you cannot modify a file in place, like this:

$ grep "stuff" file1 > file1 don't do it!

If file1 contains something of importance, this command would be a disaster because an empty file1
would overwrite the original. The grep command would be last to execute, resulting in a complete
data loss from the original file1 file because the file that replaced it was empty. To avoid this
problem, simply use an intermediate file and then rename it:

$ grep "stuff" file1 > file2
$ mv file2 file1

Standard input can also be redirected. The input redirection operator is <. Using a source other than
the keyboard for a program's input may seem odd at first, but since text programs don't care about
where their standard input streams originate, you can easily redirect input. For example, the
following command will send a mail message with the contents of the file in.txt to user jdean:

$ mail -s "inode list" jdean < in.txt

Normally, the mail program prompts the user for input at the terminal. However, with standard
input redirected from the file in.txt, no user input is needed and the command executes silently.
Table 5-4 lists the common standard I/O redirections for the bash shell, specified in the LPI
Objectives.

Table 5-4. Standard I/O redirections for the bash shell

Redirection function Syntax for bash

Send stdout to file. $ cmd > file$ cmd 1> file

Send stderr to file. $ cmd 2> file

Send both stdout and stderr to file. $ cmd > file 2>&1

Send stdout to file1 and stderr to file2. $ cmd > file1 2> file2

Receive stdin from file. $ cmd < file

Append stdout to file. $ cmd >> file$ cmd 1>> file

Append stderr to file. $ cmd 2>> file

Append both stdout and stderr to file. $ cmd >> file 2>&1

Pipe stdout from cmd1 to cmd2. $ cmd1 | cmd2

Pipe stdout and stderr from cmd1 to cmd2. $ cmd1 2>&1 | cmd2

On the Exam

Be prepared to demonstrate the difference between filenames and command names in
commands using redirection operators. Also, check the syntax on commands in
redirection questions to be sure about which command or file is a data source and
which is a destination.

5.5.4. Using the tee Command

Sometimes you'll want to run a program and send its output to a file while at the same time viewing
the output on the screen. The tee utility is helpful in this situation.

Syntax

tee [options] files

Description

Read from standard input and write both to one or more files and to standard output

(analogous to a tee junction in a pipe).

Option

-a

Append to files rather than overwriting them.

Example

Suppose you're running a pipeline of commands cmd1, cmd2, and cmd3:

$ cmd1 | cmd2 | cmd3 > file1

This sequence puts the ultimate output of the pipeline into file1. However, you may also be
interested in the intermediate result of cmd1. To create a new file_cmd1 containing those results,
use tee:

$ cmd1 | tee file_cmd1 | cmd2 | cmd3 > file1

The results in file1 will be the same as in the original example, and the intermediate results of cmd1
will be placed in file_cmd1.

5.6. Objective 5: Create, Monitor, and Kill Processes

This Objective looks at the management of processes. Just as file management is a fundamental
system administrator's function, the management and control of processes is also essential for
smooth system operation. In most cases, processes will live, execute, and die without intervention
from the user because they are automatically managed by the kernel. However, there are times that
a process will die for some unknown reason and need to be restarted. Or, some process may "run
wild" and consume system resources, requiring that it be terminated. You will also need to instruct
running processes to perform operations, such as rereading a configuration file.

5.6.1. Processes

Every program, whether it's a command, application, or script, that runs on your system is a
process. Your shell is a process, and every command you execute from the shell starts one or more
processes of its own (referred to as child processes). Attributes and concepts associated with these
processes include:

Lifetime

A process lifetime is defined by the length of time it takes to execute (it's "life"). Commands
with a short lifetime such as ls will execute for a very short time, generate results, and
terminate when complete. User programs such as web browsers have a longer lifetime,
running for unlimited periods of time until terminated manually. Long lifetime processes
include server daemons that run continuously from system boot to shutdown. When a process
terminates, it is said to die (which is why the program used to manually signal a process to
stop execution is called kill; succinct, though admittedly morbid).

Process ID (PID)

Every process has a number assigned to it when it starts. PIDs are integer numbers unique
among all running processes.

User ID (UID) and Group ID (GID)

Processes must have associated privileges, and a process's UID and GID are associated with
the user who started the process. This limits the process's access to objects in the filesystem.

Parent process

The first process started by the kernel at system start time is a program called init. This
process has PID 1 and is the ultimate parent of all other processes on the system. Your shell is
a descendant of init and the parent process to commands started by the shell, which are its
child processes, or subprocesses.

Parent process ID (parent PID)

This is the PID of the process that created the process in question. If that parent process has
vanished, the parent PID will be 1, which is the PID of init.

Environment

Each process holds a list of variables and their associated values. Collectively, this list is
known as the environment of the process, and the variables are called environment variables.
Child processes inherit their environment settings from the parent process unless an
alternative environment is specified when the program is executed.

Current working directory

The default directory associated with each process. The process will read and write files in this
directory unless they are explicitly specified to be elsewhere in the filesystem.

On the Exam

The parent/child relationship of the processes on a Linux system is important. Be sure
to understand how these relationships work and how to view them. Note that the init
process always has PID 1 and is the ultimate ancestor of all system processes.

5.6.2. Process Monitoring

At any time, there could be tens or even hundreds of processes running together on your Linux
system. Monitoring these processes is done using three convenient utilities: ps, pstree, and top.

Syntax

ps [options]

Description

This command generates a one-time snapshot of the current processes on standard output.

Frequently used options

-a

Show processes that are owned by other users and attached to a terminal. Normally,
only the current user's processes are shown.

-f

"Forest" mode, which is used to display process family trees. For example, using this
option will display all running child web servers (httpd) in a hierarchical diagram under
the parent web server. (There is also a separate command called pstree that does this
nicely.)

-l

Long format, which includes priority, parent PID, and other information.

-u

User format, which includes usernames and the start time of processes.

-w

Wide output format, used to eliminate the default output line truncation. Useful for the -f
option.

-x

Include processes without controlling terminals. Often needed to see daemon processes
and others not started from a terminal session.

-C cmd

Display instances of command name cmd.

-U user

Display processes owned by username user.

Examples

Simply entering the ps command with no options will yield a brief list of processes owned by
you and attached to your terminal:

$ ps

Use the -a, -u, and -x options to include processes owned by others and not attached to terminals as
well as to display them in the "user" mode. The command is valid with or without the dash:

$ ps -aux
$ ps aux

In this case, the dash is optional. However, certain ps options require the dash. (See the manpage
for details.)

If you are interested in finding process information on a particular command, use the -C option. This
command displays all web server processes:

$ ps u -C httpd]

You'll note that the -C option requires the dash, but the u option won't work with it if a dash is
included. This confusion exists because the ps command as implemented on Linux understands
options in three differing forms:

Unix98 options

These may be grouped and must be preceded by a dash.

BSD options

These may be grouped and must not be used with a dash.

GNU long options

These options are preceded by two dashes.

Tip: The Linux ps tries to be compatible with ps from various other systems. How it interprets various command-line options, which determines

how compatible it is with other versions of ps, can be controlled by setting I_WANT_A_BROKEN_PS, PS_PERSONALITY, and various other

environment variables. See the ps manpage for details.

All of these option types may be freely intermixed. Instead of the -C option, you may wish to use ps
with other options that you usually use and pipe the output to grep, searching for process names,
PIDs, or anything else you know about the process:

$ ps aux | grep httpd

In this case, the result would be the same list of httpd servers, as well as the grep command itself.

Syntax

pstree [options] [pid|user]

Description

The pstree command is similar to the "forest" mode of ps -f. This command displays a
hierarchical list of processes in a tree format. pstree is very handy for understanding how
parent/child process relationships are set up.

If the PID is specified, the displayed tree is rooted at that process. Otherwise, it is rooted at
the init process, which has PID 1. If user (a valid username) is specified, trees for all
processes owned by user are shown. The tree is represented using characters that appear as

lines, such as | for vertical lines and + for intersections (VT100 line-drawing characters,
displayed as solid lines by most terminals, are optional). The output looks similar to this:

httpd-+-httpd
 |-httpd
 |-httpd
 |-httpd
 '-httpd

By default, visually identical branches of the tree are merged to reduce output. Merged lines are
preceded by a count indicating the actual number of similar processes. The preceding example is
normally displayed on a single line:

httpd---5*[httpd]

This behavior can be turned off with the -c option.

Frequently used options

-a

Display command-line arguments used to launch processes.

-c

Disable the compaction of identical subtrees.

-G

Use the VT100 line-drawing characters instead of plain characters to display the tree.
This yields a much more pleasing display but may not be appropriate for printing or
paging programs.

-h

Highlight the ancestry of the current process (usually the shell). The terminal must
support highlighting for this option to be meaningful.

-n

The default sort order for processes with the same parent is alphanumerically by name.
This option changes this behavior to a numeric sort by PID.

-p

Include PIDs in the output.

Example

Display a process tree including PIDs:

pstree -p
init(1)-+-atd(468)
 |-bdflush(5)
 |-crond(454)
 |-httpd(440)-+-httpd(450)
 | |-httpd(451)
 | |-httpd(452)
 | |-httpd(453)
 | |-httpd(455)
 | |-httpd(456)
 | |-httpd(457)
 | '-httpd(458)
 |-keventd(2)
 |-kjournald(7)
 |-klogd(335)
 |-ksoftirqd_CPU0(3)
 |-kswapd(4)
 |-kupdated(6)
 |-login(475)---bash(478)---pstree(518)
 |-sendmail(420)
 |-sshd(385)
 |-syslogd(330)
 '-xinetd(402)

Syntax

top [options]

Description

The top command also offers output similar to ps, but in a continuously updated display. This
is useful in situations in which you need to watch the status of one or more processes or to see
how they are using your system.

In addition, a header of useful uptime, load, CPU status, and memory information is displayed.
By default, the process status output is generated with the most CPU-intensive processes at
the top of the listing (and is named for the "top" processes). To format the screen, top must
understand how to control the terminal display. The type of terminal (or terminal window) in
use is stored in the environment variable TERM. If this variable is not set or contains an
unknown terminal type, top may not execute.

Popular command-line options

Dashes are optional in top options:

-b

Run in batch mode. This is useful for sending output from top to other programs or to a file. It
executes the number of iterations specified with the -n option and terminate. This option is
also useful if top cannot display on the terminal type you are using.

-d delay

Specify the delay in seconds between screen updates. The default is five seconds.

-i

Ignore idle processes, listing only the "interesting" ones taking system resources.

-n num

Display num iterations and then exit, instead of running indefinitely.

-q

Run with no delay. If the user is the superuser, run with highest possible priority. This option
causes top to update continuously and will probably consume any idle time your CPU had.
Running top -q as superuser will seriously affect system performance and is not
recommended.

-s

Run in secure mode. Some of top's interactive commands can be dangerous if running as the
superuser. This option disables them.

Frequently used interactive options

Once top is running interactively, it can be given a number of commands via the keyboard to
change its behavior. These commands are single-key commands, some of which cause top to
prompt for input:

Ctrl-L

Refresh the screen.

h

Generate a help screen.

k

Kill a process. You will be prompted for the PID of the process and the signal to send it.
(The default signal is 15, SIGTERM.) See the later section "Terminating Processes."

n

Change the number of processes to show. You will be prompted to enter an integer
number. The default is 0, which indicates that the screen should be filled.

q

Quit the program.

r

Change the priority of a process (renice). You will be prompted for the PID of the
process and the value to nice it to (see nice and renice later in this chapter in Objective
6: Modify Process Execution Priorities"). Entering a positive value causes a process to
lose priority. If the superuser is running top, a negative value may be entered, causing a
process to get a higher than normal priority. This command is not available in secure
mode.

s

Change the delay in seconds between updates. You will be prompted for the delay value,
which may include fractions of seconds (i.e., 0.5).

Example 1

Simply executing top without options gives a full status display updated every five seconds:

$ top

Use the q command to quit.

Example 2

To run top with a faster refresh rate, use the interval option, specified here with a one-second
refresh:

$ top -d 1

Example 3

To have top update constantly, you could specify -d 0, or use the -q option. Here, this feature
is used to watch only non-idle processes, which will include top itself:

$ top -qi

Example 4

You may wish to use top to log its output to a file. Use the -b (batch) option for this purpose.
In this batch example, the -i option eliminates idle processes, the -n option, with its argument,
indicates five iterations, and the -d option indicates a one-second interval. Results will be
redirected to file1. This command will take five seconds to execute and does not use the
optional dashes:

$ top bin 5 d 1 > file1

The single-key interactive commands can be used when top is running interactively. For example, if
you type the h command, top displays a help screen. If you enter the n command, top prompts you
for the number of lines you wish to display.

Using top to change the nice (priority modifier) value for a process is discussed in "Objective 6:
Modify Process Execution Priorities" later in this chapter.

5.6.3. Signaling Active Processes

Each process running on your system listens for signals, simple messages sent to the process either
by the kernel or by a user. The messages are sent through interprocess communication. They are
single-valued, in that they don't contain strings or command-like constructs. Instead, signals are
numeric integer messages, predefined and known by processes. Most have an implied action for the
process to take. When a process receives a signal, it can (or may be forced) to take action.

For example, if you are executing a program from the command line that appears to hang, you may
elect to type Ctrl-C to abort the program. This action actually sends an SIGINT (interrupt signal) to
the process, telling it to stop running.

There are more than 32 signals defined for normal process use in Linux. Each signal has a name and
a number (the number is sent to the process, the name is only for our convenience). Many signals
are used by the kernel, and some are useful for users. Table 5-5 lists popular signals for interactive
use.

Table 5-5. Frequently used interactive signals

Signal
name[a] Number Meaning and use

HUP 1 Hang up. This signal is sent automatically when you log out or disconnect a
modem. It is also used by many daemons to cause the configuration file to
be reread.

INT 2 Interrupt; stop running. This signal is sent when you type Ctrl-C.

KILL 9 Kill; stop unconditionally and immediately. Sending this signal is a drastic
measure, as it cannot be ignored by the process. This is the "emergency kill"
signal.

TERM 15 Terminate, nicely if possible. This signal is used to ask a process to exit
gracefully.

TSTP 20 Stop executing, ready to continue. This signal is sent when you type Ctrl-Z.
(See the later section "Shell Job Control" for more information.)

CONT 18 Continue execution. This signal is sent to start a process stopped by
SIGTSTP or SIGSTOP. (The shell sends this signal when you use the fg or bg
commands after stopping a process with Ctrl-Z.)

[a]

[a] Signal names will often be specified with a SIG prefix. That is, signal HUP is the same as signal SIGHUP.

As you can see from Table 5-5, some signals are invoked by pressing well-known key combinations
such as Ctrl-C and Ctrl-Z. You can also use the kill command to send any message. The kill
command is implemented both as a shell built-in command and as a standalone binary command.

Syntax

kill [-s sigspec | -sigspec] [pids]

kill -l [signum]

Description

In the first form, kill is used with an optional sigspec. This is a signal value, specified as either
an integer or the signal name (such as SIGHUP, or simply HUP). The sigspec is case-

insensitive but is usually specified with uppercase letters. The bash built-in kill is case-
insensitive both when using the -ssigspec and the -sigspec forms, but the standalone kill is
only case-insensitive in the -ssigspec form. For this reason, it is best to use uppercase signal
names. You may use -ssigspec or simply -sigspec to make up the signal value or name. If a
sigspec is not given, then SIGTERM (signal 15, "exit gracefully") is assumed. The sigspec is

followed by one or more PIDS to which the signal is to be sent. In the second form with the -l
option, kill lists the valid signal names. If signum (an integer) is present, only the signal name

for that number will be displayed.

Examples

This command displays the signal name SIGTERM, the name of signal 15, and the default

when kill is used to signal processes:

$ kill -l 15
TERM

All of these commands will send SIGTERM to the processes with PIDs 1000 and 1001:

$ kill 1000 1001
$ kill -15 1000 1001
$ kill -SIGTERM 1000 1001
$ kill -sigterm 1000 1001
$ kill -TERM 1000 1001
$ kill -s 15 1000 1001
$ kill -s SIGTERM 1000 1001

If those two processes are playing nicely on your system, they'll comply with the SIGTERM signal
and terminate when they're ready (after they clean up whatever they're doing). Not all processes
will comply, however. A process may be hung in such a way that it cannot respond, or it may have
signal handling code written to trap the signal you're trying to send. To force a process to die, use
the strongest kill:

$ kill -9 1000 1001
$ kill -KILL 1000 1001

These equivalent commands send the KILL signal to the process, which the process cannot ignore.
The process will terminate immediately without closing files or performing any other cleanup.
Because this may leave the program's data in an inconsistent state, using the KILL signal should be
a last resort. When a process is blocked waiting for I/O, such as trying to write to an unavailable
NFS server or waiting for a tape device to complete rewinding, the KILL signal may not work. See
the "Terminating Processes" section.

The httpd daemon will respond to the HUP signal by rereading its configuration files. If you've made
changes and want httpd to reconfigure itself, send it the HUP signal:

$ kill -HUP 'cat /var/run/httpd.pid'

Many other daemons respond to SIGHUP this way.

The back quotes are replaced by the shell with the contents of the file httpd.pid, which httpd creates
when it starts.

On the Exam

Note that kill is used for sending all kinds of signals, not just termination signals. Also,
be aware of the difference between the PID you intend to kill and the signal you wish to
send it. Since they're both integers, they can sometimes be confused.

5.6.4. Terminating Processes

Occasionally, you'll find a system showing symptoms of high CPU load or run out of memory for no
obvious reason. This often means an application has gone out of control on your system. You can
use ps or top to identify processes that may be having a problem. Once you know the PID for the
process, you can use the kill command to stop the process nicely with SIGTERM (kill -15 PID),
escalating the signal to higher strengths if necessary until the process terminates.

Tip: Occasionally you may see a process displayed by ps or top that is listed as a zombie. These are processes that are stuck while trying to

terminate and are appropriately said to be in the zombie state. Just as in the cult classic film Night of the Living Dead, you can't kill zombies,

because they're already dead!If you have a recurring problem with zombies, there may be a bug in your system software or in an application.

Killing a process may also kill all of its child processes. For example, killing a shell may kill all the
processes initiated from that shell, including other shells.

5.6.5. Shell Job Control

Linux and most modern Unix systems offer job control , which is the ability of your shell (with
support of the kernel) to stop and restart executing commands, as well as place them in the
background where they can be executed. A program is said to be in the foreground when it is
attached to your terminal. When executing in the background, you have no input to the process
other than sending it signals. When a process is put in the background, you create a job. Each job is
assigned a job number, starting at 1 and numbering sequentially.

The basic reason to create a background process is to keep your shell session free. There are many
instances when a long-running program will never produce a result from standard output or
standard error, and your shell will simply sit idle waiting for the program to finish. Noninteractive
programs can be placed in the background by adding a & character to the command. For example, if
you start mozilla from the command line, you don't want the shell to sit and wait for it to terminate.
The shell will respond by starting the browser in the background and will give you a new command
prompt. It will also issue the job number, denoted in square brackets, along with the PID. For
example:

$ mozilla &
[1] 1748

Here, Mozilla is started as a background process. Mozilla is assigned to job 1 (as denoted by [1]),
and is assigned PID 1748. If you start a program and forget the & character, you can still put it in the
background by first stopping it by typing Ctrl-Z:

^Z
[1]+ Stopped mozilla

Then issue the bg command to restart the job in the background:

$ bg
[1]+ mozilla &

Tip: When you exit from a shell with jobs in the background, those processes may die. The utility nohup can be used to protect the background

processes from the hangup signal (SIGHUP) that it might otherwise receive when the shell dies. This can be used to simulate the detached

behavior of a system daemon.

Putting interactive programs in the background can be quite useful. Suppose you're logged into a
remote Linux system, running Emacs in text mode. Rather than exit from the editor when you need
to drop back to the shell, you can simply press Ctrl-Z. This stops Emacs, puts it in the background,
and returns you a command prompt.[1] When you are finished, you resume your Emacs session with
the fg command, which puts your stopped job back into the foreground.

[1] This example ignores the fact that Emacs is capable of hosting a shell itself, which would probably eliminate your need to use job

control to get to the command line.

Background jobs and their status can be listed by issuing the jobs command. Stopped jobs can be
brought to the foreground with the fg command and optionally placed into the background with the
Ctrl-Z and bg sequence.

Syntax

bg [jobspec]

Description

Place jobspec in the background, as if it had been started with &. If jobspec is not present,

then the shell's notion of the current job is used, as indicated by the plus sign (+) in output
from the jobs command. Using this command on a job that is stopped will allow it to run in the
background.

Syntax

fg [jobspec]

Description

This command places the specified job in the foreground, making it the current job. If jobspec

is not present, the shell's notion of the current job is used.

Syntax

jobs [options] [jobspecs]

Description

List the active jobs. The optional jobspecs argument restricts output to information about

those jobs.

Frequently used option

-l

Also list PIDs.

On the Exam

Be sure to know how to display background jobs and how to switch among them.

5.7. Objective 6: Modify Process Execution Priorities

One of the features of Linux is that the administrator has the ability to prioritize process execution.
This feature is handy when you have a high load machine and want to make sure special processes
(like yours!) get more rights to use system resources than others. It also is useful if you have a
process that's gone haywire and you want to debug the problem prior to killing it. On the flip side,
you can bury non-essential processes giving them the lowest priority so they don't ever conflict with
other processes. (Particularly useful when participating in experiments to search for extraterrestrial
intelligence with SETI@home.)

Generally, on a day-to-day basis, you don't need to worry about execution priority because the
kernel handles it automatically. Each process's priority level is constantly and dynamically raised
and lowered by the kernel according to a number of parameters, such as how much system time it
has already consumed and its status (perhaps waiting for I/Osuch processes are favored by the
kernel). Linux gives you the ability to bias the kernel's priority algorithm, favoring certain processes
over others.

The priority of a process can be determined by examining the PRI column in the results produced
from issuing either the top or ps -l commands. The values displayed are relative; the higher the
priority number, the more CPU time the kernel offers to the process. The kernel does this by
managing a queue of processes. Those with high priority are given more time, and those with low
priority are given less time. On a heavily loaded system, a process with a very low priority may
appear stalled.

5.7.1. nice

One of the parameters used by the kernel to assign process priority is supplied by the user and is
called a nice number. The nice command [*] is used to assign a priority number to the process. It is
so named because it normally causes programs to execute with lower priority levels than with their
default. Thus, the process is being "nice" to other processes on the system by yielding CPU time.
With this scheme, more "niceness" implies a lower priority, and less niceness implies a higher
priority.

[*] Some shells, not including bash, have a built-in nice command.

By default, user processes are created with a nice number of zero. Positive numbers lower the
priority relative to other processes, and negative numbers raise it. For example, if you have a long-
running utility and don't want to impact interactive performance, a positive nice number will lower
the job's priority and improve interactive performance.

Nice numbers range from -20 to +19. Any user can start a process with a positive nice number, but
only the superuser (root) can lower a process's nice number and thus raise its priority.

Syntax

nice [-n adjustment] [command]

nice [-adjustment] [command]

Description

The nice command is used to alter another command's nice number at start time. For normal
users, adjustment is an integer from 1 to 19. If you're the superuser, the adjustment range is
from -20 to 19. If an adjustment number is not specified, the process's nice number defaults
to 10. The command consists of any command that you might enter on the command line,

including all options, arguments, redirections, and the background character &.

If both adjustment and command are omitted, nice displays the current scheduling priority,

which is inherited.

Example 1

The following command starts a program in the background with reduced priority, using the
default nice number of 10:

$ nice somecmd -opt1 -opt2 arg1 arg2 &

Example 2

As superuser, you can start programs with elevated priority. These equivalent commands start
the vi editor with a higher priority, which may be necessary for administrative purposes if the
system is exceptionally slow:

nice --10 vi /etc/hosts.deny
nice -n -10 vi /etc/hosts.deny

Note the double dash (--10) in the first form. The first dash indicates that an option follows, while
the second dash indicates a negative number.

Be careful when using nice on interactive programs such as editors, word processors, or browsers.
Assigning a program a positive nice number will most likely result in sluggish performance.
Remember, the higher the positive number, the lower the resulting priority level.

For that reason, you should try not to assign positive nice numbers to foreground jobs on your
terminal. If the system gets busy, your terminal could hang awaiting CPU time, which has been
sacrificed by nice.

Changing nice numbers on running processes

The nice command works to change the nice number for new processes only at the time that
they're started. To modify a running program, use the renice command.

Syntax

renice [+|-]nicenumber [option] targets

Description

Alter the nicenumber to set the scheduling priority of one or more running target processes.
By default, renice assumes that the targets are numeric PIDs. One or more options may also
be used to interpret targets as processes owned by specific users.

Frequently used options

-u

Interpret targets as usernames, affecting all processes owned by those users.

-p

Interpret targets as PIDs (the default).

Examples

This command will lower the priority of the process with PID 501 by increasing its nice number
to the maximum:

$ renice 20 501

The following command can be used to increase the priority of all of user jdean's processes as well

as the process with PID 501:

renice -10 -u jdean -p 501

In this command, -10 indicates a nice value of negative 10, thus giving PID 501 a higher priority on
the system. A dash isn't used for the nice value because the dash could be confused for an option,
such as -u.

On the Exam

Be sure to know the range and meaning of nice numbers and how to change them for
new and existing processes. Also note that nice and renice specify their numbers
differently. With nice, a leading dash can indicate a nice number (e.g., -10), including a
negative one with a second dash (e.g., --10). On the other hand, renice does not need
the dash.

You can renice processes interactively using top's text interface by using the single-keystroke r
command. You will be prompted for the PID of the process whose nice number you wish to change
and for the new nice number. If you are the superuser, you can enter negative values. The new nice
number will be displayed by top in the column labeled NI for the process you specify.

5.8. Objective 7: Search Text Files Using Regular
Expressions

Linux offers many tools for system administrators to use for processing text. Many, such as sed,
awk, and perl, are capable of automatically editing multiple files, providing you with a wide range of
text-processing capability. To harness that capability, you need to be able to define and delineate
specific text segments from within files, text streams, and string variables. Once the text you're after
is identified, you can use one of these tools or languages to do useful things to it.

These tools and others understand a loosely defined pattern language. The language and the
patterns themselves are collectively called regular expressions (often abbreviated just regexp or
regex). While regular expressions are similar in concept to file globs, many more special characters
exist for regular expressions, extending the utility and capability of tools that understand them.

Two tools that are important for the LPIC Level 1 exams and that make use of regular expressions
are grep and sed. These tools are useful for text searches. There are many other tools that make use
of regular expressions, including the awk, Perl, and Python languages and other utilities, but you
don't need to be concerned with them for the purpose of the LPIC Level 1 exams.

Regular expressions are the topic of entire books, such as Mastering Regular Expressions (O'Reilly).
Exam 101 requires the use of simple regular expressions and related tools, specifically to perform
searches from text sources. This section covers only the basics of regular expressions, but it goes
without saying that their power warrants a full understanding. Digging deeper into the regular
expression world is highly recommended when you have the chance.

5.8.1. Regular Expression Syntax

It would not be unreasonable to assume that some specification defines how regular expressions are
constructed. Unfortunately, there isn't one. Regular expressions have been incorporated as a feature
in a number of tools over the years, with varying degrees of consistency and completeness. The
result is a cart-before-the-horse scenario, in which utilities and languages have defined their own
flavor of regular expression syntax , each with its own extensions and idiosyncrasies. Formally
defining the regular expression syntax came later, as did efforts to make it more consistent. Regular
expressions are defined by arranging strings of text, or patterns. Those patterns are composed of
two types of characters, literals (plain text or literal text) and metacharacters.

Like the special file globbing characters, regular expression metacharacters take on a special
meaning in the context of the tool in which they're used. There are a few metacharacters that are
generally thought of to be among the "extended set" of metacharacters, specifically those introduced
into egrep after grep was created.

The egrep command on Linux systems is simply a wrapper that runs grep -E. Examples of
metacharacters include the ^ symbol, which means "the beginning of a line," and the $ symbol,
which means "the end of a line." A complete listing of metacharacters follows in Tables Tables 5-6,
5-7, and 5-8.

Tip: The backslash character (\) turns off (escapes) the special meaning of the character that follows, turning metacharacters into literals. For

non-metacharacters, it often turns on some special meaning.

Table 5-6. Regular expression position anchors

Regular
expression Description

^ Match at the beginning of a line. This interpretation makes sense only when the ^
character is at the left-hand side of the regex.

$ Match at the end of a line. This interpretation makes sense only when the $
character is at the right-hand side of the regex.

\<\> Match word boundaries. Word boundaries are defined as whitespace, the start of
line, the end of line, or punctuation marks. The backslashes are required and
enable this interpretation of < and >.

Table 5-7. Regular expression character sets

Regular
expression Description

[abc][a-z] Single-character groups and ranges. In the first form, match any single character
from among the enclosed characters a, b, or c. In the second form, match any
single character from among the range of characters bounded by a and z (POSIX
character classes can also be used, so [a-z] can be replaced with [[:lower:]]). The
brackets are for grouping only and are not matched themselves.

[^abc][^a-z] Inverse match. Match any single character not among the enclosed characters a, b,
and c or in the range a-z. Be careful not to confuse this inversion with the anchor
character ^, described earlier.

. Match any single character except a newline.

Table 5-8. Regular expression modifiers

Basic regular
expression

Extended
regular
expression
(egrep) Description

* * Match an unknown number (zero or more) of the single
character (or single-character regex) that precedes it.

\? ? Match zero or one instance of the preceding regex.

\+ + Match one or more instances of the preceding regex.

Basic regular
expression

Extended
regular
expression
(egrep) Description

\{n,m\} {n,m} Match a range of occurrences of the single character or regex
that precedes this construct. \{n\} matches n occurrences,
\{n,\} matches at least n occurrences, and \{n,m\} matches
any number of occurrences from n to m, inclusively.

\| | Alternation. Match either the regex specified before or after the

vertical bar.

\(regex\) (regex) Grouping. Matches regex, but it can be modified as a whole

and used in back-references. (\1 expands to the contents of
the first \(\) and so on up to \9.)

It is often helpful to consider regular expressions as their own language, where literal text acts as
words and phrases. The "grammar" of the language is defined by the use of metacharacters. The
two are combined according to specific rules (which, as mentioned earlier, may differ slightly among
various tools) to communicate ideas and get real work done. When you construct regular
expressions, you use metacharacters and literals to specify three basic ideas about your input text:

Position anchors

A position anchor is used to specify the position of one or more character sets in relation to the
entire line of text (such as the beginning of a line).

Character sets

A character set matches text. It could be a series of literals, metacharacters that match
individual or multiple characters, or combinations of these.

Quantity modifiers

Quantity modifiers follow a character set and indicate the number of times the set should be
repeated.

Using grep

A long time ago, as the idea of regular expressions was catching on, the line editor ed
contained a command to display lines of a file being edited that matched a given regular
expression. The command is:

g/regular expression/p

That is, "on a global basis, print the current line when a match for regular expression is found," or

more simply, "global regular expression print." This function was so useful that it was made into a
standalone utility named, appropriately, grep. Later, the regular expression grammar of grep was
expanded in a new command called egrep (for "extended grep"). You'll find both commands on your

\{n,m\} {n,m} Match a range of occurrences of the single character or regex
that precedes this construct. \{n\} matches n occurrences,
\{n,\} matches at least n occurrences, and \{n,m\} matches
any number of occurrences from n to m, inclusively.

\| | Alternation. Match either the regex specified before or after the

vertical bar.

\(regex\) (regex) Grouping. Matches regex, but it can be modified as a whole

and used in back-references. (\1 expands to the contents of
the first \(\) and so on up to \9.)

It is often helpful to consider regular expressions as their own language, where literal text acts as
words and phrases. The "grammar" of the language is defined by the use of metacharacters. The
two are combined according to specific rules (which, as mentioned earlier, may differ slightly among
various tools) to communicate ideas and get real work done. When you construct regular
expressions, you use metacharacters and literals to specify three basic ideas about your input text:

Position anchors

A position anchor is used to specify the position of one or more character sets in relation to the
entire line of text (such as the beginning of a line).

Character sets

A character set matches text. It could be a series of literals, metacharacters that match
individual or multiple characters, or combinations of these.

Quantity modifiers

Quantity modifiers follow a character set and indicate the number of times the set should be
repeated.

Using grep

A long time ago, as the idea of regular expressions was catching on, the line editor ed
contained a command to display lines of a file being edited that matched a given regular
expression. The command is:

g/regular expression/p

That is, "on a global basis, print the current line when a match for regular expression is found," or

more simply, "global regular expression print." This function was so useful that it was made into a
standalone utility named, appropriately, grep. Later, the regular expression grammar of grep was
expanded in a new command called egrep (for "extended grep"). You'll find both commands on your

Linux system today, and they differ slightly in the way they handle regular expressions. For the
purposes of Exam 101, we'll stick with grep, which can also make use of the "extended" regular
expressions when used with the -E option. You will find some form of grep on just about every Unix
or Unix-like system available.

Syntax

grep [options

] regex [files]

Description

Search files or standard input for lines containing a match to regular expression regex. By

default, matching lines will be displayed and nonmatching lines will not be displayed. When
multiple files are specified, grep displays the filename as a prefix to the output lines (use the -
h option to suppress filename prefixes).

Frequently used options

-c

Display only a count of matched lines, but not the lines themselves.

-h

Display matched lines, but do not include filenames for multiple file input.

-i

Ignore uppercase and lowercase distinctions, allowing abc to match both abc and ABC.

-n

Display matched lines prefixed with their line numbers. When used with multiple files,
both the filename and line number are prefixed.

-v

Print all lines that do not match regex. This is an important and useful option. You'll

want to use regular expressions, not only to select information but also to eliminate
information. Using -v inverts the output this way.

-E

Interpret regex as an extended regular expression. This makes grep behave as if it were

egrep.

5.8.1.1. Examples

Since regular expressions can contain both metacharacters and literals, grep can be used with an
entirely literal regex. For example, to find all lines in file1 that contain either Linux or linux, you

could use grep like this:

$ grep -i linux file1

In this example, the regex is simply linux. The uppercase L in Linux will match since the command-

line option -i was specified. This is fine for literal expressions that are common. However, in
situations in which regex includes regular expression metacharacters that are also shell special
characters (such as $ or *), the regex must be quoted to prevent shell expansion and pass the

metacharacters on to grep.

As a simplistic example of this, suppose you have files in your local directory named abc, abc1, and
abc2. When combined with bash's echo built-in command, the abc* wildcard expression lists all files
that begin with abc, as follows:

$ echo abc*

abc abc1 abc2

Now, suppose that these files contain lines with the strings abc, abcc, abccc, and so on, and you
wish to use grep to find them. You can use the shell wildcard expression abc* to expand to all the
files that start with abc as displayed with echo above, and you'd use an identical regular expression
abc* to find all occurrences of lines containing abc, abcc, abccc, etc. Without using quotes to
prevent shell expansion, the command would be:

$ grep abc* abc*

After shell expansion, this yields:

grep abc abc1 abc2 abc abc1 abc2 no!

This is not what you intended! grep would search for the literal expression abc, because it appears
as the first command argument. Instead, quote the regular expression with single or double quotes
to protect it (the difference between single quotes and double quotes on the command line is subtle
and is explained later in this section):

$ grep 'abc*' abc*

or:

$ grep "abc*" abc*

After expansion, both examples yield the same results:

grep abc* abc abc1 abc2

Now this is what you're after. The three files abc, abc1, and abc2 will be searched for the regular
expression abc*. It is good to stay in the habit of quoting regular expressions on the command line
to avoid these problemsthey won't be at all obvious because the shell expansion is invisible to you
unless you use the echo command.

On the Exam

The use of grep and its options is common. You should be familiar with what each
option does, as well as the concept of piping the results of other commands into grep
for matching.

5.8.2. Using sed

sed, the stream editor, is a powerful filtering program found on nearly every Unix system. The sed
utility is usually used either to automate repetitive editing tasks or to process text in pipes of Unix
commands (see "Objective 4: Use Streams, Pipes, and Redirects," earlier in this chapter). The
scripts that sed executes can be single commands or more complex lists of editing instructions.

Syntax

sed [options] 'command1' [files]

sed [options] -e 'command1' [-e 'command2'...] [files]

sed [options] -f script [files]

Description

The first form invokes sed with a one-line command1. The second form invokes sed with two (or

more) commands. Note that in this case the -e parameter is required for each command
specified. The commands are specified in quotes to prevent the shell from interpreting and
expanding them. The last form instructs sed to take editing commands from file script (which
does not need to be executable). In all cases, if files are not specified, input is taken from
standard input. If multiple files are specified, the edited output of each successive file is

concatenated.

Frequently used options

-ecmd

The -e option specifies that the next argument (cmd) is a sed command (or a series of

commands). When specifying only one string of commands, the -e is optional.

-f file

file is a sed script.

-g

Treat all substitutions as global.

The sed utility operates on text through the use of addresses and editing commands. The
address is used to locate lines of text to be operated on, and editing commands modify text.
During operation, each line (that is, text separated by newline characters) of input to sed is
processed individually and without regard to adjacent lines. If multiple editing commands are
to be used (through the use of a script file or multiple -e options), they are all applied in order
to each line before moving on to the next line.

Addressing

Addresses in sed locate lines of text to which commands will be applied. The addresses can
be:

A line number (note that sed counts lines continuously across multiple input files). The
symbol $ can be used to indicate the last line of input. A range of line numbers can be
given by separating the starting and ending lines with a comma (start,end), so for

example the address for all input would be 1,$.

A regular expression delimited by forward slashes (/regex/).

A line number with an interval. The form is n~s, where n is the starting line number and s

is the step, or interval, to apply. For example, to match every odd line in the input, the
address specification would be 1~2 (start at line 1 and match every two lines thereafter).
This feature is a GNU extension to sed.

If no address is given, commands are applied to all input lines by default. Any address may be
followed by the ! character, and commands are applied to lines that do not match the address.

5.8.2.1. Commands

The sed command immediately follows the address specification if present. Commands generally
consist of a single letter or symbol, unless they have arguments. Following are some basic sed
editing commands to get you started.

d

Delete lines.

s

Make substitutions. This is a very popular sed command. The syntax is as follows:

s/pattern/replacement/[flags]

The following flags can be specified for the s command:

g

Replace all instances of pattern, not just the first.

n

Replace nth instance of pattern; the default is 1.

p

Print the line if a successful substitution is done. Generally used with the -n command-line
option.

w file

Print the line to file if a successful substitution is done.

y

Translate characters. This command works in a fashion similar to the tr command, described
earlier.

Example 1

Delete lines 3 through 5 of file1:

$ sed '3,5d' file1

Example 2

Delete lines of file1 that contain a # at the beginning of the line:

$ sed '/^#/d' file1

Example 3

Translate characters:

y/abc/xyz/

Every instance of a is translated to x, b to y, and c to z.

Example 4

Write the @ symbol for all empty lines in file1 (that is, lines with only a newline character but
nothing more):

$ sed 's/^$/@/' file1

Example 5

Remove all double quotation marks from all lines in file1:

$ sed 's/"//g' file1

Example 6

Using sed commands from external file sedcmds, replace the third and fourth double quotation
marks with (and) on lines 1 through 10 in file1. Make no changes from line 11 to the end of
the file. Script file sedcmds contains:

1,10{
s/"/(/3
s/"/)/4
}

The command is executed using the -f option:

$ sed -f sedcmds file1

This example employs the positional flag for the s (substitute) command. The first of the two
commands substitutes (for the third double-quote character. The next command substitutes) for
the fourth double-quote character. Note, however, that the position count is interpreted
independently for each subsequent command in the script. This is important because each command
operates on the results of the commands preceding it. In this example, since the third double quote
has been replaced with (, it is no longer counted as a double quote by the second command. Thus,
the second command will operate on the fifth double quote character in the original file1. If the
input line starts out with the following:

""""""

after the first command, which operates on the third double quote, the result is this:

""("""

At this point, the numbering of the double-quote characters has changed, and the fourth double
quote in the line is now the fifth character. Thus, after the second command executes, the output is
as follows:

""(")"

As you can see, creating scripts with sed requires that the sequential nature of the command
execution be kept in mind.

If you find yourself making repetitive changes to many files on a regular basis, a sed script is
probably warranted. Many more commands are available in sed than are listed here.

5.8.3. Examples

Now that the gory details are out of the way, here are some examples of simple regular expression
usage that you may find useful.

5.8.3.1. Anchors

Anchors are used to describe position information. Table 5-6 lists anchor characters.

Example 1

Display all lines from file1 where the string Linux appears at the start of the line:

$ grep '^Linux' file1

Example 2

Display lines in file1 where the last character is an x:

$ grep 'x$' file1

Display the number of empty lines in file1 by finding lines with nothing between the beginning and
the end:

$ grep -c '^$' file1

Display all lines from file1 containing only the word null by itself:

$ grep '^null$' file1

5.8.3.2. Groups and ranges

Characters can be placed into groups and ranges to make regular expressions more efficient, as
shown in Table 5-7.

Example 1

Display all lines from file1 containing Linux, linux, TurboLinux, and so on:

$ grep '[Ll]inux' file1

Example 2

Display all lines from file1 which contain three adjacent digits:

$ grep '[0-9][0-9][0-9]' file1

Example 3

Display all lines from file1 beginning with any single character other than a digit:

$ grep '^[^0-9]' file1

Example 4

Display all lines from file1 that contain the whole word Linux or linux, but not LinuxOS or
TurboLinux:

$ grep '\<[Ll]inux\>' file1

Example 5

Display all lines from file1 with five or more characters on a line (excluding the newline
character):

$ grep '.....' file1

Example 6

Display all nonblank lines from file1 (i.e., that have at least one character):

$ grep '.' file1

Example 7

Display all lines from file1 that contain a period (normally a metacharacter) using an escape:

$ grep '\.' file1

5.8.3.3. Modifiers

Modifiers change the meaning of other characters in a regular expression. Table 5-8 lists these
modifiers .

Example 1

Display all lines from file1 that contain ab, abc, abcc, abccc, and so on:

$ grep 'abc*' file1

Example 2

Display all lines from file1 that contain abc, abcc, abccc, and so on, but not ab:

$ grep 'abcc*' file1

Example 3

Display all lines from file1 that contain two or more adjacent digits:

$ grep '[0-9][0-9][0-9]*' file1

or:

$ grep '[0-9]\{2,\}' file1

Example 4

Display lines from file1 that contain file (because ? can match zero occurrences), file1, or
file2:

$ grep 'file[12]\?' file1

Example 5

Display all lines from file1 containing at least one digit:

$ grep '[0-9]\+' file1

Example 6

Display all lines from file1 that contain 111, 1111, or 11111 on a line by itself:

$ grep '^1\{3,5\}$' file1

Example 7

Display all lines from file1 that contain any three-, four-, or five-digit number:

$ grep '\<[0-9]\{3,5\}\>' file1

Example 8

Display all lines from file1 that contain Happy, happy, Sad, sad, Angry, or angry:

$ grep -E '[Hh]appy|[Ss]ad|[Aa]ngry' file1

Example 9

Display all lines of file that contain any repeated sequence of abc (abcabc, abcabcabc, and so
on):

$ grep '\(abc\)\{2,\}' file

5.8.3.4. Basic regular expression patterns

Example 1

Match any letter:

[A-Za-z]

Example 2

Match any symbol (not a letter or digit):

[^0-9A-Za-z]

Example 3

Match an uppercase letter, followed by zero or more lowercase letters:

[A-Z][a-z]*

Example 4

Match a U.S. Social Security Number (123-45-6789) by specifying groups of three, two, and
four digits separated by dashes:

[0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}

Example 5

Match a dollar amount, using an escaped dollar sign, zero or more spaces or digits, an
escaped period, and two more digits:

\$[0-9]*\.[0-9]\{2\}

Example 6

Match the month of June and its abbreviation, Jun. The question mark matches zero or one
instance of the e:

June\?

On the Exam

Make certain you are clear about the difference between file globbing and the use of
regular expressions.

5.8.3.5. Using regular expressions as addresses in sed

These examples are commands you would issue to sed. For example, the commands could take the
place of command1 in this usage:

$ sed [options] 'command1 '

[files]

These commands could also appear in a standalone sed script.

Example 1

Delete blank lines:

/^$/d

Example 2

Delete any line that doesn't contain #keepme::

/#keepme/!d

Example 3

Delete lines containing only whitespace (spaces or tabs). In this example, Tab means the
single tab character and is preceded by a single space:

/^[Tab]*$/d

Because GNU sed also supports character classes, this example could be written as follows:

/^[[:blank:]]*$/d

Example 4

Delete lines beginning with periods or pound signs:

/^[\.#]/d

Example 5

Substitute a single space for any number of spaces wherever they occur on the line:

s/ */ /g

or

s/ \{2,\}/ /g

Example 6

Substitute def for abc from line 11 to 20, wherever it occurs on the line:

11,20s/abc/def/g

Example 7

Translate the characters a, b, and c to the @ character from line 11 to 20, wherever they
occur on the line:

11,20y/abc/@@@/

5.9. Objective 8: Perform Basic File Editing Operations
Using vi

vi is perhaps the most ubiquitous text editor available on Linux systems. Since most system
administration tasks eventually require editing text files, being able to work effectively in vi
essential.

This Objective concentrates on a subset of vi functionality. Learning the vi Editor (O'Reilly) is an
indispensable reference for anyone interested in learning more about vi and the enhancements
available in the various implementations of vi. There is also a large amount of documentation
available at http://vimdoc.sourceforge.net and http://www.vim.org for the popular vi
implementation Vim, most of which is applicable to any version of vi.

5.9.1. Invoking vi

To start vi, simply execute it. You will be editing a temporary file. To directly edit one or more files,
give the names of the files on the command line:

$ vi file1.txt file2.txt

You are presented with a main window showing the contents of file1.txt, or if the specified files don't
already exist, a blank screen with tilde (~) characters running the length of the left column (they
indicate areas of the screen containing no text, not even blank lines).

5.9.2. vi Basics

The vi editor has two modes of operation: command or insert. In command mode, vi allows you to
navigate around your file and enter commands. To enter new text, put vi into insert mode. In
command mode, the keyboard keys are interpreted as vi commands instead of text. The convenience
of being able to manipulate the editor without moving your hands from the keyboard is considered
one of vi's strengths.

Commands are brief, case-sensitive combinations of one or more letters. For example, to switch
from command to insert mode, press the i key. To terminate insert mode, press the Escape key
(Esc), which puts you back in command mode.

Almost any command can be prefixed with a number to repeat the command that number of times.
For example, r will replace the character at the current cursor position. To replace exactly 10
characters, use 10r.

http://vimdoc.sourceforge.net
http://www.vim.org

Table 5-9. vi commands

Key
command Description

h Move left one character.

j Move down one line.

k Move up one line.

l Move right one character.

H Move to the top of the screen.

L Move to the bottom of the screen.

G Move to the end of the file.

w Move forward one word.

b Move backward one word.

0 (zero) Move to the beginning of the current line.

^ Move to the first non-whitespace character on the current line.

$ Move to the end of the current line.

Ctrl-B Move up (back) one screen.

Ctrl-F Move down (forward) one screen.

i Insert at the current cursor position.

I Insert at the beginning of the current line.

a Append after the current cursor position.

A Append to the end of the current line.

o Start a new line after the current line.

O Start a new line before the current line.

r Replace the character at the current cursor position.

R Start replacing (overwriting) at the current cursor position.

x Delete the character at the current cursor position.

X Delete the character immediately before (to the left) of the current cursor position.

s Delete the character at the current cursor position and go into insert mode. (This is
the equivalent of the combination xi.)

S Delete the contents of the current line and go into insert mode.

dX Given a movement command X, cut (delete) the appropriate number of characters,

words, or lines from the current cursor position.

dd Cut the entire current line.

D Cut from the current cursor position to the end of the line. (This is equivalent to d$.)

cX Given a movement command X, cut the appropriate number of characters, words, or

lines from the current cursor position and go into insert mode.

cc Cut the entire current line and go into insert mode.

Key
command Description

C Cut from the current cursor position to the end of the line and enter insert mode.
(This is equivalent to c$.)

yX Given a movement command X, copy (yank[a]) the appropriate number of

characters, words, or lines from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.[b]

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite
direction.)

:n Next file; when multiple files are specified for editing, this command loads the next
file. Force this action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force
the write (when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.

[a]

[b]

[a] Emacs users should be careful not to confuse the vi definition of yank (copy) with that of Emacs (paste).

[b] Many of the popular vi implementations support multi-level undo. Vim breaks compatibility with traditional vi by making a repeated u

perform another level of undo. Nvi uses . after u to do multi-level undo, and, like traditional vi, uses a repeated u to redo (undo the undo,

so to speak). This can cause some confusion when moving between Linux distributions that have different default implementations of vi.

Tip: Keep in mind that this is not a complete list, but it is not necessary to know every vi command to use it effectively. In fact, even after using

vi as your only editor for years, you may find yourself only using a small subset of the available commands.

There is a pattern in vi's keyboard commands that makes them easier to remember. For every
lowercase character that has some action assigned to it, the same uppercase character usually has
some related action assigned to it. As an example, i and I both put vi in insert mode, at the current
cursor position and at the beginning of the line respectively.

C Cut from the current cursor position to the end of the line and enter insert mode.
(This is equivalent to c$.)

yX Given a movement command X, copy (yank[a]) the appropriate number of

characters, words, or lines from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.[b]

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite
direction.)

:n Next file; when multiple files are specified for editing, this command loads the next
file. Force this action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force
the write (when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.

[a]

[b]

[a] Emacs users should be careful not to confuse the vi definition of yank (copy) with that of Emacs (paste).

[b] Many of the popular vi implementations support multi-level undo. Vim breaks compatibility with traditional vi by making a repeated u

perform another level of undo. Nvi uses . after u to do multi-level undo, and, like traditional vi, uses a repeated u to redo (undo the undo,

so to speak). This can cause some confusion when moving between Linux distributions that have different default implementations of vi.

Tip: Keep in mind that this is not a complete list, but it is not necessary to know every vi command to use it effectively. In fact, even after using

vi as your only editor for years, you may find yourself only using a small subset of the available commands.

There is a pattern in vi's keyboard commands that makes them easier to remember. For every
lowercase character that has some action assigned to it, the same uppercase character usually has
some related action assigned to it. As an example, i and I both put vi in insert mode, at the current
cursor position and at the beginning of the line respectively.

On the Exam

You'll need to be familiar with vi's command and insert modes, how to switch between
them, and how to perform basic navigation and editing tasks.

Chapter 6. Devices, Linux Filesystems, and
the Filesystem Hierarchy Standard (Topic
1.104)
Filesystem management is among the most critical activities that you must perform to maintain a
stable Linux system. In simple situations, after a successful installation, you may never have a
problem or need to manage filesystem specifics. However, understanding how to configure and
maintain Linux filesystems is essential to safely manage your system and to pass Exam 101. This
section contains the following Objectives:

Objective 1: Create Partitions and Filesystems

This Objective states that an LPIC 1 candidate should be able to configure disk partitions and
create filesystems on media such as hard disks. It also includes using various mkfs commands
to set up partitions to filesystems such as ext2, ext3, reiserfs, vfat, and xfs. Weight: 3.

Objective 2: Maintain the Integrity of Filesystems

A candidate should be able to verify the intergrity of filesystems, monitor free space and
inodes, and repair simple filesystem problems. This Objective includes the commands required
to maintain a standard filesystem as well as the extra data associated with a journaling
filesystem. Weight: 3.

Objective 3: Control Filesystem Mounting and Unmounting

Candidates should be able to manually mount and unmount filesystems, configure filesystem
mounting on system boot, and configure user mountable removeable filesystems such as tape
drives, floppies, and CDs. Weight: 3.

Objective 4: Managing Disk Quotas

This Objective includes managing disk quotas for system users. You should be able to set up a
disk quota for a filesystem, edit, check, and generate user quota reports. Weight: 3.

Objective 5: Use File Permissions to Control Access to Files

Candidates should be able to control file access through file permissions. This Objective
includes access permissions on regular and special files as well as directories. Also included
are access modes such as suid, sgid, and the sticky bit. You should also be aware of the use of
the group field to grant file access to workgroups, the immutable flag, and the default file
creation mode. Weight: 5.

Objective 6: Manage File Ownership

An LPIC 1 candidate should be able to control user and group ownership of files. This Objective
includes the ability to change the user and group owner of a file as well as the default group
owner for new files. Weight: 1.

Objective 7: Create and Change Hard and Symbolic Links

Candidates should be able to create and manage hard and symbolic links to a file. This
Objective includes the ability to create and identify links, copy files through links, and use
linked files to support system administration tasks. Weight: 1.

Objective 8: Find System Files and Place Files in the Correct Location

This Objective states that candidates should be thoroughly familiar with the FHS, including
typical file locations and directory classifications. This includes the ability to find files and
commands on a Linux System. Weight: 5.

6.1. Objective 1: Create Partitions and Filesystems

The term filesystem refers to two different things. First, it can mean the way files and directories are
physically structured on a disk or other storage medium. Linux supports many different filesystems
(in this sense of the word), including ext2 and ext3, the non-journalled and journalled (respectively)
native filesystems; msdos or vfat, the native MS-DOS and Windows (respectively) filesystems; JFS,
a filesystem used on OS/2 and AIX; XFS, the native IRIX filesystem; and many, many others.

In the second sense of the word, it refers to the structure and contents of some storage medium. To
view the contents of a filesystem (in this sense of the word) on a Linux system, the device must be
mounted, or attached to the hierarchical directory structure on the system. Much of the strength and
flexibility of Linux (and Unix) comes from the ability to mount any filesystem that it supports,
whether that filesystem is somewhere remote on the network or on a locally-attached disk,
anywhere in its directory structure, in a way that is completely transparent to users. For example,
the files under /usr will work equally well whether they are on a disk attached to the system or
mounted from a master server. Even the / (root) filesystem can be located on a distant server if the
system is properly configured.

6.1.1. Disk Drives Under Linux

Linux supports many types of disk devices and formats. Any SCSI or IDE hard disk will work with
Linux, as will floppy disks, CD-ROMs, CD-Rs, Zip and Jaz disks, and other types of removable media.
These media can contain the standard Linux ext2 filesystem, FAT, FAT32, NTFS, as well as other
filesystem types. This flexibility makes Linux coexist nicely with other operating systems on
multiboot systems.

The most commonly found hard disks on PCs are IDE drives. These disks feature a relatively simple
system interface, and most of the "smarts" of the disk are onboard the disk itself. The IDE standard
allows disk manufacturers to sell their product at a very competitive price, expanding their markets
to more consumers and limited budget commercial customers.

A single IDE interface is capable of attaching two disk drives to a system. One device is named
master and the other is the slave. Most PCs have a primary and secondary IDE interface. Together,
these interfaces allow up to four devices (primary master, primary slave, secondary master, and
secondary slave).

Also used on PCs are SCSI drives. SCSI is an older standard for connecting peripherals; however,
modern SCSI versions are quite fast and flexible. Typically, SCSI devices are used for their increased
speed and reliability in large-scale and high-end server environments. With the increased speeds,
however, come increased pricesoften two to five times the price of their IDE counterparts.

Compared to IDE, SCSI offers excellent performance, lower CPU utilization, and a much more
flexible connection scheme capable of handling up to 15 devices on a single bus. These conveniences
allow SCSI systems to grow as space requirements increase without major hardware
reconfiguration.

6.1.1.1. Hard disk devices

By default, Linux defines IDE device files as follows:

/dev/hda

Primary master IDE (often the hard disk)

/dev/hdb

Primary slave IDE

/dev/hdc

Secondary master IDE (often a CD-ROM)

/dev/hdd

Secondary slave IDE

SCSI device files are similar, except that there is no four-device limitation:

/dev/sda

First SCSI drive

/dev/sdb

Second SCSI drive

/dev/sdc

Third SCSI drive (and so on)

Under Linux, a typical PC with a single hard disk on the primary IDE interface and a single CD-ROM
on the secondary IDE interface would have disk drive /dev/hda and CD-ROM /dev/hdc.

On the Exam

You should be prepared to identify IDE and SCSI devices based on their device
filenames.

6.1.1.2. Disk partitions

Almost every operating system supports a system for dividing a disk into logical devices, called

partitions. Other terms for the same basic concept are slices and logical volumes, although logical
volumes generally also imply the ability to span physical disks. Linux supports several different
partitioning formats, but by default it uses the MS-DOS format. The MS-DOS partition table allows
for up to four primary partitions. One of these four primary partitions can be replaced with an
extended partition, which can contain up to 12 logical partitions, for a total of 15 possible usable
partitions (16 if you count the extended partition "container," but it is not usable for data).

The type of partition (as well as the type of device) affects the name of the device Linux uses to
access the partition.

Primary partitions

This type of partition contains a filesystem. If all four primary partitions exist on an IDE drive,
they are numbered as follows:

/dev/hda1

/dev/hda2

/dev/hda3

/dev/hda4

One of these primary partitions may be marked active, in which case the PC BIOS will be able
to select it for boot.

Extended partitions

An extended partition is a variant of the primary partition but cannot contain a filesystem.
Instead, it contains logical partitions. Only one extended partition may exist on a single
physical disk. For example, the partitions on a disk with one primary partition and the sole
extended partition might be numbered as follows:

/dev/hda1 (primary)

/dev/hda2 (extended)

Logical partitions

Logical partitions exist within the extended partition. Logical partitions are numbered from 5
to 16. The partitions on a disk with one primary partition, one extended partition, and four
logical partitions might be numbered as follows:

/dev/hda1 (primary)

/dev/hda2 (extended)

/dev/hda5 (logical)

/dev/hda6 (logical)

/dev/hda7 (logical)

/dev/hda8 (logical)

If the above partitions were made on a SCSI drive, the hda would be replaced by sda such as
/dev/sda2.

On the Exam

Be sure that you understand how partition numbering works. In particular, pay
attention to the differences in numbering between primary, extended, and logical
partitions.

6.1.1.3. The root filesystem and mount points

As a Linux system boots, the first filesystem that becomes available is the top level, or root
filesystem, denoted with a single forward slash. The root filesystem /, also known as root directory,
shouldn't be confused with the root superuser account or the superuser's home directory, /root. The
distinct directories / and /root are unrelated and are not required to share the same filesystem. In a
simple installation, the root filesystem could contain nearly everything on the system. However, such
an arrangement could lead to system failure if the root filesystem fills to capacity. Instead, multiple
partitions are typically defined, each containing one of the directories under /. As the Linux kernel
boots, the partitions are mounted to the root filesystem, and together create a single unified
filesystem (see "Objective 3: Control Filesystem Mounting and Unmounting" later in this chapter for
a discussion about mounting). Everything on the system that is not stored in a mounted partition is
stored locally in the / (root) partition. The mounted filesystems are placed on separate partitions
and possibly multiple disk drives.

The choice of which directories are placed into separate partitions is both a personal and technical
decision. Here are some guidelines for individual partitions:

/ (the root directory)

Since the only filesystem mounted at the start of the boot process is /, certain directories must
be part of it to be available for the boot process. These include:

/bin and /sbin

Contains required system binary programs

/dev

Contains device files

/etc

Contains configuration information used on boot

/lib

Contains shared libraries

These directories are always part of the single / partition. See the description of the FHS in
See Objective 8: Find System Files and Place Files in the Correct Location" for more on the
requirements for the root filesystem.

/boot

This directory holds static files used by the boot loader, including kernel images. On systems
where kernel development activity occurs regularly, making /boot a separate partition
eliminates the possibility that / will fill with kernel images and associated files during
development.

/home

User files are usually placed in a separate partition. This is often the largest partition on the
system and may be located on a separate physical disk or disk array.

/tmp

This directory is often a separate partition used to prevent temporary files from filling the root
filesystem.

/var

Log files are stored here. This is similar to the situation with /tmp, where user files can fill any
available space if something goes wrong or if the files are not cleaned periodically.

/usr

This directory holds a hierarchy of directories containing user commands, source code, and
documentation. It is often quite large, making it a good candidate for its own partition.
Because much of the information stored under /usr is static, some users prefer that it be
mounted as read-only, making it impossible to corrupt.

In addition to the preceding six partitions listed, a swap partition is also necessary for a Linux
system to enable virtual memory. For information on determining the size of a swap partition, see
Chapter 4.

Using these guidelines at installation time, the disk partitions for an IDE-based system with two
physical disks on the primary IDE controller might look as described in Table 6-1.

Table 6-1. An example partitioning scheme

Partition Type Mounted filesystem Size

/dev/hda1 Primary /boot 100 MB

Partition Type Mounted filesystem Size

/dev/hda2 Primary / 500 MB

/dev/hda3 Extended - -

/dev/hda5 Logical /usr 4 GB

/dev/hda6 Logical /var 2 GB

/dev/hda7 Logical /opt 1 GB

/dev/hda8 Logical /tmp 500 MB

/dev/hda4 Primary (swap partition) 1 GB

/dev/hdb1 Primary /home 60 GB

Once a disk is partitioned, it can be difficult or risky to change the partition sizes. Commercial and
open source tools are available for this task, but a full backup is recommended prior to their use.

Tip: If you are resizing your partitions, you may want to investigate setting up your system using Logical Volume Manager (LVM). LVM is

currently not covered on the LPI exams, but its use is quickly growing. For more information read the LVM-HOWTO at the Linux

Documentation Project (http://www.tldp.org).

6.1.1.4. Managing partitions

Linux has two basic options for partitioning disk drives. The fdisk command is a text-based program
that is easy to use and exists on every Linux distribution. It is also required for Exam 101. Another
option you may wish to explore after mastering fdisk is cfdisk, which is still a text-mode program but
which uses the curses system to produce a GUI-style display.

Syntax

fdisk [device]

Description

Manipulate or display the partition table for device using a command-driven interactive text
interface. device is a physical disk such as /dev/hda, not a partition such as /dev/hda1. If
omitted, device defaults to /dev/hda. Interactive commands to fdisk are a single letter

followed by a carriage return. The commands do not take arguments, but start an interactive
dialog. Commands that operate on a partition will request the partition number, which is an
integer. For primary and extended partitions, the partition number is from 1 to 4. For logical
partitions, which are available only if the extended partition already exists to contain them,
the partition number is from 5 to 16.

When making changes to the partition table, fdisk accumulates changes without writing them
to the disk, until it receives the write command.

/dev/hda2 Primary / 500 MB

/dev/hda3 Extended - -

/dev/hda5 Logical /usr 4 GB

/dev/hda6 Logical /var 2 GB

/dev/hda7 Logical /opt 1 GB

/dev/hda8 Logical /tmp 500 MB

/dev/hda4 Primary (swap partition) 1 GB

/dev/hdb1 Primary /home 60 GB

Once a disk is partitioned, it can be difficult or risky to change the partition sizes. Commercial and
open source tools are available for this task, but a full backup is recommended prior to their use.

Tip: If you are resizing your partitions, you may want to investigate setting up your system using Logical Volume Manager (LVM). LVM is

currently not covered on the LPI exams, but its use is quickly growing. For more information read the LVM-HOWTO at the Linux

Documentation Project (http://www.tldp.org).

6.1.1.4. Managing partitions

Linux has two basic options for partitioning disk drives. The fdisk command is a text-based program
that is easy to use and exists on every Linux distribution. It is also required for Exam 101. Another
option you may wish to explore after mastering fdisk is cfdisk, which is still a text-mode program but
which uses the curses system to produce a GUI-style display.

Syntax

fdisk [device]

Description

Manipulate or display the partition table for device using a command-driven interactive text
interface. device is a physical disk such as /dev/hda, not a partition such as /dev/hda1. If
omitted, device defaults to /dev/hda. Interactive commands to fdisk are a single letter

followed by a carriage return. The commands do not take arguments, but start an interactive
dialog. Commands that operate on a partition will request the partition number, which is an
integer. For primary and extended partitions, the partition number is from 1 to 4. For logical
partitions, which are available only if the extended partition already exists to contain them,
the partition number is from 5 to 16.

When making changes to the partition table, fdisk accumulates changes without writing them
to the disk, until it receives the write command.

http://www.tldp.org
http://www.tldp.org

Frequently used commands

a

Toggle the bootable flag on/off for a primary partition.

d

Delete a partition. You are prompted for the partition number to delete. If you delete a
logical partition when higher numbered logical partitions exist, the partition numbers
are decremented to keep logical partition numbers contiguous.

l

List the known partition types. A table of partition types is printed.

m

Display the brief help menu for these commands.

n

Add a new partition. You are prompted for the partition type (primary, extended, or
logical). For primary and extended partitions, you are asked for the partition number
(14). For logical partitions, the next logical partition number is selected automatically.
You are then prompted for the starting disk cylinder for the partition and are offered the
next free cylinder as a default. Finally, you are prompted for the last cylinder or a size,
such as +300M. By default, new partitions are assigned as Linux ext2, type 83. To create
another partition type, such as a swap partition, first create the partition with the n
command, then change the type with the t command.

Tip: Note that fdisk displays options for extended and primary partition types if an extended partition does not yet exist. If the extended

partition already exists, fdisk displays options for logical and primary partition types.

p

Display the partition table as it exists in memory. This depiction will differ from the
actual partition table on disk if changes have not been saved.

q

Quit without saving changes.

t

Change a partition's system ID. This is a hex number that indicates the type of
filesystem the partition is to contain. Linux ext2 partitions are type 83, and Linux swap
partitions are type 82.

w

Write (save) the partition table to disk and exit. No changes are saved until the w
command is issued.

Example 1

Display the existing partition table on /dev/hda without making any changes:

fdisk /dev/hda
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 250 2008093+ 83 Linux
/dev/hda2 251 280 240975 82 Linux swap
/dev/hda3 281 1027 6000277+ 5 Extended
/dev/hda5 281 293 104391 83 Linux
/dev/hda6 294 306 104391 83 Linux
/dev/hda7 307 319 104391 83 Linux
Command (m for help): q
#

In this configuration, /dev/hda has two primary partitions, /dev/hda1, which is bootable, and
/dev/hda2, which is the swap partition. The disk also has an extended partition /dev/hda3, which
contains three logical partitions, /dev/hda5, /dev/hda6, and /dev/hda7. All other primary and logical
partitions are Linux ext2 partitions.

Example 2

Starting with a blank partition table, create a bootable primary partition of 300 MB on
/dev/hda1, the extended partition on /dev/hda2 containing the remainder of the disk, a logical
partition of 200 MB on /dev/hda5, a logical swap partition of 128 MB on /dev/hda6, and a
logical partition on /dev/hda7 occupying the remainder of the extended partition:

fdisk /dev/hda
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1

First cylinder (1-1027, default 1): Enter
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1027, default 1027): +300M
Command (m for help): a
Partition number (1-4): 1
Command (m for help): n
Command action
 e extended

 p primary partition (1-4)
e
Partition number (1-4): 2

First cylinder (40-1027, default 40): Enter
Using default value 40

Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): Enter
Using default value 1027
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)
l

First cylinder (40-1027, default 40): Enter
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): +200M
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)
l

First cylinder (79-1027, default 79): Enter
Using default value 79
Last cylinder or +size or +sizeM or +sizeK (79-1027, default 1027): +128M
Command (m for help): t
Partition number (1-6): 6
Hex code (type L to list codes): 82
Changed system type of partition 6 to 82 (Linux swap)
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)
l

First cylinder (118-1027, default 118): Enter
Using default value 118
Last cylinder or +size or +sizeM or +sizeK (118-1027, default 1027): Enter
Using default value 1027
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 39 313236 83 Linux
/dev/hda2 40 1027 7936110 5 Extended
/dev/hda5 40 65 208813+ 82 Linux swap
/dev/hda6 66 82 136521 83 Linux
/dev/hda7 83 1027 7590681 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
#

Note the use of defaults for the partition start cylinders and for end cylinder selections, indicated by
Enter in this example. Other partition sizes are specified in megabytes using responses such as
+128M.

Warning: If you are attempting to create partitions for other operating systems with the Linux fdisk utility, you could run into a few problems. As

a rule, it is safest to prepare the partitions for an operating system using the native tools of that operating system.As you might expect, using

fdisk on a working system can be dangerous, because one errant w command can render your disk useless. Use extreme caution when

working with the partition table of a working system, and be sure you know exactly what you intend to do and how to do it.

On the Exam

You should understand disk partitions and the process of creating them using fdisk.

6.1.1.5. Creating filesystems

Once a disk is partitioned, filesystems may be created in those partitions using the mkfs utility. mkfs
is a front-end program for filesystem-specific creation tools such as mkfs.ext2 and mkfs.msdos,
which are in turn linked to mke2fs and mkdosfs, respectively. mkfs offers a unified front-end, while
the links provide convenient names. The choice of which executable to call is up to you.

Syntax

mkfs [-t fstype] [fs_options] device

Description

Make a filesystem of type fstype on device. If fstype is omitted, ext2 is used by default.
When called by mkfs, these programs are passed any fs_options included on the command

line. See the manpages for the various filesystem-specific mkfs commands, such as mke2fs
and mkdosfs, for full details on their individual options.

Frequently used options

-c

Check device for bad blocks (mke2fs and mkdosfs).

-L label

Set the volume label for the filesystem (mke2fs only).

-n label

Set the 11-character volume label for the filesystem (mkdosfs only).

-q

Uses mkfs in quiet mode, resulting in very little output (mke2fs only).

-v

Used to enter verbose mode (mke2fs and mkdosfs).

-j

Create an ext3 journal file (mke2fs only). Using -t ext3 or running mkfs.ext3 has the
same effect as using the -j option.

Example 1

Using defaults, quietly create an ext2 partition on /dev/hda3:

mkfs -q /dev/hda3
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
#

Example 2

Create an ext2 filesystem labeled rootfs on existing partition /dev/hda3, checking for bad
blocks and with full verbose output:

mkfs -t ext2 -L rootfs -cv /dev/hda3
mke2fs 1.27 (8-Mar-2002)
Filesystem label=rootfs
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
26208 inodes, 104422 blocks
5221 blocks (5.00%) reserved for the super user
First data block=1
13 block groups
8192 blocks per group, 8192 fragments per group
2016 inodes per group
Superblock backups stored on blocks:
 8193, 16385, 24577, 32769, 40961, 49153,
 57345, 65537, 73729, 81921, 90113, 98305
Running command: badblocks -b 1024 -s /dev/hda3 104422
Checking for bad blocks (read-only test): done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Additional options are available in the mke2fs and mkdosfs programs, which may be needed to fine-
tune specific filesystem parameters for special situations. In most cases, the default parameters are
appropriate and adequate.

6.1.1.6. Creating swap partitions

An additional command not specifically cited in the LPI Objectives for this Topic is mkswap. This
command prepares a partition for use as Linux swap space and is needed if you plan to fully
configure a disk from scratch. It is also needed if you need to add an additional swap partition.

Syntax

mkswap device

Description

Prepare a partition for use as swap space. This command can also set up swap space in a file
on another filesystem.

Example

On an existing partition, which should be set to type 82 (Linux swap), ready swap space:

mkswap /dev/hda5
Setting up swapspace version 1, size = 139792384 bytes
#

Warning: Running any of the filesystem creation programs is, like fdisk, potentially dangerous. All data in any previously existing filesystems in

the specified partition will be deleted. Since mkfs does not warn you prior to creating the filesystem, be certain that you are operating on the

correct partition.

On the Exam

The exam is likely to contain general questions about using mkfs, though details such
as inode allocation are beyond the scope of the LPIC Level 1 exams.

6.2. Objective 2: Maintain the Integrity of Filesystems

Over the course of time, active filesystems can develop problems, such as:

A filesystem fills to capacity, causing programs or perhaps the entire system to fail.

A filesystem is corrupted, perhaps due to a power failure or system crash.

A filesystem runs out of inodes, meaning that new filesystem objects cannot be created.

Carefully monitoring and checking Linux filesystems on a regular basis can help prevent and correct
these types of problems.

6.2.1. Monitoring Free Disk Space and Inodes

A read/write filesystem isn't much good if it grows to the point that it won't accept any more files.
This could happen if the filesystem fills to capacity or runs out of inodes.

Inodes are the data structures within filesystems that describe files on disk. Every filesystem
contains a finite number of inodes, set when the filesystem is created. This number is also the
maximum number of files that the filesystem can accommodate. Because filesystems are created
with a huge number of inodes, you'll probably never create as many files as it would take to run out
of inodes. However, it is possible to run out of inodes if a partition contains many small files.

It is important to prevent space and inode shortages from occurring on system partitions. The df
command gives you the information you need on the status of both disk space utilization and inode
utilization.

Syntax

df [options] [file [file...]]

Description

Display overall disk utilization information for mounted filesystems on file. Usually, file is a
device file for a partition, such as /dev/hda1. The file may also be the mount point or any file
beneath the mount point. If file is omitted, information for mounted filesystems on all

devices in /etc/fstab are displayed.

Frequently used options

-h

Displays results in a human-readable format, including suffixes such as M (megabytes)
and G (gigabytes).

-i

Displays information on remaining inodes rather than the default disk space information.

Example 1

Check disk space utilization on all filesystems:

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 387M 56M 311M 15% /
/dev/sda5 296M 5.2M 276M 2% /boot
/dev/sda9 1.9G 406M 1.4G 22% /home
/dev/sda6 53M 12M 39M 23% /root
/dev/sda10 99M 104k 93M 0% /tmp
/dev/sda8 972M 507M 414M 55% /usr
/dev/sda7 296M 9.3M 272M 3% /var

This example shows that of the seven filesystems mounted by default, none exceeds 55 percent
capacity.

Example 2

Check the same filesystems for inode utilization:

df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda1 102800 7062 95738 7% /
/dev/sda5 78312 29 78283 0% /boot
/dev/sda9 514000 934 513066 0% /home
/dev/sda6 14056 641 13415 5% /root
/dev/sda10 26104 60 26044 0% /tmp
/dev/sda8 257040 36700 220340 14% /usr
/dev/sda7 78312 269 78043 0% /var

Among these partitions, the largest consumption of inodes is a mere 14 percent. It is clear that none
of the filesystems is anywhere near consuming the maximum number of inodes available. Note that
the /usr partition (with 14 percent of inodes used) has used 55 percent of the disk space. With
utilization like this, the /usr volume will most likely fill to capacity long before the inodes are
exhausted.

Example 3

Quickly determine which partition the current working directory (represented simply by a
single dot) is located:

df .
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 102800 7062 95738 7% /

When a filesystem is nearing capacity, files may simply be deleted to make additional space
available. However, in the rare case in which an inode shortage occurs, the filesystem must be
recreated with a larger number of inodes unless a significant number of files can be deleted.

6.2.2. Monitoring Disk Usage

Have you ever found yourself wondering, "Where did all the disk space go?" Some operating
systems make answering this question surprisingly difficult using only native tools. On Linux, the du
command can help display disk utilization information on a per-directory basis and perhaps answer
that question. du recursively examines directories and reports detailed or summarized information
on the amount of space consumed.

Syntax

du [options] [directories]

Description

Display disk utilization information for directories. If directories are omitted, the current

working directory is searched.

Frequently used options

-a

Shows all files, not just directories.

-c

Produces a grand total for all listed items.

-h

Displays results in a human-readable format, including suffixes such as M (megabytes)
and G (gigabytes).

-s

Prints a summary for each of the directories specified, instead of totals for each

subdirectory found recursively.

-S

Excludes subdirectories from counts and totals, limiting totals to directories.

Example 1

Examine disk utilization in /etc/rc.d:

du /etc/rc.d
882 /etc/rc.d/init.d
1 /etc/rc.d/rc0.d
1 /etc/rc.d/rc1.d
1 /etc/rc.d/rc2.d
1 /etc/rc.d/rc3.d
1 /etc/rc.d/rc4.d
1 /etc/rc.d/rc5.d
1 /etc/rc.d/rc6.d
904 /etc/rc.d

Example 2

Display utilization by files in /etc, including subdirectories beneath it:

du -s /etc
13002 /etc

Example 3

Display utilization by files in /etc, but not in subdirectories beneath it:

du -Ss /etc
1732 /etc

Example 4

Show a summary of all subdirectories under /home, with human-readable output:

du -csh /home/*
42k /home/bsmith
1.5M /home/httpd
9.5M /home/jdean

42k /home/jdoe
12k /home/lost+found
1.0k /home/samba
11M total

This result shows that 11 MB of total disk space is used.

Example 5

Show the same summary, but sort the results to display in order of largest to smallest disk
utilization:

du -cs /home/* | sort -nr
11386 total
9772 jdean
1517 httpd
42 jdoe
42 bsmith
12 lost+found
1 samba

This result shows that user jdean is consuming the largest amount of space. Note that the human-

readable format does not sort in this way, since sort is unaware of the human-readable size
specifications.

6.2.3. Modifying a Filesystem

There are many cases where an administrator might want to make changes to an existing
filesystem. For example, if the purpose of a particular filesystem changes, the volume label should
be changed to match. This and many other ext2 filesystem settings can be viewed and modified
using the tune2fs command.

Syntax

tune2fs [options] device

Description

Modify tunable parameters on the ext2 or ext3 filesystem on device.

Frequently used options

-l device

List the tunable parameters on device.

-c n

Set the maximum mount count to n. When the filesystem has been mounted this many

times, the kernel will warn that the filesystem has exceeded the maximum mount count
when the filesystem is mounted, and e2fsck will automatically check the filesystem when
run with the -p option (as it usually run at every system boot).

Setting this value to 0 tells the kernel and e2fsck to ignore the mount count.

-i n

Set the maximum time between two filesystem checks to n. If n is a number or is

followed by d, the value is in days. A value followed by w specifies weeks. A value
followed by m specifies months.

The time since the last filesystem check is compared to this value by the kernel and
e2fsck -p, much like the maximum mount count. A value of 0 disables this check.

-L label

Sets the volume label of the filesystem to label. The volume label can also be set with

the e2label command.

-j

Adds an ext3 journal file to the filesystem and sets the has_journal feature flag.

-m n

Sets the reserved block percentage to n. By default, ext2 filesystems reserve 5% of the
total number of available blocks for root. This means that if a filesystem is more than

95% full, only root can write to it. (It also means that df will report the filesystem as
100% full when it is really only 95% full.)

On very large filesystems, or filesystems where only user data will be written, the
reserved block percentage can be safely reduced to make more of the filesystem
available for writing by regular users.

-r n

Sets the number of reserved blocks to n. This is similar to the -m option, except it

specifies a number instead of a percentage.

Example 1

List the contents of the superblock on /dev/sda7:

tune2fs -l /dev/sda7
tune2fs 1.26 (3-Feb-2002)
Filesystem volume name: /var/log
Last mounted on: <not available>
Filesystem UUID: 83efa5c0-063a-11d5-9c6c-c2d9509d12e5
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal filetype needs_recovery sparse_super
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 647680
Block count: 1295232
Reserved block count: 64761
Free blocks: 1227593
Free inodes: 647542
First block: 0
Block size: 4096
Fragment size: 4096
Blocks per group: 32768
Fragments per group: 32768
Inodes per group: 16192
Inode blocks per group: 506
Last mount time: Sat Jan 25 18:59:05 2003
Last write time: Sat Jan 25 18:59:05 2003
Mount count: 11
Maximum mount count: 20
Last checked: Mon Nov 11 20:44:53 2002
Check interval: 31536000 (12 months, 5 days)
Next check after: Tue Nov 11 20:44:53 2003
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal UUID: <none>
Journal inode: 8
Journal device: 0x0000
First orphan inode: 0

Example 2

Turn off the maximum mount count and check interval tests on /dev/sda7:

tune2fs -i 0 -c 0 /dev/sda7
tune2fs 1.26 (3-Feb-2002)
Setting maximal mount count to -1
Setting interval between check 0 seconds

6.2.4. Checking and Repairing Filesystems

No matter how stable, computers do fail, even due to something as simple as a power cable being
accidentally unplugged. Unfortunately, such an interruption can make a mess of a filesystem. If a
disk write operation is aborted before it completes, the data in transit could be lost, and the portions
of the disk that were allocated for it are left marked as used. In addition, filesystem writes are
cached in memory, and a power loss or other crash prevents the kernel from synchronizing the
cache with the disk. Both of these scenarios lead to inconsistencies in the filesystem and must be
corrected to ensure reliable operation.

Filesystems are checked with fsck. Like mkfs, fsck is a front-end to filesystem-specific utilities,
including fsck.ext2, which is a link to the e2fsck program. (See its manpage for detailed
information.)

Tip: e2fsck can also check ext3 filesystems. When it finds an ext3 filesystem that was not cleanly unmounted, it first commits the journal, then

checks the filesystem as it normally would with ext2.

Part of the information written on disk to describe a filesystem is known as the superblock, written in
block 1 of the partition. If this area of the disk is corrupted, the filesystem is inaccessible. Because
the superblock is so important, copies of it are made in the filesystem at regular intervals, by default
every 8192 blocks. The first superblock copy is located at block 8193, the second copy is at block
16385, and so on. As you'll see, fsck can use the information in the superblock copies to restore the
main superblock.

Syntax

fsck [options] [-t type] [fs-options] filesystems

Description

Check filesystems for errors and optionally correct them. By default, fsck assumes the ext2

filesystem type and runs interactively, pausing to ask for permission before applying fixes.

Frequently used options for fsck

-A

Run checks on all filesystems specified in /etc/fstab. This option is intended for use at
boot time, before filesystems are mounted.

-N

Don't execute, but show what would be done.

-t type

Specify the type of filesystem to check; the default is ext2. The value of type determines

which filesystem-specific checker is called.

Frequently used options for e2fsck

-b superblock

Use an alternative copy of the superblock. In interactive mode, e2fsck automatically
uses alternative superblocks. Typically, you'll try -b 8193 in non-interactive mode to
restore a bad superblock.

-c

Check for bad blocks.

-f

Force a check, even if the filesystem looks clean.

-p

Automatically repair the filesystem without prompting.

-y

Answers "yes" to all interactive prompts, allowing e2fsck to be used noninteractively.

Example 1

Check the ext2 filesystem on /dev/hda5, which is not mounted:

fsck /dev/hda5
fsck 1.27 (8-Mar-2002)
e2fsck 1.27 (8-Mar-2002)
/dev/hda5: clean, 1011/34136 files, 4360/136521 blocks

The partition was clean, so fsck didn't really check it.

Example 2

Force a check:

fsck -f /dev/hda5
fsck 1.27 (8-Mar-2002)
e2fsck 1.27 (8-Mar-2002)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts

Pass 5: Checking group summary information
/dev/hda5: 1011/34136 files (0.1% non-contiguous), 4360/136521 blocks

Example 3

Force another check, this time with verbose output:

fsck -fv /dev/hda5
fsck 1.27 (8-Mar-2002)
e2fsck 1.27 (8-Mar-2002)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
 1011 inodes used (2%)
 1 non-contiguous inodes (0.1%)
 # of inodes with ind/dind/tind blocks: 0/0/0
 4360 blocks used (3%)
 0 bad blocks
 0 large files
 1000 regular files
 2 directories
 0 character device files
 0 block device files
 0 fifos
 0 links
 0 symbolic links (0 fast symbolic links)
 0 sockets

 1002 files

Example 4

Allow fsck to automatically perform all repairs on a damaged filesystem by specifying the -y
option to run the command automatically:

fsck -y /dev/hda5
fsck 1.27 (8-Mar-2002)
e2fsck 1.27 (8-Mar-2002)
Couldn't find ext2 superblock, trying backup blocks...
/dev/hda5 was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
Block bitmap differences: +1 +2 +3 +4
Fix? yes
Inode bitmap differences: +1 +2 +3 +4 +5 +6

Fix? yes
/dev/hda5: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hda5: 1011/34136 files (0.1% non-contiguous), 4360/136521 blocks

When Linux boots, the kernel performs a check of all filesystems in /etc/fstab using the -A option to
fsck. (Unless the /etc/fstab entry contains the noauto option.) Any filesystems that were not cleanly
unmounted are checked. If that check finds any significant errors, the system drops into single-user
mode so you can run fsck manually. Unfortunately, unless you have detailed knowledge of the inner
workings of the filesystem, there's little you can do other than to have fsck do all of the repairs. As a
result, it is common to use the -y option and hope for the best.

In some cases, a filesystem may be beyond repair or may even trigger a bug in e2fsck. In these
(thankfully very rare) situations, there are a few commands that can help an ext2 filesystem wizard
debug the problem. These commands are e2image, dumpe2fs, and debugfs. For more information
on these tools, read their appropriate manpages.

On the Exam

Familiarity with du, df, and fsck is important. Be sure you understand the differences
between the commands and when each is used.

6.3. Objective 3: Control Filesystem Mounting and
Unmounting

As discussed in See Objective 1: Create Partitions and Filesystems.," the Linux directory hierarchy is
usually made up of multiple partitions, each joined to the root filesystem. Filesystems on removable
media, such as CD-ROMs, Zip disks, and floppy disks, are joined in the same way, but usually on a
temporary basis. Each of these separate filesystems is mounted to the parent filesystem as a
directory (or mount point) in the unified hierarchy.

Directories intended as mount points usually don't contain files or other directories. Instead, they're
just empty directories created solely to mount a filesystem. If a directory that already contains files
is used as a mount point, its files are obscured and unavailable until the filesystem is unmounted.
Typical mount points include the directories /usr, /home, /var, and others.

6.3.1. Managing the Filesystem Table

Since the Linux filesystem hierarchy is spread across separate partitions and/or multiple drives, it is
necessary to automatically mount those filesystems at boot time. In addition, removable media and
filesystems on remote NFS servers may be used regularly with recurring mount properties. All of this
information is recorded in the /etc/fstab file. Filesystems defined in this file are checked and
mounted when the system boots. Entries in this file are consulted for default information when users
wish to mount removable media.

The /etc/fstab file (see Example 6-1) is plain text and consists of lines with six fields:

Device

This field specifies the device file of the partition holding the filesystem (for example
/dev/hda1).

Mount point

This field specifies the directory on which the filesystem is to be mounted. For example, if
/dev/hda1 contains the root filesystem, it is mounted at /. The root filesystem will contain
additional directories intended as mount points for other filesystems. For example, /boot may
be an empty directory intended to mount the filesystem that contains kernel images and other
information required at boot time.

Filesystem type

Next, the type of filesystem is specified. These may include ext2 filesystems, swap, iso9660
(CD-ROM), and others.

Mount options

This field contains a comma-separated list of options. Some options are specific to particular
filesystem types. Options are described later in this Objective.

Dump frequency

The dump program, a standard Unix backup utility, will consult /etc/fstab for information on
how often to dump each filesystem. This field holds an integer, usually set to 1 for native Linux
filesystems such as ext2 and to 0 for others.

Pass number for fsck

This field is used by the fsck utility when the -A option is specified, usually at boot time. It is a
flag that may contain only the values 0, 1, or 2.

A 1 should be entered for the root filesystem and instructs fsck to check that filesystem
first.

A 2 instructs fsck to check corresponding filesystems after those with a 1.

A 0 instructs fsck not to check the filesystem.

Example 6-1. Sample /etc/fstab File

/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /boot ext2 defaults 1 2
/dev/sda9 /home ext2 defaults 1 2
/dev/sda6 /root ext2 defaults 1 2
/dev/sda10 /tmp ext2 defaults 1 2
/dev/sda8 /usr ext2 defaults 1 2
/dev/sda7 /var ext2 defaults 1 2
/dev/sda11 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto,users 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro,users 0 0
/dev/hdd /mnt/zip vfat noauto,users 0 0
fs1:/share /fs1 nfs defaults 0 0

The fstab in Example 6-1 depicts a system with a single SCSI disk, /dev/sda. The first partition,
/dev/sda1, contains an ext2 root filesystem. Partition /dev/sda11 is swap. Partitions /dev/sda5
through /dev/sda10 contain ext2 filesystems for /boot, /home, /root, /tmp, /usr, and /var,
respectively. All of the local ext2 partitions are to be checked by fsck and dumped. Entries for the
floppy disk (/dev/fd0), CD-ROM (/dev/hdc), and IDE Zip drive (/dev/hdd) hold appropriate mount
properties, making manual mounting of these devices simple. Finally, this example shows a remote
NFS mount of directory /share of system fs1. It is mounted locally at /fs1.

The /etc/fstab file is automatically created when Linux is installed and is based on the partitioning
and mount point configuration specified. This file can be changed at any time to add devices and
options , tailoring the filesystem to meet your specific needs.

On the Exam

You should memorize the functions of each column in /etc/fstab and be prepared to
answer questions on each.

6.3.2. Mounting Filesystems

Filesystems are mounted using the mount command. At boot time, those filesystems with a nonzero
pass number in /etc/fstab are checked and automatically mounted. Later, you can run mount
manually to add other filesystems to the filesystem hierarchy.

Syntax

mount [command_line_options] device

mount [command_line_options] directory

mount [command_line_options] device directory

Description

Used to mount filesystems onto the filesystem hierarchy. The first and second forms consult
/etc/fstab and mount the filesystem located on device or intended to be attached to
directory, respectively. In both cases, information necessary to complete the mount operation

is taken from /etc/fstab. The third form is independent of /etc/fstab and mounts the filesystem
on device at mount point directory.

The mount command accepts two kinds of options: command-line and mount. The command-
line options provide general direction for the mount command. The mount options are used to
specify additional information about the device being mounted.

Command-line options

-a

Mounts all of the partitions specified in /etc/fstab, except those with the noauto option.

-h

Displays help on the mount command.

-o mount_options

Specifies mount options on the command line.

-r

Mounts the filesystem as read-only.

-t fstype

Specifies that the filesystem to be mounted is of type fstype. This option is typically

used interactively when no entry for the mount exists in /etc/fstab.

-v

Sets verbose mode.

-w

Mounts the filesystem read/write mode.

Mount options

A number of parameters are available as options for mounting filesystems. These options may
be specified in /etc/fstab or as arguments of the -o command-line mount argument. These
options modify the way mount configures the mounted filesystem. Some of the options can
provide added security by controlling some operations on the filesystem. Others protect the
filesystem from damage. Here is a partial list:

async

Establishes asynchronous I/O to the mounted filesystem. The opposite is sync.

auto

Enables a mount specification in /etc/fstab to be processed with the -a command-line
option, as needed at boot time. The opposite is noauto.

defaults

Implies rw, suid, dev, exec, auto, nouser, and async. It is commonly found on /etc/fstab
entries for ext2 and ext3 mount points.

dev

Interprets character or block special devices on the filesystem.

exec

Enables the execution of programs contained on the mounted partition. The opposite is
noexec.

noauto

Prohibits automatic mounting with the -a option. This is usually specified for removable
media.

noexec

Prohibits the execution of executable programs, a potential security measure.

nosuid

Disables the effect of suid or sgid bits on executable files.

nouser

Forbids non-root users from mounting and unmounting the filesystem. See user and
users for the opposite effect.

ro

Equivalent to specifying the command-line option -r.

rw

Equivalent to specifying the command-line option -w.

suid

Enables the effect of suid and sgid bits on executable files.

sync

Establishes synchronous I/O to the mounted filesystem. The opposite is async.

user

Allows an ordinary user to mount the filesystem but prohibits other ordinary users from
unmounting it. This is useful for removable media that an individual requires control
over. See also users.

users

Allows any user to mount and unmount the filesystem.

Note that the user and users options make the mount and umount commands available to

non-root users. This may be important for some systems where end users must have the
ability to mount removable media.

Filesystem types

When mounting a filesystem, the filesystem type should be specified either by using the -t
option to mount or in the third field in /etc/fstab. (If -t is omitted or auto is specified, the
kernel will attempt to probe for the filesystem type. This can be convenient for removable
media, where the filesystem type may not always be the same or even known.) Linux can
mount a variety of filesystems. The following are some of the more popular ones:

ext2

The standard Linux filesystem.

ext3

A journalling filesystem that is backwards-compatible with ext2.

msdos

The MS-DOS FAT filesystem, limited to "8.3" filenames (eight characters, a dot, and a
three-character extension).

vfat

Virtual FAT, used instead of msdos when long filenames must be preserved. For
example, you may wish to have access to Windows partitions on systems configured to
boot both Linux and Windows.

iso9660

The CD-ROM format, also the default type.

nfs

Remote servers.

swap

Swap partitions.

proc

This type represents the proc filesystem, which is not really a filesystem at all. The
virtual files found in this virtual filesystem provide a window into the kernel. It is usually
mounted on /proc.

Example 1

Display filesystems currently mounted on the system:

mount
/dev/sda1 on / type ext2 (rw)
none on /proc type proc (rw)
/dev/sda5 on /boot type ext2 (rw)
/dev/sda9 on /home type ext2 (rw)
/dev/sda6 on /root type ext2 (rw)
/dev/sda10 on /tmp type ext2 (rw)
/dev/sda8 on /usr type ext2 (rw)
/dev/sda7 on /var type ext2 (rw)
none on /dev/pts type devpts (rw,mode=0622)
/dev/hdd on /mnt/zip type vfat (rw,noexec,nosuid,nodev)

In this example, you can see that most of the filesystems specified in the /etc/fstab from Example 6-
1 are already mounted.

Example 2

Mount the IDE CD-ROM device found on /dev/hdc to the existing directory /mnt/cdrom, read-
only of course:

mount -rt iso9660 /dev/hdc /mnt/cdrom

Note that without the -r option, you will receive a warning but still get appropriate results:

mount -t iso9660 /dev/hdc /mnt/cdrom
mount: block device /dev/hdc is write-protected,
mounting read-only

Another option would be to add the following to /etc/fstab:

/dev/hdc /mnt/cdrom iso9660 ro 0 0

Then the device can be mounted with just mount /mnt/cdrom.

Example 3

Mount an MS-DOS floppy in the first floppy disk drive /dev/fd0 (A: in MS-DOS) to the existing
directory /mnt/floppy:

mount -t msdos /dev/fd0 /mnt/floppy

Example 4

The filesystems mounted at /home and /opt have been unmounted for some kind of
maintenance and are now remounted using the -a option:

mount -av
mount: /dev/hda5 already mounted on /root
mount: /dev/hda9 already mounted on /usr
mount: /dev/hda7 already mounted on /var
mount: none already mounted on /proc
mount: none already mounted on /dev/pts
mount: 192.168.0.2:/ already mounted on /smp
/dev/hda10 on /home type ext2 (rw)
/dev/hda8 on /opt type ext2 (rw)

Note that mount should work silently without the -v option. It also safely skips filesystems that have
been previously mounted.

6.3.3. Unmounting Filesystems

Filesystems can be unmounted using the umount command. When a filesystem is unmounted, the
buffers of the filesystem are synchronized with the actual contents on disk and the filesystem is
made unavailable, freeing the mount point. If the filesystem is busy, umount yields an error. This
will happen, for example, when the filesystem contains open files or when a process has a working
directory within the filesystem. Other less obvious errors can occur when removable media are
exchanged without being unmounted first.

Syntax

umount [options] device

umount [options] directory

Description

Unmount the filesystem on device or mounted on directory.

-a

Unmounts all of the filesystems described in /etc/mtab. This file is maintained by the

mount and umount commands and contains an up-to-date list of mounted filesystems.
This option is typically used at shutdown time.

-t fstype

Unmounts only filesystems of type fstype.

Example 1

Unmount the CD-ROM mounted on /dev/hdc at /mnt/cdrom:

umount /mnt/cdrom

or:

umount /dev/hdc

Example 2

Unmount all NFS filesystems:

umount -at nfs

On the Exam

Be sure that you understand how to use mount and mount points and how /etc/fstab is
used when mounting files.

6.4. Objective 4: Set and View Disk Quotas

Managing disk space can be a difficult problem. The available space is a finite resource and is often
consumed at an alarming rate, turning today's carefully sized filesystem into tomorrow's expansion
requirement. On multiuser systemsno matter how big the filesystemusers will find a way to fill it.
The last thing you want is for a filesystem to fill to capacity too early. One way to prevent that from
happening is to enforce disk quotas , which allow you assign a limit to the amount of space
individual users or groups have on a filesystem.

A typical quota size is usually much smaller than the filesystem it is configured on, thus preventing
the user or group from consuming too much space. Quotas can be configured for each filesystem
mentioned in /etc/fstab, though they are usually applied only where multiple end users store files
(i.e., /home/username). There is no need for a quota on /usr, for example, since end users cannot
store files there. Quotas may be configured for individual users listed in /etc/passwd and for groups
listed in /etc/group.

6.4.1. Quota Limits

Each filesystem has up to five types of quota limits that can be enforced on it. These limits are
specified in disk blocks, usually 1,024 bytes each:

Per-user hard limit

The hard limit is the maximum amount of space an individual user can have on the system.
Once the user reaches his quota limit, he won't be allowed to write files to the disk.

Per-user soft limit

Each user is free to store data on the filesystem until reaching her soft limit. The soft limit
implements a sort of warning zone, instructing the user to clean up while still allowing her to
work. When the amount of data exceeds this limit but does not exceed the hard limit, a
message is printed on the user's terminal, indicating that her quota has been exceeded;
however, the write operation will succeed.

Per-group hard limit

This is the final limit set for a group by the quota system. Once this limit has been reached,
none of the users within that group will be allowed to write files to the diskeven if the user's
individual limits are not exceeded.

Per-group soft limit

This limit behaves in the same way as a user's soft limit but is enforced based on group
ownership instead of individual ownership.

Grace period

Once a soft limit is reached, the user or group enters the grace period . After the grace period
expires, the soft limit becomes a hard limit until enough files are deleted to eliminate the over-
quota situation. The grace period may be specified for any number of months, weeks, days,
hours, minutes, or seconds. A typical value is seven days.

These limits are set using the edquota command, detailed in the next section.

Tip: When a disk write exceeds a hard limit or an expired soft limit, only part of the write operation will complete, leaving a truncated and

probably useless file. The messages reported to the user when a quota is exceeded may be lost if the shell he is using is hidden. This could

confuse the user, because the error message generated by the application indicates that the disk is full or write-protected.

6.4.2. Quota Commands

Linux offers a host of commands to manage, display, and report on filesystem quotas. Some of the
setup required to initially enable quotas is done manually and without specific quota commands , a
process that is covered in the next section.

Syntax

quota [-u] [options] user

quota -g [options] group

Description

Displays quota limits on user or group. The -u option is the default. Only the superuser may
use the -u flag and user to view the limits of other users. Other users can use the -g flag and
group to view only the limits of groups of which they are members, provided that the

quota.group files are readable by them.

Frequently used options

-q

Sets quiet mode, which shows only over-quota situations.

-v

Enables verbose mode to display quotas even if no storage space is allocated.

Example 1

As root, examine all quotas for user jdoe:

quota -uv jdoe
Disk quotas for user jdoe (uid 500):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 9456 10000 10200 32 0 0
/dev/hda1 23 0 0 17 0 0

This example shows that jdoe is barely within her soft limit of 10,000 blocks, with a corresponding

hard limit of 10,200 blocks on /dev/sda9, and has no quota on /dev/hda1. The entry for /dev/hda1
is displayed in response to the -v option. No values are shown for the grace periods, because the
soft limit has not been exceeded.

Example 2

As user jdoe, examine quotas for the finance group, of which he is a member:

$ quota -gv finance
Disk quotas for group finance (gid 501):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 1000* 990 1000 6days 34 3980 4000
/dev/hda1 0 0 0 0 0 0

Here, the finance group has exceeded its meager soft limit of 990 blocks and has come up against

its hard limit of 1,000 blocks. (The write operation that wrote the 1,000th block was probably
incomplete.) The original grace period in this example was set to seven days and has six days
remaining, meaning that one day has elapsed since the soft limit was exceeded.

Syntax

quotaon [options] [filesystems]

quotaon [options] -a

Description

Enable previously configured disk quotas on one or more filesystems.

Frequently used options

-a

Turns quotas on for all filesystems in /etc/fstab that are marked read-write with quotas.
This is normally used automatically at boot time to enable quotas.

-g

Turns on group quotas. This option is not necessary when using the -a option, which
includes both user and group quotas.

-u

Turns on user quotas; this is the default.

-v

Enables verbose mode to display a message for each filesystem where quotas are turned
on.

Example 1

Turn on all quotas as defined in /etc/fstab:

quotaon -av
/dev/sda9: group quotas turned on
/dev/sda9: user quotas turned on
/dev/hda1: group quotas turned on
/dev/hda1: user quotas turned on

Example 2

Turn on user quotas only on the /home filesystem:

quotaon -gv /home
/dev/sda9: group quotas turned on

Syntax

quotaoff [options] [filesystems]

quotaoff [options] -a

Description

Disables disk quotas on one or more filesystems.

Frequently used options

-a

Turns quotas off for all filesystems in /etc/fstab.

-g

Turns off group quotas. This option is not necessary when using the -a option, which
includes both user and group quotas.

-u

Turns off user quotas; this is the default.

-v

Enables verbose mode to display a message for each filesystem where quotas are turned
off.

Example

Turn off all quotas:

quotaoff -av
/dev/sda9: group quotas turned off
/dev/sda9: user quotas turned off
/dev/hda1: group quotas turned off
/dev/hda1: user quotas turned off

Syntax

quotacheck [options] filesystems

quotacheck [options] -a

Description

Examine filesystems and compile quota databases. This command is not specifically called out
in the LPI Objectives for Exam 101, but is an important component of the Linux quota system.
You should run the quotacheck -a command on a regular basis (perhaps weekly) via cron.

Frequently used options

-a

Checks all of the quotas for the filesystems mentioned in /etc/fstab. Both user and group

quotas are checked as indicated by the usrquota and grpquota options.

-g group

Compiles information only on group.

-u user

Compiles information only on user; this is the default action. However, if the -g option is

specified, then this option should also be specified when both group and user quotas are
to be processed.

-v

Enables verbose mode to display information about what the program is doing. This
option shows activity by displaying a spinning character in the terminal. This is nice but
could be a problem if you are logged in over a slow modem link.

Example 1

Initialize all quota files:

quotaoff -a
quotacheck -aguv
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group
Scanning /dev/hda1 [/mnt/hd] done
Checked 3534 directories and 72673 files
Using quotafile /mnt/hd/quota.user
Using quotafile /mnt/hd/quota.group
quotaon -a

By turning off quotas during the update, the quota database files are updated.

Example 2

With quotas active, update the user quotas in memory for /home:

quotacheck -v /home
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Updating in-core user quotas

Syntax

edquota [-p proto-user] [options] names

edquota [options] -t

Description

Modify user or group quotas. This interactive command uses a text editor to configure quota
parameters for users or groups. The vi editor is used by default unless either the EDITOR or
VISUAL environment variables are set to another editor, such as Emacs. When the command is
issued, the vi editor is launched with a temporary file containing quota settings. When the
temporary file is saved and the editor is terminated, the changes are saved in the quota
databases.

In the first form, a space-separated list of users or groups specified in names is modified. If
proto-user is specified with the -p option, quotas of that user or group are copied and used
for names and no editor is launched. In the second form with the -t option, the soft limit

settings are edited interactively for each filesystem.

Frequently used options

-g

Modify group quotas. If -g is specified, all names are assumed to be groups and not

users, even if -u is also specified.

-p proto-user

Duplicate the quotas of the prototypical user or group proto-user for each user or group

specified. This is the normal mechanism used to initialize quotas for multiple users or
groups at the same time.

-t

Modify soft limits. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and
month(s) are understood.

-u

Modify user quotas. This is the default action. This option is ignored if -g is also
specified.

Tip: The following examples use the vi editor. The contents of the edit buffer, not program output, are shown after each example.

Example 1

Modify the user quotas for jdoe:

edquota -u jdoe
Quotas for user jdoe:
/dev/sda9: blocks in use: 87, limits (soft = 99900, hard = 100000)
 inodes in use: 84, limits (soft = 0, hard = 0)
/dev/hda1: blocks in use: 0, limits (soft = 0, hard = 0)
 inodes in use: 0, limits (soft = 0, hard = 0)
~
~
"/tmp/EdP.auHTZJ0" 5 lines, 241 characters

Here, jdoe has been allocated a soft limit of 99,900 blocks (which on a default Linux ext2 or ext3

fileystem with a 4k block size means 390 MB), a hard limit of 100,000 blocks (only 400 KB higher
than the soft limit), and no limit on the number of files on /dev/sda9. She has no limits on
/dev/hda1.

Example 2

Modify soft limits for users on all filesystems:

edquota -tu
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/dev/sda9: block grace period: 7 days,
 file grace period: 3 days
/dev/hda1: block grace period: 7 days,
 file grace period: 3 days
~
~
"/tmp/EdP.aiTShJB" 5 lines, 249 characters

Here, the user grace periods have been set to seven days for blocks (disk space) and three days for
files (inodes).

Syntax

repquota [options] filesystems

repquota -a [options]

Description

Used to report on the status of quotas. In the first form, repquota displays a summary report
on the quotas for the given filesystems on a per-user or per-group basis. In the second form,

the -a option causes a summary for all filesystems with quotas to be displayed. This command
fails for non-root users unless the quota database files are world-readable. The current

number of files and the amount of space utilized are printed for each user, along with any
quotas created with edquota.

Frequently used options

-a

Report on all of the quotas for the read-write filesystems mentioned in /etc/fstab. Both
user and group quotas are reported as indicated by the usrquota and grpquota options.

-g

Report quotas for groups.

-u

Report quotas for users; this is the default action.

-v

Enable verbose mode, which adds a descriptive header to the output.

Example

Report user quotas for /home:

repquota -v /home
*** Report for user quotas on /dev/sda9 (/home)
 Block limits File limits
User used soft hard grace used soft hard grace
root -- 418941 0 0 269 0 0
328 -- 1411 0 0 20 0 0
jdean -- 9818 99900 100000 334 0 0
u1 -- 44 0 0 43 0 0
u2 -- 44 0 0 43 0 0
u3 -- 127 155 300 124 0 0
jdoe -- 87 99900 100000 84 0 0
bsmith -- 42 1990 2000 41 0 0

6.4.3. Enabling Quotas

To use quotas, they must first be enabled. Quota support must also be compiled into the kernel. In
the unlikely event that your kernel does not contain quota support, you will need to recompile the
kernel (see Chapter 13 for more details on how to compile a kernel). This is not a difficult process,
but unfortunately it is not completely straightforward either. To clarify the procedure, this section
provides a brief tutorial on how to enable user and group quotas for a filesystem on /dev/sda9
mounted under /home. Note that you may enable user quotas only, group quotas only, or both, as
your needs dictate.

Set options in /etc/fstab. On the line containing the /home filesystem, add the usrquota and
grpquota options to the existing default option, like this:

/dev/sda9 /home ext2 defaults,usrquota,grpquota 1 2

These options tell quota configuration utilities which partitions should be managed when the
utilities reference /etc/fstab.

1.

Create the quota.user and quota.group files at the top of the /home filesystem and set their
protection bits for root access only:

touch /home/quota.user /home/quota.group
chmod 600 /home/quota.user /home/quota.group

These two files are the databases for user and group quotas. Each filesystem with quotas uses
its own quota databases. When quotas are enabled, these files will contain binary data (that is,
they're not text files). Note that if you want end users to be able to examine quotas on groups
to which they belong, quota.group will need a protection mode of 644 instead of 600.

2.

Run quotacheck to initialize the databases:

quotacheck -avug
Scanning /dev/sda9 [/home] done
Checked 236 directories and 695 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group

3.

Then verify that your quota database files have been initialized by noting that they are no
longer of size zero (here they are 16,192 bytes each):

ls -al /home/quota.*
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.group
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.user

4.

Run quotaon to enable the quota system:

quotaon -a

5.

Verify that your system's initialization script (/etc/rc.d/rc.sysinit or similar) will turn on quotas
when your system boots. Something along these lines is appropriate, although your system

6.

may be very different:

if [-x /sbin/quotacheck]; then
 echo "Checking quotas."
 /sbin/quotacheck -avug
 echo " Done."
fi
if [-x /sbin/quotaon]; then
 echo "Turning on quotas."
 /sbin/quotaon -avug
fi

6.

Add a command script to a system crontab directory (such as the directory
/etc/crontab.weekly) to execute quotacheck on a routine basis. An executable script file like the
following will work:

#!/bin/bash
exec /sbin/quotacheck -avug

If you prefer, you could instead put /sbin/quotacheck in root's crontab file (using the crontab -

e command) for weekly execution, like this:

run quotacheck weekly
0 3 * * 0 /sbin/quotacheck -avug

7.

At this point, the /home filesystem is ready to accept quotas on a per-user and per-group basis,
enforce them, and report on them.

On the Exam

A general understanding of quotas is necessary for the exam. In particular, you should
know the function of each command. Also remember that quotas are set on a per-
filesystem basis.

6.5. Objective 5: Use File Permissions to Control Access
to Files

Filesystem security is a fundamental requirement for any multiuser operating system. The system's
files, such as the kernel, configuration files, and programs, must be protected from accidents and
tampering by unauthorized people. Users' files must be protected from modification by other users
and sometimes must be kept completely private. In general, a form of access control must be
implemented to allow secure operations.

6.5.1. Linux Access Control

Native Linux filesystem access control is implemented using a set of properties, maintained
separately for each file. These properties are collectively called the access mode, or simply the
mode, of the file. The mode is a part of the file's inode, the information retained in the filesystem
that describes the file. A file's mode controls access by these three classes of users :

User

The user that owns the file.

Group

The group that owns the file.

Other

All other users on the system.

Like the mode, user and group ownership properties are a part of the inode, and both are assigned
when a file is created. Usually, the owner is the user who created the file. The file's group is usually
set to its creator's default group. Group ownership adds flexibility in situations in which a team
shares files. The "other" users are those who aren't members of the file's group and are not the file's
owner. For each of these three user classes, the access mode defines three types of permissions,
which apply differently for files and directories. The permissions are listed in Table 6-2.

Table 6-2. File permissions

Permission Mnemonic File permission Directory permission

Read r Examine the contents of the file. List directory contents.

Permission Mnemonic File permission Directory permission

Write w Write to or change the file. Create and remove files in the directory.

Execute x Run the file as a program. Access (cd into) the directory.

These three permissions apply to the three different classes of users: user, group, and other. Each
has read, write, and execute permissions, as shown in Figure 6-1.

Figure 6-1. Access mode bits

All of the permissions are binary (either granted or not granted) and are thought of as single binary
bits in the access mode. When displayed by commands such as ls, the permissions use the
mnemonic in Table 6-2 for the true state and a hyphen for the false state. To represent only the read
permission, for example, r-- would be used. Read and execute together, typical for directories,
would be denoted r-x. These notations are usually offered in sets of three, such as:

rw-rw-r--

A file with this setting would give read/write permission to the user and group, and read-only
permission to everyone else.

In addition to the nine bits for user, group, and other, the access mode contains three more bits,
which control special attributes for executable files and directories:

SUID

The SUID property is for executable files only and has no effect on directories. Normally the
user who launches a program owns the resulting process. However, if an executable file has its
SUID bit set, the file's owner owns the resulting process, no matter who launched it. When
SUID is used, the file's owner is usually root. This offers anyone temporary root access for the
duration of the command. An example of an SUID program is passwd. This command needs
special access to manipulate the shadow password file (/etc/shadow), and runs as user root.

Write w Write to or change the file. Create and remove files in the directory.

Execute x Run the file as a program. Access (cd into) the directory.

These three permissions apply to the three different classes of users: user, group, and other. Each
has read, write, and execute permissions, as shown in Figure 6-1.

Figure 6-1. Access mode bits

All of the permissions are binary (either granted or not granted) and are thought of as single binary
bits in the access mode. When displayed by commands such as ls, the permissions use the
mnemonic in Table 6-2 for the true state and a hyphen for the false state. To represent only the read
permission, for example, r-- would be used. Read and execute together, typical for directories,
would be denoted r-x. These notations are usually offered in sets of three, such as:

rw-rw-r--

A file with this setting would give read/write permission to the user and group, and read-only
permission to everyone else.

In addition to the nine bits for user, group, and other, the access mode contains three more bits,
which control special attributes for executable files and directories:

SUID

The SUID property is for executable files only and has no effect on directories. Normally the
user who launches a program owns the resulting process. However, if an executable file has its
SUID bit set, the file's owner owns the resulting process, no matter who launched it. When
SUID is used, the file's owner is usually root. This offers anyone temporary root access for the
duration of the command. An example of an SUID program is passwd. This command needs
special access to manipulate the shadow password file (/etc/shadow), and runs as user root.

Using the SUID bit in cases like passwd enhances security by allowing access to secure
functions without giving away the root password. On the other hand, SUID can be a security
risk if access is granted unwisely.

SGID

The SGID property works the same way as SUID for executable files, setting the process group
owner to the file's group. In addition, the SGID property has a special effect on directories.
When SGID is set on a directory, new files created within that directory are assigned the same
group ownership as the directory itself. For example, if directory /home/fin has the group
finance and has SGID enabled, then all files under /home/fin are created with group
ownership of finance, regardless of the creator's group. This is an important attribute for

teams, ensuring that shared files all have the same group ownership.

Sticky

At one time, the sticky bit applied to executable programs, flagging the system to keep an
image of the program in memory after the program finished running. This capability increased
performance for subsequent uses by eliminating the programs' load phase, and was applied to
programs that were large or were run frequently. Modern virtual memory techniques have
made this use unnecessary, and under Linux there is no need to use the sticky bit on
executable programs.

When applied to a directory, the sticky bit offers additional security for files within the
directory. Regardless of file permissions, the only users who can rename or delete the files
from a directory with the sticky bit set are the file owner, the directory owner, and root. When
used in a team environment, the sticky bit allows groups to create and modify files but allows
only file owners the privilege of deleting or renaming them.

Like the other access controls, these special properties are binary and are considered bits in the
access mode.

6.5.1.1. The mode bits

The special, user, group, and other permissions can be represented in a string of 12 binary bits, as
shown in Figure 6-2.

Figure 6-2. Changing permission bits to an octal number

It is common to refer to these bits in four sets of three, translated into four octal (base-8) digits. The
first octal digit represents the special permissions SUID, SGID, and sticky. The other three represent
the read, write, and execute permissions, respectively, in each of the user, group, and other user
classes. Octal notation is used as shorthand for binary strings like the access mode, and each group
of three bits has 23 = 8 possible values, listed in Table 6-3.

The read permission by itself is r--, which can be thought of as binary 100, or octal 4. Adding the
write permission yields rw-, or binary 110, which is octal 6. Figure 6-2 shows how to total bit values
into the octal equivalents. Memorizing, or even writing, the binary-to-octal equivalents may be
easier on the exam than adding bit values. Use the technique that works best for you.

Table 6-3. Octal numbers

Octal value Binary equivalent

0 000

Octal value Binary equivalent

1 001

2 010

3 011

4 100

5 101

6 110

7 111

To turn the mode bits 110111101001 into an octal representation, first separate them into chunks of
three bits: 110, 111, 101, and 001. The first group, representing the special permissions, is 110.
This can be thought of as 4 + 2 + 0 = 6. The second group, representing user permissions, is 111, or
4 + 2 + 1 = 7. The third group, representing group permissions, is 101, or 4 + 0 + 1 = 5. The last
group, representing other permissions, is 001, or 0 + 0 + 1 = 1. The mode string for this example
can then be written as the octal 6751.

This is the form used to display the file mode in the output from the stat command. Here, the octal
access mode for the mount command is 4755:

stat /bin/mount
 File: "/bin/mount"
 Size: 53620 Filetype: Regular File
 Mode: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
Device: 3,2 Inode: 20335 Links: 1
Access: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Modify: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Change: Wed Dec 8 20:59:02 1999(00024.13:32:58)

The special permissions are represented in this example by octal 4, or binary 100, indicating that
the SUID permission is set (-rws). The user permission is octal 7, or binary 111, indicating read,
write, and execute for the file's owner (in this case, root). Both the group and other permissions are
set to octal 5, or binary 101, indicating read and execute, but not write.

6.5.1.2. The mode string

As mentioned earlier, the user, group, and other permissions are often spelled out in symbolic mode
descriptions such as rwxr-xr-x. This notation is found in the output of the ls -l and stat commands.
As you can see in the access mode for mount, this scheme is modified slightly in the presence of
special permissions. Instead of adding three more bits to the left of rwxr-xr-x, the SUID permission
is indicated in the string by changing the user execute position from x to s. SGID permission is
handled the same way. The sticky permission is indicated by replacing x in the other execute
position with T. For example, an executable program with mode 6755 would have the following
equivalent symbolic mode:

rwsr-sr-x

1 001

2 010

3 011

4 100

5 101

6 110

7 111

To turn the mode bits 110111101001 into an octal representation, first separate them into chunks of
three bits: 110, 111, 101, and 001. The first group, representing the special permissions, is 110.
This can be thought of as 4 + 2 + 0 = 6. The second group, representing user permissions, is 111, or
4 + 2 + 1 = 7. The third group, representing group permissions, is 101, or 4 + 0 + 1 = 5. The last
group, representing other permissions, is 001, or 0 + 0 + 1 = 1. The mode string for this example
can then be written as the octal 6751.

This is the form used to display the file mode in the output from the stat command. Here, the octal
access mode for the mount command is 4755:

stat /bin/mount
 File: "/bin/mount"
 Size: 53620 Filetype: Regular File
 Mode: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
Device: 3,2 Inode: 20335 Links: 1
Access: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Modify: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Change: Wed Dec 8 20:59:02 1999(00024.13:32:58)

The special permissions are represented in this example by octal 4, or binary 100, indicating that
the SUID permission is set (-rws). The user permission is octal 7, or binary 111, indicating read,
write, and execute for the file's owner (in this case, root). Both the group and other permissions are
set to octal 5, or binary 101, indicating read and execute, but not write.

6.5.1.2. The mode string

As mentioned earlier, the user, group, and other permissions are often spelled out in symbolic mode
descriptions such as rwxr-xr-x. This notation is found in the output of the ls -l and stat commands.
As you can see in the access mode for mount, this scheme is modified slightly in the presence of
special permissions. Instead of adding three more bits to the left of rwxr-xr-x, the SUID permission
is indicated in the string by changing the user execute position from x to s. SGID permission is
handled the same way. The sticky permission is indicated by replacing x in the other execute
position with T. For example, an executable program with mode 6755 would have the following
equivalent symbolic mode:

rwsr-sr-x

A directory with mode 1774 would have this equivalent string:

rwxr-xr-T

While this layering of special permissions may appear to obscure the underlying execute
permissions, it makes sense. The special permissions are relatively rare in the filesystem, so
depicting the three extra bits would waste space on your terminal or terminal window. When the
executable bits are set, the setuid and setgid bits are represented with s. When the executable bits
are not set, the setuid and setgid bits are represented with S. Similarly, the sticky bit is represented
with either t or T.

6.5.2. Setting Access Modes

New files are created with a default access mode to automatically set the permission levels.
Regardless of your default umask, access modes on existing files can be changed or modified at will.

6.5.2.1. New files

When new files are created, the protection bits are set according to the user's default setting . That
default is established using the umask command, probably in a startup script. This command
accepts only one argument, which is a three-digit octal string that masks the user, group, and other
permission bits for newly created files and directories. Without a value, umask reports the current
value:

$ umask
0022

When provided with an integer, umask sets the value for the current shell:

$ umask 2
$ umask
0002

A umask of 22 can be rewritten as 022, or as 000010010 in binary.

The process of creating the initial mode for newly created files begins with a raw initial mode string,
as defined in .

Table 6-4. Initial access modes

Form For files For directories

Symbolic rw-rw-rw- rwxrwxrwx

Binary 110110110 111111111

Octal 6 6 6 7 7 7

The special bits are always turned off and are not masked by the umask. When a file is created, the
umask is subtracted from 666; for directories, it is subtracted from 777. This calculation yields the
effective protection mode for the file or directory. For example, a umask of 22 (022) is applied to a
new file, masking the write permission for group and other user classes:

 110 110 110
- 000 010 010

 110 100 100

This is the same as mode 644, or rw-r--r--.

Using the same mask on a directory yields a similar result:

 111 111 111
- 000 010 010

 111 101 101

This is the same as mode 755 or rwxr-xr-x, which is appropriate for directories. A umask of 002 or
022 is typical, although if you wish to ensure maximum privacy, a umask of 077 blocks all access
except for the superuser. To set a custom umask, enter the umask command in a startup script,
such as .bash_profile. Here's an example of the umask in action:

$ umask 27
$ touch afile
$ mkdir adir
$ ls -ld adir afile
drwxr-x--- 2 jdean jdean 1024 Jan 2 20:31 adir
-rw-r----- 1 jdean jdean 0 Jan 2 20:31 afile

In this case, the umask of 27 makes the file afile read-only to members of the group and disallows
access to the file to all others.

As you can see in the output of the previous example, ls adds an extra letter at the beginning of the
mode string for the adir directory. This symbol indicates the type of file being listed and is not part
of the access mode. The letter d indicates a directory, a - indicates a file, the letter l indicates a

symbolic link, a b indicates a block device (such as a disk), and a c indicates a character device
(such as a terminal).

6.5.2.2. Changing access modes

Access modes can be changed with the chmod command, which accepts either octal or symbolic
access mode specifications. Octal bits, as shown in the previous section, are specified explicitly.
However, some people prefer to use symbolic forms because they usually modify an existing mode
instead of completely replacing it. Symbolic mode specifications have three parts, made up of
individual characters, as shown in Table 6-5.

Table 6-5. Symbolic modes for the chmod command

Category Mode Description

User class u User

 g Group

 o Other

 a All classes

Operation - Take away permission

 + Add permission

 = Set permission exactly

Permissions r Read permission

 w Write permission

 x Execute permission

X Execute permission for directories and files with another execute permission,

but not plain files

 s SUID or SGID permissions

 t Sticky bit

The individual user class characters and permissions characters may be grouped to form compound
expressions, such as ug for user and group combined or rw for read and write. Here are some
examples of symbolic mode specifications:

u+x

Add execute permission for the user.

go-w

Remove write permission from group and other classes.

o+t

Set the sticky bit.

a=rw

Set read and write, but not execute, permissions for everyone.

a+X

Give everyone execute permission for directories and for those files with any existing execute
permission.

The chmod command is used to modify the mode.

Syntax

chmod [options] symbolic_mode[,symbolic_mode]...

files

chmod [options] octal_mode files

chmod [options] --reference=rfile files

Description

Modify the access mode on files. In the first form, use one or more comma-separated
symbolic_mode specifications to modify files. In the second form, use an octal_mode to modify
files. In the third form, use the mode of rfile as a template to be applied to files.

Frequently used options

-c

Like verbose mode, but report only changes.

-R

Use recursive mode, descending through directory hierarchies under files and making

modifications throughout.

-v

Use verbose behavior, reporting actions for all files.

Example 1

Set the mode for a file to rw-r--r--, using an octal specification:

$ chmod 644 afile
$ ls -l afile
-rw-r--r-- 1 jdean jdean 0 Jan 2 20:31 afile

Example 2

Set the same permission using a symbolic specification, using the verbose option:

$ chmod -v u=rw,go=r afile
mode of afile retained as 0644 (rw-r--r--)

Example 3

Recursively remove all permissions for other on a directory:

$ chmod -R -v o-rwx adir
mode of adir retained as 0770 (rwxrwx---)
mode of adir/file1 changed to 0660 (rw-rw----)
mode of adir/file2 changed to 0660 (rw-rw----)
mode of adir/file3 changed to 0660 (rw-rw----)
mode of adir/file4 changed to 0660 (rw-rw----)
mode of adir/dir1 changed to 0770 (rwxrwx---)
mode of adir/dir1/file6 changed to 0660 (rw-rw----)
mode of adir/dir1/file5 changed to 0660 (rw-rw----)
mode of adir/dir2 changed to 0770 (rwxrwx---)

Example 4

Set the sticky bit on a directory:

$ chmod -v +t adir
mode of adir changed to 1770 (rwxrwx--T)

6.6. Setting Up a Workgroup Directory

The steps you may use to create a useful workgroup directory for a small team of people are briefly
described here. The goals of the directory are as follows:

The workgroup is to be called sales and has members jdoe, bsmith, and jbrown.

The directory is /home/sales.

Only the creators of files in /home/sales should be able to delete them.

Members shouldn't worry about file ownership, and all group members require full access to
files.

Nonmembers should have no access to any of the files.

The following steps will satisfy the goals:

Create the new group:

groupadd sales

1.

Add the existing users to the group:

usermod -G sales jdoe
usermod -G sales bsmith
usermod -G sales jbrown

2.

Create a directory for the group:

mkdir /home/sales

3.

Set the ownership of the new directory:

chgrp sales /home/sales

4.

Protect the directory from others:5.

chmod 770 /home/sales

5.

Set the SGID bit to ensure that the sales group will own all new files. Also set the sticky bit to

protect files from deletion by non-owners:

chmod g+s,o+t /home/sales

6.

Test it:

su - jdoe
$ cd /home/sales
$ touch afile
$ ls -l afile
-rw-rw-r-- 1 jdoe sales 0 Jan 3 02:44 afile
$ exit
su - bsmith
cd /home/sales
rm afile
rm: cannot unlink 'afile': Operation not permitted

7.

After the ls command, we see that the group ownership is correctly set to sales. After the rm
command, we see that bsmith cannot delete afile, which was created by jdoe. We also note that

although afile has mode 664, the directory containing it has mode 770, preventing other users from
reading the file.

On the Exam

For the exam, you should be prepared to answer questions on file and directory
permissions in both symbolic and numeric (octal) forms. You should also be able to
translate between the two forms given an example.

6.7. Objective 6: Manage File Ownership

Modification of ownership parameters may become necessary when moving files, setting up
workgroups, or working in a user's directory as root. This is accomplished using the chown
command, which can change user and group ownership, and the chgrp command for modifying
group ownership.

Syntax

chown [options] user-owner files

chown [options] user-owner. files

chown [options] user-owner.group-owner files

chown [options] .group-owner files

chown [options] --reference=rfile files

Description

Used to change the owner and/or group of files to user-owner and/or group-owner. In the
first form, user-owner is made the owner of files and the group is not affected. In the second
form (note the trailing dot on user-owner), the user-owner is made the owner of files and the
group of the files is changed to user-owner's default group. In the third form, both user-owner
and group-owner are assigned to files. In the fourth form, only the group-owner is assigned to
files, and the user is not affected. In the fifth form, the owner and group of rfile is used as
a template and applied to files. Only the superuser may change file ownership, but group
ownership may be set by anyone belonging to the target group-owner.

Tip: Note that historically BSD systems have used the user.group syntax, but SysV-based systems have used user:group (: instead of .).

Older versions of GNU chown only accepted the BSD syntax, but recent versions support both.

Frequently used options

-c

Like verbose mode, but report only changes.

-R

Use recursive mode, descending through directory hierarchies under files and making

modifications throughout.

-v

Use verbose behavior, reporting actions for all files.

Example 1

As root, set the user owner of a file:

chown -v jdoe afile
owner of afile changed to jdoe

Example 2

As root, set the user and group owner of a file:

chown -v jdoe.sales afile
owner of afile changed to jdoe.sales

Syntax

chgrp [options] group-owner files

chgrp [options] --reference=rfile files

Description

Change the group owner of files to group-owner. In the first form, set the group-owner of
files. In the second form, the group of rfile is used as a template and applied to files.

Options and usage are the same as that of chown

Example 1

Recursively change the group owner of the entire sales directory:

chgrp -Rv sales sales
changed group of 'sales' to sales
changed group of 'sales/file1' to sales
changed group of 'sales/file2' to sales
...

6.8. Objective 7: Create and Change Hard and Symbolic
Links

Often it is useful to have access to a file in multiple locations in a filesystem. To avoid creating
multiple copies of the file, use a link. Links don't take up very much space, as they only add a bit of
metadata to the filesystem, so they're much more efficient than using separate copies.

There are two types of links used on Linux:

Symbolic links

A symbolic link is simply a pointer to another filename. When Linux opens a symbolic link, it
reads the pointer and then finds the intended file that contains the actual data. Symbolic links
can point to other filesystems, both local and remote, and they can point to directories. They
are clearly listed as being a link with the ls -l command by displaying a special "l" (a lowercase
L) in column one, and they have no file protections of their own (the actual file's permissions
are used instead).

A symbolic link can point to a filename that does not actually exist. Such a symbolic link is
said to be broken or stale.

Hard links

A hard link is not really a link at all. It is simply another directory entry for an existing file.
The two directory entries have different names but point to the same inode and thus to the
same actual data, ownership, permissions, and so on. In fact, when you delete a file, you are
only removing a directory entry (in other words, one hard link to the file). As long as any
directory entries remain, the file's inode is not actually deleted. In fact, a file is not deleted
until its link count drops to zero (and the file is no longer open for reading or writing).

Hard links have two important limitations. First, because all of the links to a file point to the
same inode, any hard links must by definition reside on the same filesystem. Second, hard
links cannot point to directories. However, hard links take no disk space beyond an additional
directory entry.

6.8.1. Why Links?

To see an example of the use of links in practice, consider the directories in /etc/rc.d on a typical
Red Hat system:

drwxr-xr-x 2 root root 1024 Dec 15 23:05 init.d
-rwxr-xr-x 1 root root 2722 Apr 15 1999 rc
-rwxr-xr-x 1 root root 693 Aug 17 1998 rc.local
-rwxr-xr-x 1 root root 9822 Apr 13 1999 rc.sysinit

drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc0.d
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc1.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc2.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc3.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc4.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc5.d
drwxr-xr-x 2 root root 1024 Dec 14 23:37 rc6.d

Inside init.d are scripts to start and stop many of the services on your system, such as httpd, crond,
and syslogd. Some of these files are to be executed with a start argument, while others are run with
a stop argument, depending on the runlevel of your system. To determine just which files are run
and what argument they receive, a scheme of additional directories has been devised. These
directories are named rc0.d through rc6.d, one for each runlevel (see for a complete description of
this scheme). Each of the runlevel-specific directories contains several links , each with a name that
helps determine the configuration of services on your system. For example, rc3.d contains the
following links, among many others:

S30syslog -> ../init.d/syslog
S40crond -> ../init.d/crond
S85httpd -> ../init.d/httpd

All of these links point back to the scripts in init.d as indicated by the arrows (->) after the script
name. If these links were copies of the scripts, editing would be required for all of the runlevel-
specific versions of the same script just to make a single change. Instead, links allow us to:

Make changes to the original file once. References to the links will yield the updated contents
as long as the filename doesn't change.

Avoid wasting disk space by having multiple copies of the same file in different places for
"convenience."

As another example, consider the directory for the kernel source,
/lib/modules/kernel_version/build:

build -> /usr/src/linux-2.4.18

Makefiles and other automated tools for building third-party kernel modules can refer to
/lib/modules/'uname -r'/build, but in reality they reference /usr/src/linux-2.4.18. If a new kernel is
added, say version 2.4.20, its source would be placed into an appropriately named directory and the
build link in the new modules directory would be set, as follows:

build -> /usr/src/linux-2.4.20

Now the appropriate directory can be selected simply by changing the link. No files need to be
moved or deleted. Once created, links are normal directory entries, which may be copied, renamed,

deleted, and backed up.

Symbolic and hard links are created with the ln command.

Syntax

ln [options] file link

ln [options] files directory

Description

Create links between files. In the first form, a new link is created to point to file, which must
already exist. In the second form, links are created in directory for all files specified.

Hard links are created unless the -s option is specified.

Frequently used options

-f

Overwrite (force) existing links, or existing files in the destination directory.

-i

Prompt interactively before overwriting destination files.

-s

Create a symbolic link rather than a hard link.

Example 1

Note that the Bourne shell sh on a Linux system is a symbolic link to bash:

$ ls -l /bin/bash /bin/sh
-rwxr-xr-x 1 root root 626028 Feb 11 07:34 /bin/bash
lrwxrwxrwx 1 root root 4 Feb 23 10:24 /bin/sh -> bash

Example 2

Create a file named myfile, a symbolic link to that file named myslink, and a hard link to that
file named myhlink, then examine them:

$ touch myfile

$ ln -s myfile myslink
$ ln myfile myhlink
$ ls -l my*
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myfile
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myhlink
lrwxrwxrwx 1 jdoe jdoe 6 Jan 3 13:21 myslink -> myfile

Using the stat command on my* demonstrates that myfile and myhlink both ultimately reference the
same inode (the inode numbers are the same) and indicates the number of hard links to the file:

stat my*
File: 'myfile'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2003-03-15 21:36:33.000000000 -0600
Modify: 2003-03-15 21:36:33.000000000 -0600
Change: 2003-03-15 21:36:33.000000000 -0600
 File: 'myhlink'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2003-03-15 21:36:33.000000000 -0600
Modify: 2003-03-15 21:36:33.000000000 -0600
Change: 2003-03-15 21:36:33.000000000 -0600
 File: 'myslink' -> 'myfile'
 Size: 6 Blocks: 0 IO Block: 4096 Symbolic Link
Device: 3a05h/14853d Inode: 1213365 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2003-03-15 21:36:33.000000000 -0600
Modify: 2003-03-15 21:36:33.000000000 -0600
Change: 2003-03-15 21:36:33.000000000 -0600

Note that the symbolic link has an inode of its own, which can also be displayed using the -i option
to ls:

ls -li my*
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myfile
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myhlink
1213365 lrwxrwxrwx 1 root root 6 Mar 15 21:36 myslink -> myfile

Here you can see that the directory entries for myfile and myhlink both point to inode 1212467,
while the directory entry for myslink points to inode 1213365. That inode contains the symbolic link
to myfile.

As another example, consider the two filesystems in Figure 6-3. The root partition on /dev/sda1
holds a file intended as an example bash startup file, located in /etc/bashrc_user. On the same
filesystem, the root user has elected to use /etc/bashrc_user. Not wanting to maintain both files
individually, root has created a hard link, /root/.bashrc, to the example file.

Figure 6-3. Hard and symbolic links

Both of the directory entries, /etc/bashrc_user and /root/.bashrc, point to the same text data in the
same file, described by the same inode, on /dev/sda1. User jdoe has also elected to link to the
example file. However, since his home directory is located in /home on /dev/sda9, jdoe cannot use a

hard link to the file on /dev/sda1. Instead, he created a symbolic link, /home/jdoe/.bashrc, which
points to a small file on /dev/sda9. This contains the pointer to directory entry /etc/bashrc_user,
which finally points at the text. The result for root and jdoe is identical, though the two styles of

links implement the reference in completely different ways.

6.8.1.1. Preserving links

Programs such as tar and cp contain options that control whether symbolic links are followed during
operation. In the case of a tar backup, this may be important if you have multiple links to large files,
because you would get many redundant backups of the same data.

When a symbolic link is encountered with cp, the contents of the file to which the link points are
copied unless the -d option is specified. This "no dereference" operator causes cp to copy the links
themselves instead. For example, consider a directory dir1 containing a symbolic link, which is
recursively copied to other directories with and without the -d option:

ls -l dir1
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Dec 12 17:12 file2
cp -r dir1 dir2
ls -l dir2
total 3117
-rw-r--r-- 1 root root 3164160 Jan 4 02:43 file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2
cp -rd dir1 dir3
ls -l dir3
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2

Directory dir2 has a copy of the entire file1, which is large, probably wasting disk space. Directory
dir3, created with cp -rd, is the same as dir1 (including the symbolic link) and takes very little
space.

6.8.1.2. Finding links to a file

Finding the file pointed to by a symbolic link is simple. The ls -l command displays a convenient
pointer notation, indicating just where links are pointing:

lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1

Going the other way and finding symbolic links to a file is less obvious but is still relatively easy. The
-lname option to the find utility locates them for you by searching for symbolic links containing the
original filename. Here, the entire local filesystem is searched for myfile, turning up three symbolic
links:

find / -lname myfile
/home/world/rootsfile
/home/finance/hisfile
/root/myslink

Remember that symbolic links could be anywhere, including being located on a remote system (if
you're sharing files), so you may not be able to locate them all. (See "Objective 3: Perform Basic File
Management in Chapter 5 for additional information on the find command).

Since hard links aren't really links but duplicate directory entries, you can locate them by searching
directory entries for the inode, which is identical in all the links. Unlike symbolic links, you are
guaranteed to find all of the links since hard links cannot cross filesystem boundaries. First, identify
the inode you're interested in, as well as the filesystem that contains the links:

df file1
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda9 1981000 451115 1427473 24% /home
ls -i file
90469 file1

file1 is on the /home filesystem, and its inode

number is 90469. Next, find is used with the -inum
option to locate all instances of inode 90469:
find /home -inum 90469
/home/world/file1
/home/finance/file1
/home/jdoe/private/.myfile1

This example turns up three links to file1, including one that user jdoe appears to be hiding!

On the Exam

You should be prepared to identify the differences between hard and symbolic links,
when each is used, and their limitations.

6.9. Objective 8: Find System Files and Place Files in the
Correct Location

In 1993, the Linux community formed a project to provide a standardized filesystem layout for all
general-purpose distributions of Linux. The intent of this standardization was to provide advice on
how to reduce the proliferation of proprietary Linux filesystem layouts and their possible contribution
to market fragmentation.

The project released a document describing the Linux Filesystem Standard, usually abbreviated
FSSTND, in 1994. The following year, the group began to reduce Linux-specific content and to refine
the standard to include other Unix or Unix-like operating systems. As the FSSTND attracted broader
appeal, it was renamed the Filesystem Hierarchy Standard. Although the FHS is not a requirement of
Linux developers and distributors, the Linux community understands the importance of standards,
and all major distributions support the standard.

Tip: The full FHS specification is available at http://www.pathname.com/fhs/. The information in this chapter is consistent with version 2.2 of the

specification.

6.9.1. Data Types

To frame its recommendations, the FHS defines two categories of data use, each with two opposing
subtypes:

Data sharing

This category defines the scope of data use in a networked environment:

Sharable

Sharable data can be used by multiple host systems on a network. Sharable files contain
general-purpose information, without ties to any specific host. Examples include user datafiles,
executable program files, and system documentation.

Non-sharable

Data is not sharable when linked to a specific host, such as a unique configuration file.

Data modification

This category specifies how data changes:

http://www.pathname.com/fhs/

Variable

Data is considered variable when changed by natural, frequent processes. Examples include
user files and system log files, such as /var/log/messages.

Static

Static data is left alone for the most part, remaining the same from day to day or even year to
year. Examples include binary programs such as ls and bash, which change only when the
system administrator performs an upgrade.

Some directories in the Linux filesystem are intended to hold specific types of data. For example, the
executable files in /usr are rarely changed, and thus could be defined as static because they are
needed by all users on a network. Before disks were as large as they are today, the files commonly
found in /usr were often mounted from remote servers to preserve local disk space. Thus, in
addition to being static, /usr is said to be sharable. Keeping files organized with respect to these
attributes can simplify file sharing, system administration, and backup complexity, as well as reduce
storage requirements. The FHS arranges the preceding data categories into a 2 x 2 matrix, as shown
with a few example directories in Table 6-6.

Table 6-6. FHS data types

 Sharable Non-sharable

Static /usr

/usr/local

/etc

/boot

Variable /var/mail

/home

/var/log

/proc

On many networks, /usr and /usr/local are mounted by individual workstations from an NFS server.
This can save a considerable amount of local storage on the workstations. More important, placing
these directories on another system can make upgrades and additions much simpler. These
directories are usually shared as read-only filesystems because they are never modified by most end
users. The /var/mail and /home directories, on the other hand, are shared but must be changed
regularly by users. The /etc and /boot directories contain files that are static in the sense that only
the administrator changes them, but sharing them is not necessary or advised, since they are local
configuration files. The /var/log and /proc directories are very dynamic but also of local interest
only.

6.9.2. The root Filesystem

The FHS offers a significant level of detail describing the exact locations of files, using rationale
derived from the static/variable and sharable/nonsharable definitions. However, knowledge of the
location of every file is not necessary or required for Exam 101. This section discusses the major
portions of the FHS directory hierarchy overall, with specific example files offered as illustrations.

Tip: While the FHS is a defining document for the Linux filesystem, it does not follow that all directories described in the FHS will be present in

all Linux installations. Some directory locations cited in the FHS are package-dependent or open to customization by the vendor.

The root filesystem is located at the top of the entire directory hierarchy. The FHS defines these
goals for the root filesystem:

It must contain utilities and files sufficient to boot the operating system, including the ability to
mount other filesystems. This includes utilities, device files, configuration, boot loader
information, and other essential start-up data.

It should contain the utilities needed by the system administrator to repair or restore a
damaged system.

It should be relatively small. Small partitions are less likely to be corrupted due to a system
crash or power failure than large ones are. In addition, the root partition should contain non-
sharable data to maximize the remaining disk space for sharable data.

Software should not create files or directories in the root filesystem.

While a Linux system with everything in a single root partition may be created, doing so would not
meet these goals. Instead, the root filesystem should contain only essential system directories ,
along with mount points for other filesystems. Essential root filesystem directories include:

/bin

The /bin directory contains executable system commands such as cp, date, ln, ls, mkdir, and
more. These commands are deemed essential to system administration in case of a problem.

/dev

Device files, necessary for accessing disks and other devices, are stored in /dev. Examples
include disk partitions, such as hda1, and terminals, such as tty1. Devices must be present at
boot time for proper mounting and configuration. The exception to this rule is systems using
devfs, which is a relatively recent addition to the Linux kernel that makes /dev a virtual
filesystem, much like /proc, where device special files are created by the kernel when drivers
register devices. Use of devfs is currently not covered by the Level 1 Objectives.

/etc

The /etc directory contains configuration information unique to the system and is required for
boot time. No binary executable programs are stored here. Prior practice in various versions of
Unix had administrative executable programs stored in /etc. These have been moved to /sbin
under the FHS. Example files include passwd, hosts, and login.defs.

/lib

The /lib directory contains shared libraries and kernel modules, both essential for system
initialization.

/mnt

This directory is provided for the local system administrator's use. Generally, it is empty

except for some mount points for temporary partitions, including cdrom and floppy.

/root

The recommended default (but optional) home directory for the superuser is /root. While it is
not absolutely essential for /root to be on the root filesystem, it is customary and convenient,
because doing so keeps root's configuration files available for system maintenance or
recovery.

/sbin

Essential utilities used for system administration are stored in /sbin. Examples include fdisk,
fsck, and mkfs.

The remaining top-level directories in the root filesystem are considered non-essential for
emergency procedures:

/boot

The /boot directory contains files for the boot loader (such as LILO or GRUB). Because it is
typically small, it can be left in the root filesystem. However, it is often separated to keep the
boot loader files within the first 1024 cylinders of a physical disk.

/home

The /home filesystem contains home directories for system users. This is usually a separate
filesystem and is often the largest variable filesystem in the hierarchy.

/opt

The /opt directory is intended for the installation of software other than that packaged with
the operating system. This is often the location selected by third-party software vendors for
their products.

/tmp

The /tmp directory is for the storage of temporary files. The FHS recommends (but does not
require) that its contents are deleted upon every system boot.

/usr

The /usr filesystem contains a significant hierarchy of executable programs deemed
nonessential for emergency procedures. It is usually contained in a separate partition. It
contains sharable, read-only data, and is often mounted locally read-only and shared via NFS
read-only. /usr is described in detail in the next section.

/var

Like /usr, the /var filesystem contains a large hierarchy and is usually contained in a separate
partition. It holds data that varies over time, such as logs, mail, and spools.

6.9.2.1. The /usr filesystem

The /usr filesystem hierarchy contains system utilities and programs that do not appear in the root
partition. For example, user programs such as less and tail are found in /usr/bin. /usr/sbin contains
system administration commands such as adduser and traceroute, and a number of daemons
needed only on a normally operating system. No host-specific or variable data is stored in /usr. Also
disallowed is the placement of directories directly under /usr for large software packages. An
exception to this rule is made for X11, which has a strong precedent for this location.

The following subdirectories can be found under /usr:

/usr/X11R6

This directory contains files for XFree86. Because X is deployed directly under /usr on many
Unix systems, X breaks the rule that usually prohibits a custom /usr directory for a software
package.

/usr/bin

The /usr/bin directory is the primary location for user commands that are not considered
essential for emergency system maintenance (and thus are stored here rather than in /bin).

/usr/include

/usr/include is the standard location for include or header files, used for C and C++
programming.

/usr/lib

This directory contains shared libraries that support various programs. FHS also allows the
creation of software-specific directories here. For example, /usr/lib/perl5 contains the standard
library of Perl modules that implement programming functions in that language.

/usr/local

/usr/local is the top level of another hierarchy of binary files, intended for use by the system
administrator. It contains subdirectories much like /usr itself, such as /bin, /include, /lib, and
/sbin. After a fresh Linux installation, this directory contains no files but may contain an empty
directory hierarchy. Example items that may be found here are locally created documents in
/usr/local/doc or /usr/local/man, and executable scripts and binary utilities provided by the
system administrator in /usr/local/bin.

/usr/sbin

The /usr/sbin directory is the primary location for system administration commands that are
not considered essential for emergency system maintenance (and thus are stored here rather
than in /sbin).

/usr/share

/usr/share contains a hierarchy of datafiles that are independent of, and thus can be shared
among, various hardware architectures and operating system versions. This is in sharp
contrast to architecture-dependant files such as those in /usr/bin. For example, in an
enterprise that uses both i386- and Alpha-based Linux systems, /usr/share could be offered to
all systems via NFS. However, since the two processors are not binary-compatible, /usr/bin
would have two NFS shares, one for each architecture.

The information stored in /usr/share is static data, such as the GNU info system files,
dictionary files, and support files for software packages.

/usr/src

/usr/src is an optional directory on all modern glibc-based systems. On older libc4 and libc5-
based systems, /usr/src/linux was expected to contain a copy of the kernel source, or at least
the directories include/asm and include/linux for kernel header files.

On glibc-based systems, nothing should refer to the /usr/src/linux directory. In fact, leaving
kernel source at that location is generally regarded as a bad practice, since it has the potential
to confuse old software.

6.9.2.2. The /var filesystem

The /var filesystem contains data such as printer spools and log files that vary over time. Since
variable data is always changing and growing, /var is usually contained in a separate partition to
prevent the root partition from filling. The following subdirectories can be found under /var:

/var/account

Some systems maintain process accounting data in this directory.

/var/cache

/var/cache is intended for use by programs for the temporary storage of intermediate data,
such as the results of lengthy computations. Programs using this directory must be capable of
regenerating the cached information at any time, which allows the system administrator to
delete files as needed. Because it holds transient data, /var/cache never has to be backed up.

/var/crash

This optional directory holds crash dumps for systems that support that feature.

/var/games

This optional directory is used to store state information, user score data, and other transient
items.

/var/lock

Lock files, used by applications to signal their existence to other processes, are stored here.
Lock files usually contain no data.

/var/log

The /var/log directory is the main repository for system log files, such as those created by the
syslog system. For example, the default system log file is /var/log/messages.

/var/mail

This is the system mailbox, with mail files for each user. /var/mail is a replacement for
/var/spool/mail and aligns FHS with many other Unix implementations. You may find that your
Linux distribution still uses /var/spool/mail.

/var/opt

This directory is defined as a location for temporary files of programs stored in /opt.

/var/run

/var/run contains various files describing the present state of the system. All such files may be
deleted at system boot time. This is the default location for PID files, which contain the PIDs of
the processes for which they are named. For example, if the Apache web server, httpd, is
running as process number 534, /var/run/httpd.pid will contain that number:

cat /var/run/httpd.pid
534

Such files are needed by utilities that must be able to find a PID for a running process. Also located
here is the utmp file, used by commands such as who to display logged-in users.

/var/spool

The /var/spool directory contains information that is queued for processing. Examples include
print queues, outgoing mail, and crontab files.

/var/state

The /var/state directory is intended to contain information that helps applications preserve
state across multiple invocations or multiple instances.

/var/tmp

As with /tmp in the root filesystem, /var/tmp is used for storage of temporary files. Unlike
/tmp, the files in /var/tmp are expected to survive across multiple system boots. The
information found in /var/tmp could be considered more persistent than information in /tmp.

Although it is not specified this way in the FHS, some distributions use /var/tmp as a more
secure temporary directory for use by root.

/var/yp

This optional directory contains the database files of the Network Information Service (NIS), if
implemented. NIS was formerly known as yellow pages (not to be confused with the big yellow
book).

This directory shouldn't be confused with /var/nis, which is used by NIS+. Oddly, /var/nis is
mentioned in a footnote in FHS 2.2, but it does not have an entry in the specification.

6.9.2.3. Linux annex

Since FHS migrated away from being a Linux-only document and expanded to cover other operating
systems, information specific to any one operating system was moved to an annex. The only annex
listed in v2.0 of FHS is the Linux annex, which mentions a few guidelines and makes allowances for
the placement of additional program files in /sbin. The Linux annex also mentions and supports the
use of the /proc filesystem for the processing of kernel, memory, and process information.

6.9.2.4. Where's that binary?

Compiled executable files, called binary files, or just binaries, can be located in a number of places
in an FHS-compliant filesystem. However, it's easy to become a little confused over why a particular
executable file is placed where it is in the FHS. This is particularly true for bin and sbin directories,
which appear in multiple locations. Table 6-7 lists these directories and shows how each is used.

Table 6-7. Binary file locations

Type of file
User
commands

System admininistration
commands

Vendor-supplied, essential (root
filesystem)

/bin /sbin

Vendor-supplied, nonessential (/usr
filesystem)

/usr/bin /usr/sbin

Locally supplied, nonessential (/usr
filesystem)

/usr/local/bin /usr/local/sbin

6.9.3. Locating Files

FHS offers the Linux community an excellent resource that assures consistency across distributions
and other operating systems. In practice, however, file location problems can be frustrating, and the
need arises to find files in the system quickly. These file location tools are required for Exam 101:
which, find, locate, updatedb, whatis, and apropos.

which uses the PATH variable to locate executable files. find searches specified areas in the
filesystem. updatedb, whatis, and apropos utilize databases to do quick searches to identify and
locate files. locate offers a quick alternative to find for filename searches and is suited for locating
files that are not moved around in the filesystem. Without a fresh database to search, locate is not
suitable for files recently created or renamed.

whatis and apropos work similarly to locate but use a different database. The whatis database is a
set of files containing short descriptions of system commands, created by makewhatis. Note that
these commands are not specifically mentioned in this Objective but may appear on Exam 101.

Syntax

which command

Description

Determine the location of command and display the full pathname of the executable program

that the shell would launch to execute it. which searches only the user's path.

Example

Determine the shell that would be started by entering the tcsh command:

which tcsh
/bin/tcsh

which is small and does only one thing: determines what executable program will be found and
called by the shell. Such a search is particularly useful if you're having trouble with the setup of your
PATH environment variable or if you are creating a new version of an existing utility and want to be
certain you're executing the experimental version.

Syntax

find paths expression

Description

Locate files that match an expression starting at paths and continuing recursively. The find
command has a rich set of expression directives for locating just about anything in the

filesystem.

Example

To find files by name located in the /usr directory hierarchy that might have something to do
with the csh shell or its variants, you might use the -name filename directive:

find /usr -name "*csh*"
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c

Some of these results are clearly related to csh or to tcsh, while others are questionable. In addition,
this command may take a while because find must traverse the entire /usr hierarchy, examining
each filename for a match. This example demonstrates that if filename wildcards are used, the entire
string must be quoted to prevent expansion by the shell prior to launching find.

find is among the most useful commands in the Linux administrator's toolkit and has a variety of
useful options. find is handy in certain cases. For example:

You need to limit a search to a particular location in the filesystem.

You must search for an attribute other than the filename.

Files you are searching for were recently created or renamed, in which case locate may not be
appropriate.

Refer to Chapter 5 for additional information on the find command.

Tip: You should have a general understanding of find. Remember that by default, find prints matching directory entries to the screen. However,

detailed knowledge of find options and usage are beyond the scope of LPIC Level 1 exams.

Syntax

locate patterns

Description

Locate files whose names match one or more patterns by searching an index of files

previously created.

Example

Locate files by name in the entire directory hierarchy that might have something to do with
the csh shell or its variants:

locate csh
/home/jdean/.tcshrc
/root/.cshrc
/root/.tcshrc
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/FAQ
/usr/doc/tcsh-6.08.00/NewThings
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/tcsh-6.08.00/eight-bit.txt
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c
/etc/csh.cshrc
/etc/profile.d/kde.csh
/etc/profile.d/mc.csh
/bin/csh
/bin/tcsh

The locate command must have a recent database to search, and that database must be updated
periodically to incorporate changes in the filesystem. If the database is stale, using locate yields a
warning:

locate tcsh
locate: warning: database /var/lib/slocate/slocate.db' is more than 8 days old

Syntax

updatedb [options]

Description

Refresh (or create) the slocate database in /var/lib/slocate/slocate.db.

Option

-e directories

Exclude a comma-separated list of directories from the database.

Example

Refresh the slocate database, excluding files in temporary locations:

updatedb -e "/tmp,/var/tmp,/usr/tmp,/afs,/net,/proc"

updatedb is typically executed periodically via cron

Some Linux distributions (Debian, for example) come with a version of updatedb that accepts
additional options that can be specified on the command line:

Additional options

--netpaths='path1 path2 ...'

Add network paths to the search list.

--prunepaths='path1 path2 ...'

Eliminate paths from the search list.

--prunefs='filesystems ...'

Eliminate entire types of filesystems, such as NFS.

These options modify the behavior of updatedb on some Linux systems by prohibiting the
parsing of certain filesystem locations and by adding others. There are a few more of these
options than those listed here, but these three are special in that they can also be specified
through the use of environment variables set prior to updatedb execution. The variables are
NETPATHS, PRUNEPATHS, and PRUNEFS. These variables and the options to updatedb are
discussed here because this Objective makes specific mention of updatedb.conf, a sort of
control file for updatedb. Despite its name, updatedb.conf isn't really a configuration file, but
rather a fragment of a Bourne shell script that sets these environment variables. Example 6-2
shows a sample updatedb.conf file.

Example 6-2. Sample updatedb.conf file

This file sets environment variables used by updatedb
filesystems which are pruned from updatedb database:
PRUNEFS="NFS nfs afs proc smbfs autofs auto iso9660"
export PRUNEFS
paths which are pruned from updatedb database:
PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /amd /alex"
export PRUNEPATHS
netpaths which are added:
NETPATHS="/mnt/fs3"
export NETPATHS

In this example, the PRUNEFS and PRUNEPATHS variables cause updatedb to ignore types of
filesystems and particular paths, respectively. NETPATHS is used to add network paths from
remote directory /mnt/fs3.

updatedb.conf doesn't directly control updatedb, but eliminates the need for lengthy options
on the updatedb command line, which can make crontab files a bit cleaner.

On the Exam

Remember that updatedb does not require configuration to execute. On systems that
provide for configuration, updatedb.conf can specify a few extra options to updatedb by
way of environment variables.

Syntax

whatis keywords

Description

Search the whatis database for exact matches to keywords and display results.

Example

whatis mksw
mksw: nothing appropriate

Syntax

apropos keywords

Description

Search the whatis database for partial word matches to keywords and display results.

Example

apropos mksw
mkswap (8) - set up a Linux swap area

On the Exam

You must be familiar with the FHS concept and the contents of its major directories. Be
careful about the differences between (and reasons for) /bin and /sbin, root filesystem
and /usr filesystem, and locally supplied commands. Also practice with various file
locations techniques and be able to differentiate among them.

Chapter 7. The X Window System (Topic
1.1.10)

Unix has a long history that predates the popular demand for a graphical user interface (GUI).
However, a GUI is an essential part of running desktop systems today, and the standard GUI on
Linux systems is the X Window System, or more simply, X. Originally developed at MIT and Digital
Equipment Corporation, X's Version 11 Release 6 is the version most commonly seen in Linux
distributions. This version is more commonly referred to as X11R6, or just X11. X is a complete
windowing GUI and is distributable under license without cost. The implementation of X for Linux is
XFree86 (http://www.xfree86.org), which is available for multiple computer architectures and is
released under the GNU Public License. This section covers the following three Objectives on XFree86
for LPI Exam 101:

Objective 1: Install and Configure X11

An LPIC 1 candidate should be able to configure and install X and an X font server. This
Objective includes verifying that the video card and monitor are supported by an X server as
well as customizing and tuning X for the video card and monitor. It also includes installing an
X font server, installing fonts, and configuring X to use the font server (which may require
manually editing /etc/X11/XF86Config). Weight: 5.

Objective 2: Setup a Display Manager

This Objective states a candidate should be able to setup and customize a display manager.
This includes turning the display manager on or off and changing the display manager
greetings. It also includes changing default bitplanes for the display manager and configuring
display managers for use by X stations. This Objective covers the display managers xdm (X
Display Manager), gdm (Gnome Display Manager), and kdm (KDE Display Manager). Weight:
3.

Objective 4: Install and Customize a Window Manager Environment

LPIC candidates should be able to customize a system-wide desktop environment and/or
window manager to demonstrate an understanding of customization procedures for window
manager menus and/or desktop panel menus. This Objective includes selecting and
configuring the desired X terminal (xterm, rxvt, aterm, etc.), verifying and resolving library
dependency issues for X applications, and exporting X display to client workstations. Weight:
5.

http://www.xfree86.org

7.1. An Overview of X

X is implemented using a client/server model. X servers and clients can be located on the same
computer or separated across a network, so that computation is handled separately from display
rendering. While X servers manage hardware, they do not define the look of the display and they
offer no tools to manipulate clients. The X server is responsible for rendering various shapes and
colors on screen. Examples of X Servers include:

Software from XFree86, which controls your Linux PC's video card.

XFree86 software on a separate networked system, displaying output from a program running
on your system.

Other networked Unix systems running their own X server software.

X implementations for other operating systems, such as Microsoft Windows.

An X Terminal, which is a hardware device with no computational ability of its own, built solely
for display purposes.

X clients are user programs, such as spreadsheets or CAD tools, which display graphical output.
Examples of X clients are:

A browser, such as Mozilla or Konqueror.

A mail program, such as Evolution or Kmail.

Office applications, such as OpenOffice, Gnumeric, or AbiWord.

A terminal emulator, such as xterm, running within an X window.

A special client program called a window manager is responsible for these functions and provides
windows, window sizing, open and close buttons, and so forth. The window manager controls the
other clients running under an X server. Multiple window managers are available for XFree86,
allowing you to choose an interface style that suits your needs and personal taste.

A few complete graphical desktop environments are also available. These packages can include a
window manager and additional applications that work together to create a complete, unified
working environment. Most Linux distributions ship with either the KDE or GNOME, or both, along
with a number of standalone window managers. There is no standard window manager or
environment for Linux. The selection is entirely up to the user.

7.2. Objective 1: Install and Configure X11

Most Linux distributions install and automatically configure XFree86, freeing users from much of its
installation and configuration. However, Exam 101 requires specific knowledge of some of the
underpinnings of X configuration.

Warning: Be careful about installing an X server on a system that already has X installed. A backup should be made prior to the installation.

7.2.1. Selecting and Configuring an X Server

The XFree86 project provides support for an amazing array of graphics hardware. This outcome is
possible partly due to cooperation by manufacturers through public release of graphics device
documentation and driver software, and partly due to the tenacity of the XFree86 developers.
Fortunately, many manufacturers who were historically uninterested in offering technical information
to the XFree86 project have become cooperative. The result is that most recent video hardware is
well-supported by XFree86.

7.2.1.1. Supported video hardware

To avoid problems, it is important to verify XFree86 compatibility with your hardware prior to
installation. At the very least, you should be aware of these items:

Your XFree86 version

As with any software, improvements in XFree86 are made over time, particularly in support
for hardware devices. You should choose a version of XFree86 that offers a good balance
between the video support and stability you require. To determine the version of X you're
running, simply issue the following command:

$ /usr/X11R6/bin/X -version
XFree86 Version 4.0.1a / X Window System

The video chipset

XFree86 video drivers are written for graphics chipsets, not the video cards they're installed
on. Multiple video cards from a variety of manufacturers can carry the same chipset, making
those cards nearly identical in function. You must verify that the chipset on your video card is
supported by XFree86 to use advanced graphics features.

Monitor type

XFree86 can be configured to handle just about any monitor, particularly the newer and very
flexible multisync monitors sold today, which can handle preset configurations provided in the
XFree86 configuration utilities. However, if you have a nonstandard monitor, you need to
know some parameters describing its capabilities before configuring X, including your
monitor's horizontal sync frequency (in kHz), vertical refresh frequency (in Hz), and resolution
(in pixels). These items can usually be found in your monitor's documentation, but since most
monitors conform to standard display settings such as XGA (1024x768 pixels at 60 Hz vertical
refresh), you should be able to use a preset configuration.

7.2.1.2. Installing XFree86

The procedures for installation vary depending on the release of X you're using. For example, with
versions prior to 4.0, a specific X server is required to match your chipset to use modes other than
standard VGA. For versions after 4.0, a newer modular design allows a single server program to
manage all supported chipsets by calling driver modules. In addition, the type of XFree86
distribution you're using affects installation. XFree86 is available as source code, in precompiled
binary form, or as an RPM or Debian package.

It is rare that you'll actually need to install XFree86 by hand, as XFree86 is typically installed during
initial system installation for systems that plan to use X. Most Linux distributions include XFree86
packages on the installation media so you can install them from there using your distribution's
choice of package managers.

Some applications might require that you install a new release or development version of XFree86
that is not available as a package. In these cases, you can download the source files or precompiled
binaries from XFree86's mirror web sites, listed at http://www.xfree86.org. Refer to Chapter 4 for
more information on installing applications from packages or source.

7.2.1.3. Configuring an X server and the XF86Config file

XFree86 configuration differs slightly among versions and among Linux distributions, but essentially
involves the creation of the XF86Config file customized for your system. The X server uses this
configuration file as it starts to set such things as keyboard and mouse selections, installed fonts,
and screen resolutions.

XF86Config contains technical details concerning the capabilities of system hardware, which can be
intimidating for some users. For this reason, automated configuration tools are available that will
generate the file for you:

xf86config

This program is distributed with XFree86. It is a simple text-mode program that requests
information about the system from the user and then writes a corresponding XF86Config file.
This utility does not use information stored in an existing configuration file, so its utility is
limited. (Remember that xf86config is a binary program that writes the XF86Config text file.)

XF86Setup

This program was distributed with XFree86, though some distributions, such as Red Hat, have

http://www.xfree86.org

deprecated the tool. XF86Setup is a graphical program that starts a VGA X server, which
should run on most PC hardware. It allows you to select the graphics chipset, monitor, mouse,
and keyboard device types and writes the appropriate configuration file for you. As of XFree86
4.3.0, XF86Setup hasn't been updated for the new 4.x configuration. XFree86 plans to make it
available again in a future version.

xvidtune

This program is used to fine-tune video settings, adjusting your video display to your monitor.
xvidtune allows you to move your display up and down, left and right, similar to your monitor
controls but with a command-line interface. Depending on your video chipset, xvidtune may
also support a number of other options including invert states and screen wrapping.

xf86cfg

This program is distributed with XFree86 v4.0. Like XF86Setup, it is a graphical tool; however,
xf86cfg's interface is slightly different. Whereas other tools offer a menu-based approach,
xf86cfg offers a block diagram of the system, including a monitor, video device, keyboard, and
mouse. The user configures each element by manipulating its properties. When the user is
happy with the configuration, the tool writes the XF86Config file.

Distribution-specific tools

Various Linux distributors provide their own configuration utilities. For example, redhat-config-
xfree86 is distributed by Red Hat Software. It is an X based GUI tool that can probe graphics
chipsets and features. Older Red Hat systems (7.x and older) used a menu-based system
called Xconfigurator.

Example 7-1 contains an abbreviated XF86Config file created using the Red Hat Xconfigurator tool
for XFree86 v3.3.3. (The XF86Config files shown here are examples and are not intended for use on
your system.)

Example 7-1. A sample XF86Config file for XFree86 v3.3.3

File generated by XConfigurator.
Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "unix/:-1"
EndSection

Section "ServerFlags"
EndSection

Section "Keyboard"
 Protocol "Standard"
 AutoRepeat 500 5
 LeftAlt Meta
 RightAlt Meta
 ScrollLock Compose
 RightCtl Control
 XkbDisable

 XkbKeycodes "xfree86"
 XkbTypes "default"
 XkbCompat "default"
 XkbSymbols "us(pc101)"
 XkbGeometry "pc"
 XkbRules "xfree86"
 XkbModel "pc101"
 XkbLayout "us"
EndSection

Section "Pointer"
 Protocol "PS/2"
 Device "/dev/mouse"
 Emulate3Buttons
 Emulate3Timeout 50
EndSection

Section "Monitor"
 Identifier "My Monitor"
 VendorName "Unknown"
 ModelName "Unknown"
 HorizSync 31.5 - 64.3
 VertRefresh 50-90
 # 1280x1024 @ 61 Hz, 64.2 kHz hsync
 Mode "1280x1024"
 DotClock 110
 Htimings 1280 1328 1512 1712
 Vtimings 1024 1025 1028 1054
 EndMode
EndSection

Section "Device"
 Identifier "My Video Card"
 VendorName "Unknown"
 BoardName "Unknown"
 VideoRam 16256
EndSection

Section "Screen"
 Driver "svga"
 Device "My Video Card"
 Monitor "My Monitor"
 Subsection "Display"
 Depth 32
 Modes "1280x1024"
 ViewPort 0 0
 EndSubsection
EndSection

Under v3.3.3, the default location for the XF86Config file is in /usr/X11R6/lib/X11, though many
distributions use /etc/X11. The file contains the following sections:

Files

This section is used to specify the default font path and the path to the RGB database. Using
the FontPath "path" directive multiple times creates a list of directories that the X server will

search for fonts. The RGB database is an equivalence table of numeric red/green/blue color
values with names. Here's a short excerpt of the RGB database:

255 228 196 bisque
255 218 185 peach puff
255 218 185 PeachPuff
255 222 173 navajo white

Hundreds of these names are defined and may be used in the configuration of X applications where
color names are required.

ServerFlags

This section allows customization of X server options such as the handling of hotkeys.

Keyboard

This section is used to specify the keyboard input device, its parameters, and default
keyboard-mapping options.

Pointer

This section is used to define the pointing device (mouse).

Monitor

Multiple Monitor sections are used to define the specifications of monitors and a list of video
modes they can handle.

Device

Multiple Device sections are used to define video hardware (cards) installed.

Screen

The Screen section ties together a Device with a corresponding Monitor and includes some
configuration settings for them.

On the Exam

You don't need to memorize details about XF86Config, but it is an important file, and
your familiarity with it will be tested. In particular, be aware of what each of the
sections does for the X server, and remember that the Screen section ties together a
Device and a Monitor.

The XF86Config file format was modified slightly for XFree86 v4.0. In particular, a new ServerLayout
section has been added; it ties the Screen, Pointer, and Keyboard sections together. Example 7-2
contains an abbreviated XF86Config file created using the bundled xf86cfg tool from the XFree86
project.

Example 7-2. A Sample XF86Config file for XFree86 v4.0.1

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Section "Files"
EndSection

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
EndSection

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Protocol" "PS/2"
 Option "Device" "/dev/mouse"
EndSection

Section "Monitor"
 Identifier "Monitor0"
 VendorName "Monitor Vendor"
 ModelName "Monitor Model"
 HorizSync 31.5 - 64.3
 VertRefresh 50.0 - 90.0
EndSection

Section "Device"
 Identifier "Card0"
 Driver "nv"
 VendorName "NVidia"
 BoardName "Riva TNT"
 ChipSet "RIVATNT"
 BusID "PCI:1:0:0"

EndSection

Section "Screen"
 Identifier "Screen0"
 Device "Card0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 EndSubSection
EndSection

Under v4.0, the default location for the XF86Config file is in /etc/X11. The file contains the following
sections:

ServerLayout

This section ties together Screen with one or more InputDevices. Multiple ServerLayout
sections may be used for multiheaded configurations (i.e., systems with more than one
monitor).

Files

This section is used to add paths to fonts and color information, just as it is in XFree86 v3.3.3.

InputDevice

Multiple InputDevice sections should be used to include at least a keyboard and mouse.
Subsections within InputDevice in v4.0 replace the Pointer and Keyboard sections for XFree86
v3.3.3.

Monitor

This section is similar to the Monitor section for XFree86 v3.3.3, except that mode
specifications are not usually necessary. The X server is already aware of standard VESA video
modes and chooses the best mode based on the horizontal sync and vertical refresh rates.

Device

This section specifies the modular driver for the X server. Multiple Device sections can be
included to handle multiple graphics devices.

Screen

This section ties together a Monitor with a Device and is specified in the ServerLayout.
Multiple Screen sections can be included to handle multiple monitor/device pairs.

On the Exam

As already mentioned, you don't need to worry about details in XF86Config. However,
you should be aware of the major differences in the configuration files for XFree86
Versions 3.3 and 4.0.

7.2.2. X Fonts

XFree86 is distributed with a collection of fonts for most basic purposes, including text displays in
terminal windows and browsers. For many users, the default fonts are adequate, but others may
prefer to add additional fonts to their system. A variety of fonts are available, both free and
commercially, from many sources, such as Adobe. Some very creative fonts are created by
individuals and distributed on the Internet (a search should return some useful links to a query such
as XFree86 fonts).

XFree86 makes fonts that it finds in the font path available to client programs. A basic font path is
compiled into the X server, but you can specify your own font path using the FontPath directive in
the Files section of XF86Config. The simple syntax is:

FontPath "path"

For example:

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "/usr/X11R6/lib/X11/fonts/misc"
 FontPath "/usr/X11R6/lib/X11/fonts/Type1"
 FontPath "/usr/X11R6/lib/X11/fonts/Speedo"
 FontPath "/usr/X11R6/lib/X11/fonts/100dpi"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi"
 FontPath "/usr/X11R6/lib/X11/fonts/local"
EndSection

This group of FontPath directives creates a font path consisting of six directories, all under
/usr/X11R6/lib/X11/fonts. When XFree86 starts, it parses these font directories and includes their
contents in the list of fonts available during the X session.

7.2.2.1. Installing fonts

Adding new fonts is straightforward. (For this brief discussion, we assume that we're working with
Type 1 fonts. Other types, such as TrueType fonts, may require additional configuration depending
on your version of XFree86.) First, a suitable directory should be created for the new fonts, such as
/usr/X11R6/lib/X11/local or /usr/local/fonts. You may wish to separate your own fonts from the
default XFree86 directories to protect them during upgrades. After the fonts are installed in the new

directory, the mkfontdir utility is run to catalog the new fonts in the new directory. New entries are
added to the XF86Config file to include the path for new fonts. For example:

FontPath "/usr/local/fonts"

At this point, the X server can be restarted to recognize the new fonts, or the fonts can be
dynamically added using the xset command:

xset fp+ /usr/local/fonts

xset is beyond the scope of the LPIC Level 1 exams.

On the Exam

Be sure you understand how the X font path is created and how to extend it to include
additional directories. Knowledge of the internal details of font files is not necessary.

7.2.2.2. The X font server

On a network with multiple workstations, managing fonts manually for each system can be time
consuming. To simplify this problem, the administrator can install all of the desired fonts on a single
system and then run xfs, the X fonts server, on that system. On a local system, xfs off-loads the
work of rendering fonts from the X server, which means the X server can do other tasks while fonts
are being rendered. This is especially noticeable on slower systems or systems without an FPU.

The X font server is a small daemon that sends fonts to clients on both local and remote systems.
Some Linux distributions use xfs exclusively, without a list of directories in the manually created font
path. To include xfs in your system's font path, add a FontPath directive like this:

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "unix/:-1"
EndSection

If you install xfs from a package from your distribution, it is probably automatically configured to
start at boot time and run continually, serving fonts to local and remote client programs. To start xfs
manually, simply enter the xfs command. For security purposes, you may wish to run xfs as a non-
root user. xfs is configured using its configuration file, /etc/X11/fs/config. Example 7-3 contains an
example config file for xfs.

Example 7-3. Sample configuration file for xfs

Allow a max of four clients to connect to this font server
client-limit = 4

When a font server reaches its limit, start up a new one
clone-self = on
catalogue = /usr/X11R6/lib/X11/fonts/misc:unscaled,
 /usr/X11R6/lib/X11/fonts/75dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/100dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/misc,
 /usr/X11R6/lib/X11/fonts/Type1,
 /usr/X11R6/lib/X11/fonts/Speedo,
 /usr/X11R6/lib/X11/fonts/75dpi,
 /usr/X11R6/lib/X11/fonts/100dpi,
 /usr/share/fonts/ISO8859-2/100dpi,
 /usr/share/fonts/ISO8859-9/100dpi,
 /usr/X11R6/lib/X11/fonts/local

In 12 points, decipoints
default-point-size = 120

100 x 100 and 75 x 75
default-resolutions = 75,75,100,100

How to log errors
use-syslog = on

As you can see, the config file contains the following keyword=value pairs:

catalogue

This keyword holds a comma-separated list of directories containing fonts to be served by xfs.
This is where new font directories are added.

alternate-servers (strings)

This section contains a listing of alternate font servers that can be found on the local machine
or on other machines.

client-limit

This shows the maximum number of client requests to be served.

clone-self

When on, the font server makes copies of itself if it reaches the client-limit.

You don't need to remember details about the contents of the xfs configuration file (config), but be
aware of the use and general contents of the file. In particular, remember that the catalogue

keyword is used similarly to FontPath in XF86Config.

On the Exam

Remember that xfs can take the place of the list of directories in a manually configured
font path. However, running xfs doesn't replace the font path. xfs itself must be on that
path as shown earlier in Example 7-1 with the FontPath 'unix/:-1' entry.

7.2.3. Controlling X Applications with .Xresources

The X Window System also has many built-in customization features. Many X applications are
programmed with a variety of resources, which are configuration settings that can be externally
manipulated. Rather than have a configuration utility built into each application, applications can be
written to examine the contents of a file in the user's home directory. The .Xresources file contains a
line for each configured resource in the following form:

program*resource: value

This line can be translated as follows:

program is the name of a configurable program, such as emacs or xterm.

resource is one of the configurable settings allowed by the program, such as colors.

value is the setting to apply to the resource.

For example, the following is an excerpt from .Xresources that configures colors for an xterm:

xterm*background: Black
xterm*foreground: Wheat
xterm*cursorColor: Orchid
xterm*reverseVideo: false

On the Exam

You should be aware of X resources and the function of the .Xresources file. In
particular, you should understand that X applications will look in the .Xresources file for
settings. You should also be able to construct a resource setting given a particular
example, but you do not need to be able to generate a configuration file from scratch.

7.3. Objective 2: Set Up a Display Manager

The display manager is the tool to manage X sessions on physical displays both locally and across
the network. Part of its job is to handle user authentication through a graphical login screen, which
replaces the familiar text-mode login.

7.3.1. Configuring xdm

xdm is distributed as part of XFree86 and is configured by a series of files located in /etc/X11/xdm.
These files include:

Xaccess

This file controls inbound requests from remote hosts.

Xresources

This file is similar to .Xresources, discussed earlier. It holds configuration information for some
xdm resources, including the graphical login screen. This file can be edited to modify the
appearance of the xdm login screen.

Xservers

This file associates the X display names (:0, :1, ...) with either the local X server software or
a foreign display such as an X terminal.

Xsession

This file contains the script xdm launches after a successful login. It usually looks for .xsession
in the user's home directory and executes the commands found there. If such a file doesn't
exist, Xsession starts a default window manager (or environment) and applications.

Xsetup_0

This file is a script started before the graphical login screen. It often includes commands to set
colors, display graphics, or run other programs. This script is executed as root.

xdm-config

This file associates xdm configuration resources with the other files in this list. It usually isn't
necessary to make changes in this file unless an expert administrator plans to customize xdm
configuration.

7.3.1.1. Running xdm manually

xdm uses the X server to run on your local display. Therefore, you must have a working X
configuration prior to using a display manager. Then, to start xdm, simply enter it as root:

xdm

xdm launches the X server and display the graphical login, and you can log in as usual. xdm then
starts your graphical environment. After you log out, xdm resets and again displays the login
screen.

Most Linux distributions enable virtual consoles. You can switch among them using the key
combinations Ctrl-Alt-F1, Ctrl-Alt-F2, and so on. (The Ctrl is only required while switching from an X
console to a text or other X console.) Typically, the first six consoles are set up as text-mode
screens, and X launches on console 7 (Ctrl-Alt-F7), or the first tty not running mingetty or some
other getty process. This means that, as with startx, your original text-mode console remains
unchanged after you manually start xdm. Therefore, you must log out of your text-mode console if
you plan to leave the system unattended with xdm running manually .

If you want to stop xdm, you first must be sure that all of the X sessions under its management are
logged out. Otherwise, they'll die when xdm exits and you could lose data. Then simply stop the
xdm process using kill or killall from a text console:

killall xdm

Of course, xdm isn't very useful for your local system if you must always start it manually. That's
why most Linux distributions include a boot-time option to start xdm for you, eliminating the text-
mode login completely.

7.3.1.2. Running xdm automatically

For Linux systems using the System-V-style initialization, a runlevel is usually reserved for login
under xdm. This line at the bottom of /etc/inittab instructs init to start xdm for runlevel 5:

Run xdm in runlevel 5
x:5:respawn:/usr/X11R6/bin/xdm -nodaemon

Using this configuration, when the system enters runlevel 5, xdm starts and presents the graphical
login as before. See Chapter 14 for more information on runlevels.

It's also possible to automatically start xdm simply by adding it to the end of an initialization script,
such as rc.local. This method offers less control over xdm but may be adequate for some situations
and for Linux distributions that don't offer runlevels.

7.3.1.3. Basic xdm customization

You may wish to personalize the look of xdm for your system. The look of the graphical login screen
can be altered by manipulating the resources in /etc/X11/xdm/Xresources. (Note that Xresources
uses ! to start comments.) For example, the following excerpt shows settings to control the greeting
(Welcome to Linux on smp-pc), other prompts, and colors:

! Xresources file
xlogin*borderWidth: 10
xlogin*greeting: Welcome to Linux on CLIENTHOST
xlogin*namePrompt: Login:\040
xlogin*fail: Login incorrect - try again!
xlogin*failColor: red
xlogin*Foreground: Yellow
xlogin*Background: MidnightBlue

You can also include command-line options to the X server in /etc/X11/xdm/Xservers if you wish to
override those found in XF86Config. For example, to change the default color depth, add the -bpp
(bits per pixel) option for the local display:

Xservers file
:0 local /usr/X11R6/bin/X -bpp 24

To include additional X programs or settings on the graphical login screen, put them in
/etc/X11/xdm/Xsetup_0. In this example, the background color of the X display is set to a solid color
(in hexadecimal form), and a clock is added at the lower righthand corner of the screen:

#!/bin/sh
Xsetup
/usr/X11R6/bin/xsetroot -solid "#356390"
/usr/X11R6/bin/xclock -digital -update 1 -geometry -5-5 &

Note that in this example, xsetroot exits immediately after it sets the color, allowing the Xsetup_0
script to continue. xclock, however, does not exit and must be put into the background using an & at
the end of the command line. If such commands are not placed into the background, the Xsetup_0
script hangs, and the login display does not appear.

7.3.2. X Terminals

X terminals are a breed of low-cost display devices for X. They are usually diskless systems that
implement an X server and drive a monitor. Such devices can be configured to access a remote host
to find an xdm daemon or will broadcast to the entire network looking for a "willing host" to offer
xdm services. The selected system will run an X session across the network with the X terminal as

the target display. With this setup, a large number of relatively inexpensive X terminals can make
use of a few high-powered host systems to run graphical clients.

7.3.2.1. xdm for X terminals

To use an X terminal with your host, xdm must first be running on the host machine. The host
listens for inbound connections from the X terminals using XDMCP, the xdm Control Protocol (the
default port for xdmcp is 177). When a request is received, xdm responds with the same graphical
login screen that's used on the local system. The difference is that the X server is implemented in
the X terminal hardware, not in the XFree86 software on the xdm host, and all of the graphics
information is transmitted over the network.

On the Exam

You should be aware of the configuration files for xdm, how they are used, and where
they are located. In particular, remember that the Xresources file controls graphical
login properties. Also remember that xdm can be started using a special runlevel and
that xdm must be running for X terminals to connect via XDMCP.

You can configure access to your system's xdm daemon in the /etc/X11/xdm/Xaccess file. This file is
a simple list of hosts that are to be restricted or enabled. To enable a host, simply enter its name. To
restrict a host, enter its name with an exclamation point (!) before it. The * wildcard is also allowed
to handle groups of devices.

The following example allows access to all X terminals on the local domain but prohibits access from
xterm1 on an outside domain:

*.example.com
!xterm1.anotherexample.com

7.4. Objective 4: Install and Customize a Window Manager
Environment

The selection of a desktop environment for X is a personal decision. At a minimum, you need a
window manager such as twm to provide basic window frames, menus, and controls. On the more
elaborate side, an integrated working environment such as KDE or GNOME offers a rich set of
applications. Regardless of how you configure your desktop, it's important to understand some basic
customization techniques.

7.4.1. Starting X and a Default Window Manager

Starting XFree86 can be as simple as issuing the X command as root. However, X alone doesn't give

you a working environment. At the very least, you also need to start a window manager and an
application and set up basic X access authority. (X authority configuration is beyond the scope of the
LPIC Level 1 certification and is not covered in this book.) You may also wish to choose from among
multiple desktop environments and window managers installed on your system.

7.4.1.1. The XFree86 start up process

Assuming for the moment that we're not using xdm, the process of starting X goes like this:

The user issues the startx command. This is a script provided by XFree86 and often modified by
distributors and administrators. startx is intended as a frontend to xinit.

1.

startx calls xinit with two main arguments:

An Xinitrc script, which contains X programs to run. This script could be .xinitrc from the
user's home directory, or if that doesn't exist, a systemwide default found in
/etc/X11/xinit/xinitrc.

a.

Server options, such as X authority information.b.

2.

xinit launches XFree86 and the chosen Xinitrc script.3.

XFree86 starts. Note that X itself does not provide any applications. They appear only as the
result of the commands found in the Xinitrc script.

4.

Client programs and a window manager found in the Xinitrc script start.5.

The contents of startx and the system default /etc/X11/xinit/xinitrc can vary from distribution to
distribution and can be changed by administrators to suit local needs. They may also reference
additional files, such as /etc/X11/xinit/Xclients, to determine which programs and window manager
to run. Example 7-4 shows the contents of /etc/X11/xinit/xinitrc, a modified version of the original

distributed with XFree86.

Example 7-4. A System default xinitrc

#!/bin/sh
$XConsortium: xinitrc.cpp,v 1.4 91/08/22 rws Exp $

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap

sysresources=/usr/X11R6/lib/X11/xinit/.Xresources
sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

merge in defaults and keymaps
if [-f $sysresources]; then
 xrdb -merge $sysresources
fi

if [-f $sysmodmap]; then
 xmodmap $sysmodmap
fi

if [-f $userresources]; then
 xrdb -merge $userresources
fi

if [-f $usermodmap]; then
 xmodmap $usermodmap
fi

start some nice programs
(sleep 1; xclock -geometry 50x50-1+1) &
(sleep 1; xterm
 -geometry 80x50+494+51) &
(sleep 1; xterm -geometry 80x20+494-0) &
exec twm

In this example, resource and keyboard mappings are set, a few applications are launched, and the
twm window manager is started. twm is installed as a basic default window manager on most
distributions.

7.4.2. xterm et al.

One of the most important applications available to a system administrator working in a graphical
environment is a terminal emulator. The standard terminal emulator distributed with X is xterm,
which understands DEC VT and Tektronix graphics terminal protocols. The VT behavior that is
emulated includes cursor positioning, character effects, and reverse video, among others. In
essence, an xterm is a direct replacement for a hardware terminal.

xterm has a large resource configuration file located in /usr/lib/X11/app-defaults/XTerm that
contains configurable menus, fonts, colors, and actions. You may customize this file to alter the
default behavior of xterm on your system. These settings can also be overridden by resource
settings contained in your own . Xdefaults file, located in your home directory.

There are numerous xterm replacements, such as rxvt, aterm, eterm, gnome-terminal, and konsole.
Configuring these programs is well beyond the scope of the LPI Level 1 Objectives. See the
documentation packages for more information.

On the Exam

You should be familiar with at least one of the popular X terminal programs available
on your Linux system. Remember that some programs have system-wide configuration
files that can be used to fine-tune their behavior and appearance.

7.4.3. X Libraries

Just as many executable programs are dependent on shared system libraries for their execution,
most X applications require a number of X-specific libraries. XFree86 comes bundled with the
necessary set of libraries for traditional X applications. However, many graphical programming
projects are created using toolkits whose libraries are not included in the XFree86 distribution. In
these cases, you need to install the required libraries before programs requiring them will compile or
execute.

For example, the GIMP Toolkit (GTK) is used to build much of the GNOME desktop environment. This
means that GTK must be installed on the system in order to run GNOME applications, including The
GIMP (http://www.gimp.org).

Library dependency issues typically occur when you try new software. Either the compiler fails as
you attempt to build the program, or the loader fails when you try to run a precompiled dynamic
binary. In either case, you need to locate the correct version of the libraries and install them. It
should be relatively easy to find recent versions of the popular libraries in your distribution's
package format by visiting web sites of the library distributor or your Linux distribution.

To manually check for library dependencies , you may use the ldd utility, described fully in Chapter
4.

7.4.4. Remote X Clients

One of the fundamental design elements of the X Window System is that it is a network protocol,
which allows for displays to occur remotely across a network. Many sites employ high-powered
systems for computation and use desktop X servers (X terminals or Linux systems, for example) for
display rendering.

To send the output from an X application to a remote machine, you need to set the DISPLAY
environment variable. (Many X programs also include a command-line option to select the display.)
This variable contains a description of the output destination and has three components:

[host]:display[.screen]

http://www.gimp.org

host

This part of the description specifies the remote hostname on the network. It can be any valid
hostname, fully qualified domain name, or IP address. host is optional; the local system is
used if the host is not specified.

display

This specifies which display the output should be directed toward. A single system can manage
many displays. Note that the colon is required even if the host is omitted.

screen

This optional parameter is used for multiheaded systems (i.e., systems with more than one
monitor) and specifies on which output screen the application will appear.

Setting DISPLAY to "point to" a remote host display causes all subsequent X applications to be
displayed there. For example:

export DISPLAY= yourhost :0.0
xterm

In this example, the xterm is displayed on the first display on yourhost. (This example ignores X
authentication issues.)

7.4.4.1. Examples

The default display on the local host:

:0

The default display on a remote host:

yourhost:0

Display programs on the first screen of the second display found on the machine located at
192.168.1.2:

192.168.1.2:1.0

Display programs on the first screen of the third display on yourhost:

yourhost:2.0

On the Exam

You must be familiar with the DISPLAY environment variable and how to use it to direct
X client applications to remote X servers.

7.4.5. X Security

Allowing untrusted applications to connect to your X display is a very bad idea. Rogue applications
can snoop traffic between X applications and the X server (capturing keystrokes, for example), crash
the X server, and do other bad things. There are two commonly-used ways to control access to the X
server on Linux systems, host-based access control and MIT-MAGIC-COOKIE-1 authentication.

7.4.5.1. Host access control

When using host-based access control, the X server will allow connections only from hosts in the list.
When this is the only form of access control in use, connections are typically allowed from
localhost. Unfortunately, allowing connections from localhost means allowing connections from

any user on the local system.

Hosts can be added to the list of allowed hosts by adding them to the file /etc/Xn.hosts (although

this file is only scanned when the X server starts) or by using the xhost command.

Syntax

xhost [[+-]hostname] [...]

Description

xhost is used to add hosts to or remove hosts from the X server's list of hosts that are allowed
to connect.

xhost lists the current state of the host access control list when run with no options.

Frequently used options

+

Turn off access control. Access is granted to all hosts whether they are on the list or not.

-

Turn on access control. Access is granted only to hosts on the list.

[+]hostname

Add hostname to the list of hosts allowed to connect to the X server. (The + is optional.)

-hostname

Remove hostname from the list of hosts allowed to connect to the X server.

7.4.5.2. MIT-MAGIC-COOKIE-1 Authentication

The MIT-MAGIC-COOKIE-1 form of authentication is much more secure than host-based access
control. In this authentication scheme, xdm creates a 128-bit key, or cookie, which is stored in the
user's home directory in the file .Xauthority at login. When a client connects to the X server, it has to
pass the cookie to be allowed to connect.

Since connections to the X server are not encrypted, this authentication method is most secure when
used on local connections. Non-local connections should be tunnelled over ssh if they are not made
over a secure (IPsec or other VPN) connection.

This is the most commonly used method of controlling access to the X server on modern Linux
systems, but it is not covered in the LPI Level 1 Objectives.

Tip: This Topic is discussed in-depth in the Xsecurity manpage.

Chapter 8. Exam 101 Review Questions and
Exercises
This section presents review questions to highlight important concepts and hands-on exercises that
you can use to gain experience with the topics covered on the LPI Exam 101. The exercises can be
particularly useful if you're not accustomed to routine Linux administration and should help you
better prepare for the exam. To complete the exercises, you'll need a working Linux system that is
not in production use. You might also find it useful to have a pen and paper handy to write down
your responses as you work your way through the review questions and exercises .

8.1. Hardware and Architecture (Topic 1.101)

8.1.1. Review questions

Describe the general functions of the PC BIOS and how its embedded routines are used by your
boot loader.

1.

What is the significance of the 1024 hard disk cylinder to Linux boot loaders?2.

Name three files in the /proc filesystem that contain information on system resource
allocations.

3.

Which of the following SCSI interfaces has the fastest data transfer rates: SCSI-1, SCSI-2,
Ultra SCSI, or Fast-Wide SCSI?

4.

What command is used to obtain serial port information on a Linux system?5.

What driver is used for USB hard drives?6.

8.1.2. Exercises

Boot your PC and enter the BIOS configuration utility. Review settings for correct hardware
date and time.

1.

Examine the enabled serial and parallel ports. Can you manually configure the interrupts and
I/O ports assigned to them?

2.

Review the options available for system boot. Does the system support booting from a CD-
ROM? Change the default boot order.

3.

Examine your modem and sound external interfaces on your PC. Are the devices built into your
motherboard or independent expansion cards? If it is a card, identify if it is ISA or PCI.

4.

Determine if your installed modem is a software modem.5.

If you have a SCSI controller, reboot your PC and enter the SCSI BIOS. What device number is
selected, if any, for boot? How are the controller's onboard terminators configured? What data
rate is the controller configured for?

6.

Examine the kernel's interrupt assignments by executing cat /proc/interrupts. Are your devices
reported correctly? Are there any suprises?

7.

Review output from cat /proc/dma and cat /proc/ioports (discussed in the section "Using the
/proc filesystem" in Chapter 3)

8.

9.

10.

8.

Create a list of all installed PCI devices using lspci. Note the devices built into your
motherboard.

9.

Use minicom to attach to your modem. For example:

minicom /dev/modem
Welcome to minicom 1.82
OPTIONS: History Buffer, F-key Macros,
Search History Buffer, I18n
Compiled on Mar 21 1999, 21:10:56.
Press CTRL-A Z for help on special keys
AT S7=45 S0=0 L1 V1 X4 &c1 E1 Q0
OK
AT
OK

Does the modem respond to the AT command with OK? try manually dialing your ISP and watch
the output of the modem.

10.

Connect a USB device (mouse, printer, etc.) to your system. Run lsmod to verify that the
appropriate driver loaded.

11.

8.2. Linux Installation and Package Management (Topic
1.102)

8.2.1. Review Questions

Why is the /var directory usually located in a partition of its own?1.

As a system administrator for a network with many workstations and a central NFS file server,
how can you safely share /usr with your users while still maintaining control of its contents?

2.

Describe how to create a tar archive and how its contents are extracted.3.

In general terms, describe the procedure used to compile and install free or open source
software from source code.

4.

What is a shared library? How can you determine what library dependencies exist in a compiled
executable?

5.

Briefly describe the major functional modes of rpm.6.

Why might a Debian Linux administrator use dpkg -iG instead of simply dpkg -i to install a
package?

7.

8.2.2. Exercises

In a shell, examine your disk layout using cfdisk or fdisk. For example:

fdisk
Command (m for help): p
Disk /dev/sda: 255 heads, 63 sectors, 1109 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/sda1 1 51 409626 83 Linux
/dev/sda2 52 1109 8498385 5 Extended
/dev/sda5 52 90 313236 83 Linux
/dev/sda6 91 97 56196 83 Linux
/dev/sda7 98 136 313236 83 Linux
/dev/sda8 137 264 1028128+ 83 Linux
/dev/sda9 265 519 2048256 83 Linux
/dev/sda10 520 532 104391 83 Linux
/dev/sda11 533 545 104391 82 Linux swap
/dev/sda12 546 1109 4530298+ 83 Linux

1.

Is the entire disk consumed by the existing filesystems?

Examine how system directories are mapped to disk partitions on your system. Are /var and
/tmp in their own partitions? Is /boot in its own partition within cylinder 1024? Is the root
filesystem relatively small?

2.

Where is LILO installed on your system? If it is installed in the boot sector, does your
configuration allow for multiple boot scenarios? If it is installed in the root partition, is it within
the first 1024 cylinders?

3.

Locate a tarball (from freshmeat.net, for example), and install it on your system with the
following steps:

Unpack it using tar xzvf file.a.

Configure with ./configure.b.

Build the software using make as directed in the documentation.c.

Install the software using the instructions provided.d.

Were there any difficulties with this procedure?

4.

Use ldd to examine library dependencies of executable programs on your system. For example:

ldd 'which xterm'
 libXaw.so.7 => /usr/X11R6/lib/libXaw.so.7 (0x40019000)
 libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x4006a000)
 libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x4007e000)
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x400c7000)
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x400d0000)
 libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4 (0x400e6000)

 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x400f4000)
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40101000)
 libncurses.so.4 => /usr/lib/libncurses.so.4 (0x401c4000)
 libc.so.6 => /lib/libc.so.6 (0x40201000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

5.

Using a system that utilizes dpkg, obtain a list of all packages installed under dpkg
management with dpkg -l | less. Find a package in the list that looks unfamiliar, and query
information about the package using dpkg -s pkg_name.

6.

Using a system that utilizes RPM, obtain a list of all packages installed under RPM management
with rpm -qa | less. Find a package in the list that looks unfamiliar, and query information
about the package using rpm -qi pkg_name.

7.

8.3. GNU and Unix Commands (Topic 1.103)

8.3.1. Review Questions

Describe the difference between shell variables and environment variables.1.

Compare and contrast built-in and explicitly defined commands and those found in PATH.2.

After a lengthy session of file manipulation on the command line, what will !ls produce?3.

What program was the source for the default history editing key bindings in bash?4.

Explain the notion of pipes as they refer to shell capabilities, and illustrate using an example of
two or more filter programs.

5.

Explain the -p option to cp and give an example of why it is necessary.6.

Give two examples of files matched by the wildcard ??[!1-5].7.

Name the three standard I/O streams and their functions.8.

Give an example of the redirection operator, >, and describe how the outcome would be
different using the >> operator.

9.

What process is the ultimate ancestor of all system processes? Give both the PID and the
program name.

10.

Name three common utilities used for process monitoring.11.

What happens to a typical daemon when it receives SIGHUP? How would the behavior be
different if it received SIGKILL?

12.

Compare and contrast background and foreground jobs, and state the syntax to put a
command in the background on the command line.

13.

Explain the relationship between a process's nice number and its execution priority.14.

What two classifications of characters make up regular expressions?15.

How are the regular expressions [A-Z]* and ^[A-Z]*$ different?16.

What is the difference between executing :q versus :q! in vi?17.

What does it mean to put vi into command mode?18.

8.3.2. Exercises

1.

Start a bash shell in a console or terminal window and enter the following commands:

$ MYVAR1="Happy"
$ MYVAR2="Birthday"
$ export MYVAR1
$ bash
$ echo $MYVAR1 $MYVAR2
$ exit
$ echo $MYVAR1 $MYVAR2

Was the behavior of the two echo commands identical?a.

If so, why? If not, why not?b.

What happened immediately after the bash command?c.

Which variable is an environment variable?d.

1.

Continuing the previous exercise, enter Ctrl-P until you see the last echo command. Enter Ctrl-
P again.

What do you see?a.

Why wasn't it the exit command?b.

Enter Ctrl-P again so that the export command is displayed. Add a space and MYVAR2 so
that the line now looks like this:

$ export MYVAR1 MYVAR2

What happens when you enter this command?

c.

2.

Still continuing the previous exercise, enter the command !echo. Does anything change as a
result of the revised export command?

3.

The file command is used to examine a file's contents and displays the file type. Explain the
result of using file as follows:

$ cd / ; file $(ls | head -10)

4.

Execute this command on your system:

$ cut -d: -f1 /etc/passwd | fmt -w 20 | head -1

a.

5.

What was displayed?a.

How many lines of output did you see? Why?b.

What was the width of the output? Why?c.

Execute the following sed substitution command and explain why it might be used on
/etc/passwd:

$ sed 's/:[^:]*:/:---:/' /etc/passwd | less

6.

Execute this command:

$ cd /sbin ; ls -li e2fsck fsck.ext2

What is the significance of the first field of the output?a.

Why is it identical for both listings?b.

Why are the file sizes identical?c.

7.

Execute the following command sequence and explain the result at each step (this example
assumes that cp is not aliased to cp -i, which is a common default alias):

$ cd
$ cp /etc/skel .
$ cp -r /etc/skel .
$ cp -rfv /etc/skel .
$ cp -rfvp /etc/skel .

8.

Remove the directory created in the previous exercise, using rmdir and/or rm. Which command
can complete the task in a single step?

9.

Explain when the wildcard {htm,html} might be useful.10.

Give an example of how the wildcard *.[Tt][Xx][Tt] could be used with directory listings.11.

What can be said about filenames matched by the *.? wildcard?12.

Experiment with redirecting the output of ls as follows:

$ cp /etc/skel . 2> info.txt

a.

b.

13.

How is the terminal output different than that observed in Exercise 8?a.

What is written to info.txt ?b.

Experiment with ps, pstree, and top to monitor active processes on your system. Include top's
interactive commands.

14.

If you have Apache running, use ps (and perhaps grep) to identify the httpd process and its
PID, which is owned by root. Send that process the HUP signal as follows:

$ kill -SIGHUP pid

Using tail, examine the Apache error log (the location of your log file may differ):

$ tail /var/log/httpd/error_log

What was the effect of HUP on Apache?

15.

While running X, start some interactive processes in the background and experiment with using
jobs, bg, and fg. For example:

$ netscape &
$ xterm &
$ emacs &
$ jobs
$ fg 1
$ fg 2
...

Were you able to bring each of the jobs to the foreground successfully?

16.

This exercise starts a process, using various methods to view and modify the process execution
priority:

Start an editing session in the background using nice:

$ nice vi &

a.

Observe that the process was nice'd using ps:

$ ps -u

b.

c.

17.

Check it again using top:

$ top -i

c.

Within top, renice the vi process using the r command and observe the effect on priority.d.

Exit top and use renice to set the nice value back to zero.e.

Use a simple regular expression with grep to find sh and bash users in /etc/passwd.18.

Determine the number of empty lines in /etc/inittab.19.

Use vi to create a text file. Enter insert mode with i and insert text. Quit insert mode with Esc
and move around using h, j, k, and l, then re-enter insert mode and add more text. End the
session with ZZ. cat the file. Is it as expected?

20.

8.4. Devices, Linux Filesystems, and the Filesystem
Hierarchy Standard (Topic 1.104)

8.4.1. Review Questions

What are the three types of disk partitions found on a Linux system? Which type can contain
other partitions and which type does it contain?

1.

Name the directories that must be within the root partition.2.

Describe the differences between physical disks, partitions, and filesystems.3.

What is a swap partition used for? Why not just use swap files?4.

What kind of output will df -h yield?5.

Describe a common situation that is likely to cause the automatic use of fsck on the next
system boot.

6.

Name the fields in /etc/fstab.7.

Give the command to mount a CD-ROM drive on the secondary master IDE device, assuming
that /etc/fstab does not contain a line for the device.

8.

If the ro option is used in /etc/fstab for /usr, what limitation is placed on that filesystem?9.

Compare and contrast hard and soft quota limits.10.

What three types of users can be granted or denied access to filesystem objects and how do
they apply to files and directories?

11.

Name the symbolic permission that is equivalent to 0754.12.

Describe a situation that requires the SUID permission. What ramifications does this
permission imply?

13.

Compare and contrast the differences between hard and symbolic links.14.

Name the document to which Linux directory assignments should conform.15.

Compare and contrast the differences between the locate and find commands.16.

8.4.2. Exercises

As root, run fdisk and enter the p command to print the partition table. Examine your system's1.

configuration and make sure you understand everything you see. Enter the l command and
review the many partition types Linux can accommodate. Enter the q command to quit without
saving changes.

1.

If you have available disk space, use fdisk to create a new ext2 partition, then format it with
mkfs. Pay close attention to the output from mkfs.

2.

Use a pager to examine /var/log/messages and search for entries made by fsck. Did it find any
problems?

3.

If you created a new partition in the previous exercises, check it with fsck and observe the
output:

$ fsck -f /dev/ partition

4.

Check on the status of filesystems using df:

$ df -h

How does the -h flag assist you with interpreting the results?a.

Are any of your filesystems nearly full?b.

Which are underutilized?c.

5.

As root, get a top-level view of disk usage by user using du:

$ du -s /home/*

Are there any surprises?a.

6.

How could you use sort to make this output more useful?7.

Review /etc/fstab. Be sure you can name all six fields and their order as well as describe their
function.

8.

Examine the output of the mount command without options. Compare the output with the
contents of /etc/fstab.

9.

If you created a new partition in the previous exercises, mount it on /mnt/new or some other
location of your choosing:

$ mkdir /mnt/new

$ mount /dev/ partition /mnt/new
$ df /mnt/new

a.

10.

Did the filesystem mount correctly? Can you store files on it?a.

Next, unmount it:

$ umount /dev/ partition /mnt/new

b.

Add a line to /etc/fstab for the new partition:

/dev/partition /mnt/new ext2 defaults 1 2

c.

Test the quotas by setting them low for a particular user, then start adding files as that user
until the quota is exceeded. What is the observable consequence of exceeding the quota?

11.

Practice converting these file modes from octal to symbolic form:

0777a.

0754b.

0666c.

1700d.

7777e.

12.

Practice converting these file modes from symbolic to octal form. You can assume that x bits
are set under SUID, SGID, and sticky bits:

-rwxr-xr-xa.

-r--r--r--b.

-rwsrwsrwxc.

-rw-rw---td.

-rws-w--w-e.

13.

Create temporary files and use chmod with both symbolic and numeric mode modifications.
Include SUID, SGID, and sticky bits.

14.

As root, create temporary files and use chown to modify user ownership and group ownership.15.

Use chgrp to modify group ownership on the temporary files created in the previous exercise.16.

Create a temporary file and links as follows:17.

16.

$ touch a_file
$ ln -s a_file an_slink
$ ln a_file an_hlink

17.

Now verify that the file and the hard link indeed share an inode and that the symbolic link
points to the original file:

$ ls -li a_file an_slink an_hlink

18.

Read the latest version of the FHS (it's not very long).19.

Examine your filesystem. Does it match the FHS? If you find discrepancies, is it clear why they
don't?

20.

Use which to check on the location of executable files.21.

Use find to search for bash:

$ find / -name bash

Now use locate for the same file:

$ locate bash

How are the results different? Describe a context in which each command would be useful.

22.

Update your locate database using updatedb. Note the amount of time this command takes and
the resources it consumes on your system.

23.

8.5. The X Window System (Topic 1.110)

8.5.1. Review Questions

When using XFree86 v3.3.x, what software installation may be required when changing to a
different video chipset, and why?

1.

Describe how the location of fonts is conveyed to the XFree86 X server.2.

How is the use of a font server different from the use of a font path?3.

Which file controls access to xdm by remote X terminals?4.

Describe the function of xinit.5.

Compare and contrast a window manager, a desktop environment, and an X server.6.

Name the three components of the DISPLAY environment variable.7.

8.5.2. Exercises

From http://www.xfree86.org/, obtain XFree86 in the precompiled binary form for your system
using the instructions found in Chapter7. Start with the Xinstall.sh script and run it with
./Xinstall.sh -check to determine which package to get.

1.

Back up your old installation (/etc/X11 and /usr/X11R6). Install the new version using
Xinstall.sh as directed in the instructions accompanying the package.

2.

Use xf86config to configure the new X server. Are you able to get an X display? Is the
resolution correct?

3.

Try generating the X configuration using XF86Setup or xf86cfg (depending on the X version). Is
the program successful? Does it yield a working X configuration?

4.

Obtain a new Type 1 font (or TrueType font, if you are using XFree86 4.x) from the Internet
(try a search at http://www.google.com or your favorite search engine). Add the font to
/usr/X11R6/lib/fonts/local and use the mkfontdir utility on that directory. Add the directory to
your font path (with xset fp+ /usr/X11R6/lib/fonts/local). Use xfontsel to view the new font.
Was the font added correctly?

5.

Configure xfs as described in Chapter 7, and remove the FontPath statements from XF86Config,
substituting unix/:-1. Start the font server and restart the X server. Using xfontsel, are you
able to verify the availability of the same fonts as were available before?

6.

Start xdm on your system, and note that the system starts the X server and presents a login7.

8.

http://www.xfree86.org/
http://www.google.com

prompt. If all works correctly, change the default runlevel to that which starts xdm and reboot.
Does the system now present a graphical login screen?

7.

Examine the scripts and programs used on your system for starting X, beginning with startx.
Look for how the system uses files in the user's home directory to control GUI startup.

8.

Examine your window manager configuration. Which window manager are you using? Is it part
of a desktop environment, such as KDE or GNOME? Determine where its menus are configured
and add an item or two to the menus.

9.

Chapter 9. Exam 101 Practice Test
Exam 101 consists approximately of 65 questions. Most are multiple-choice single-answer, a few are
multiple-choice multiple-answer, and the remainder are fill-in the blank questions. No notes or other
materials are permitted, and you have 90 minutes to complete this exam. You can check your
answers at the end of this chapter.

9.1. Questions

What two commands display the status of processes on a Linux system?

ls and dfa.

ps and topb.

ps and dfc.

df and topd.

du and dfe.

1.

What does the device file /dev/hdb6 represent?

An extended partition on a SCSI disk drivea.

A logical partition on a SCSI disk driveb.

An extended partition on an IDE disk drivec.

A primary partition on an IDE disk drived.

A logical partition on an IDE disk drivee.

2.

Which command will display the last lines of the text file file1?

head -b file1a.

head --bottom file1b.

head -v file1c.

tail file1d.

tail -n 1 file1e.

3.

In the Bash shell, entering !! has the same effect as which one of the following?

Ctrl-P and Entera.

Ctrl-N and Enterb.

Ctrl-U and Enterc.

d.

4.

b.

c.

!-2d.

!2e.

Which of the following commands can be used to check an ext2 filesystem? Select three that
apply.

fsck -ext2 /dev/hda5a.

fsck /dev/hda5b.

e2fsck /dev/hda5c.

fsck.ext2 /dev/hda5d.

fsck.linux /dev/hda5e.

5.

In response to the df command, the system reports a Use% of 98% for the filesystem mounted on
/home. Which one of the following best describes the significance of this information?

Files on /home are consuming 98% of the physical disk.a.

File read/write activity on /home is consuming 98% of system I/O capacity.b.

Files on /home are consuming 98% of the /home filesystem.c.

Inodes on /home are nearly exhausted.d.

Inodes on /home are 98% free.e.

6.

Of the following directories, which one is the most important to back up on a routine basis?

/vara.

/tmpb.

/usrc.

/rootd.

/etce.

7.

Carolyn has a text file named guest_list containing 12 lines. She executes the following
command. What is the result?

split -4 guest_list gl

The first four columns in the text are written to new files glaa, glab, glac, and glad.a.

b.

c.

8.

a.

The first four columns in the text are written to new files aagl, abgl, acgl, and adgl.b.

The lines of guest_list are evenly divided among new files glaa, glab, glac, and glad.c.

The lines of guest_list are evenly divided among new files glaa, glab, and glac.d.

The lines of guest_list are evenly divided among new files aagl, abgl, and acgl.e.

Which one of the following commands would be best suited to mount a CD-ROM containing a
Linux distribution, without depending on any configuration files?

mount /dev/cdrom /dev/hdca.

mount -f linux /dev/hdc /mnt/cdromb.

mount -t iso9660 /dev/cdrom /mnt/cdromc.

mount -t linux /dev/cdrom /mnt/cdromd.

mount -t iso9660 /mnt/cdrom /dev/cdrome.

9.

An ext2 filesystem is configured with user quotas enabled. The soft limit is set at 100 MB per
user, the hard limit is set at 110 MB per user, and the grace period is seven days. User bsmith
already owns 90 MB of the data stored on the filesystem. What happens when bsmith writes a

new file of size 30 MB? Select one.

The write will fail, but the superuser can recover the entire file within seven days.a.

The write will fail, and the file will be truncated permanently.b.

The write will succeed, but the file will be truncated permanently.c.

The write will succeed, but the file will be available for only seven days.d.

The write will succeed, but the file will be truncated in seven days.e.

10.

Which of the following commands displays the comments from a bash script? Select all that
apply.

find "^#" /etc/rc.d/rc.locala.

sed '/^#/ !d' /etc/rc.d/init.d/httpdb.

grep ^# /etc/rc.d/init.d/httpdc.

grep ^# /etc/passwdd.

locate "^#" /etc/skel/.bashrce.

11.

State the syntax to direct the standard output of cmd1 directly into the standard input of cmd2.12.

Which one of the following answers creates an environment variable VAR1, present in the
environment of a bash child process?

a.

13.

VAR1="fail" ; export VAR1a.

VAR1="fail" \ export VAR1b.

VAR1="fail"c.

set VAR1="fail" ; enable VAR1d.

export VAR1 \ VAR1="fail"e.

13.

Which of the following directories must be part of the root filesystem? Select two of the
following that apply.

/etca.

/homeb.

/libc.

/usrd.

/roote.

14.

Alex is currently working in a directory containing only one file, Afile1. What is displayed after
the following commands are entered in bash?

MYVAR=ls
echo $MYVAR "$MYVAR" '$MYVAR' '$MYVAR'

Afile1 Afile1 Afile1 Afile1a.

ls Afile1 Afile1 Afile1b.

ls ls Afile1 Afile1c.

ls ls $MYVAR Afile1d.

ls ls ls $MYVARe.

15.

What does the & character do when placed at the end of a command?

It allows another command to be entered on the same line.a.

It causes the process to be stopped.b.

It restarts a stopped process.c.

It causes the process to be placed into the foreground.d.

It causes the process to be placed into the background.e.

16.

17.

d.

e.

Which one of the following commands could be used to change all uppercase characters to
lowercase in the middle of a pipe?

grepa.

egrepb.

wcc.

trd.

pre.

17.

What is the PID of init? Select one.

0a.

1b.

2c.

undefinedd.

unknowne.

18.

Which one of the following outcomes results from the following command?

chmod g+s /home/software

The SUID bit will be set for /home/software.a.

The SGID bit will be set for /home/software, preventing access by those not a member of
the software group.

b.

The SGID bit will be set for /home/software, in order to keep group membership of the
directory consistent for all files created.

c.

The sticky bit will be set for /home/software.d.

The sticky bit will be applied to all files in /home/software.e.

19.

Which one of the following commands is equivalent to the following command for user jdoe

whose home directory is /home/jdoe?

chmod 754 ~/file1

chmod u=rwx,g=rx,o=r /home/jdoe/file1a.

b.

c.

20.

a.

chmod ugo=rwx ~/file1b.

chmod u=7,g=5,o=4 ~/file1c.

chmod 754 \home\jdoe\file1d.

chmod 754 /usr/jdoe/file1e.

What command and single required option creates a symbolic link in a Linux filesystem?21.

What command can display the contents of a binary file in a readable hexadecimal form? Select
one.

xda.

hdb.

odc.

Xdd.

dumpe.

22.

Which one of the following commands copies files with the .txt extension from /dir1 into /dir2,
while preserving file attributes such as dates?

mv --copy /dir1/*.txt /dir2a.

mv /dir1/*.txt /dir2b.

cp -k /dir1/*.txt /dir2c.

cp -p /dir1/*.txt /dir2d.

cp -p /dir2 < /dir1/*.txte.

23.

Which one of the following file globs matches "Linux" and "linux," but not "linux.com" and not
"TurboLinux"?

[L/linux]a.

?inuxb.

\L\linuxc.

[Ll]inuxd.

[Ll]inux?e.

24.

A process with PID 4077 is misbehaving on your system. As superuser, you enter the following
command:

kill 4077

25.

However, nothing changes as a result. What can you do to terminate the process? Select one.

kill -9 4077a.

kill -1 4077b.

kill +9 4077c.

kill 4078d.

kill --die 4077e.

Which one of the following key sequences is used to put a noninteractive text-mode program
that is attached to the terminal into the background to allow it to continue processing?

Ctrl-Ca.

Ctrl-Bb.

Ctrl-B and then enter the bg commandc.

Ctrl-Zd.

Ctrl-Z and then enter the bg commande.

26.

What basic command is used to create hard disk partitions?27.

With a umask of 027, how is the initial mode set for a newly created file?

0750a.

0640b.

0027c.

1027d.

1640e.

28.

Which one of the following commands verbosely extracts files from a tar archive on a magnetic
tape device?

tar cvf /dev/st0a.

tar cvf /dev/ttyS0b.

tar xvf /dev/st0c.

tar xvf /dev/ttyS0d.

e.

29.

30.

c.

d.

tar rvf /dev/st0e.

Alex wants to protect himself from inadvertently overwriting files when copying them with cp.
How should he go about this?

Put alias cp='cp -i' in ~/.bashrc.a.

Put alias cp='cp -i' in ~/.bash_profile.b.

Put alias cp='cp -p' in ~/.bashrc.c.

Put alias cp='cp -p' in ~/.bash_profile.d.

Put alias cp='cp -I' in ~/.bashrc.e.

30.

Which one of the following utilities outputs a text file with line numbers along the left margin?

tara.

wcb.

trc.

nld.

lne.

31.

The following line comes from /etc/fstab Which of the statements is accurate given the contents
of this line? Choose two that apply.

/dev/fd0 /mnt/fd0 vfat noauto,users 0 0

Users are prohibited from mounting and unmounting the filesystem.a.

Users are permitted to mount and unmount the filesystem.b.

The filesystem will be mounted on mount point /dev/fd0.c.

The filesystem is expected to be a Linux native filesystem.d.

The filesystem is on a floppy disk.e.

32.

Which one of the following is an accurate statement regarding this regular expression?

[^1-8A-Za-z]

It matches all letters and numbers.a.

b.

c.

33.

a.

It matches all letters and numbers except 9.b.

It matches all letters and numbers except 9 and 0, but only at the beginning of a line.c.

It matches 9, 0, and other nonletter and nonnumber characters.d.

It matches characters other than letters or numbers.e.

Monica consults the /etc/passwd file expecting to find encrypted passwords for all of the users
on her system. She sees the following:

jdoe:x:500:500::/home/jdoe:/bin/bash
bsmith:x:501:501::/home/bsmith:/bin/tcsh

Which of the following is true? Select one.

Accounts jdoe and bsmith have no passwords.a.

Accounts jdoe and bsmith are disabled.b.

The passwords are in /etc/passwd-c.

The passwords are in /etc/shadowd.

The passwords are in /etc/shadow-e.

34.

What command (include applicable options) is used to initiate a change to runlevel 5?35.

What does the "sticky bit" do? Select one.

It prevents files from being deleted by anyone.a.

It marks files for deletion.b.

It prevents files from being deleted by nonowners except root.c.

It prevents files from being deleted by nonowners including root.d.

It marks files for archive.e.

36.

Dave has a Linux system with an interrupt conflict caused by his 3c509 network card. Dave's
kernel is fully modular. How could Dave instruct the system to use IRQ 11 for his network
adapter?

Enter linux eth0=irq11 at the LILO boot loader prompt.a.

Enter linux 3c509=irq11 at the LILO boot loader prompt.b.

Add options 3c509 irq=11 to /etc/conf.modules.c.

Add options irq=11 3c509 to /etc/conf.modules.d.

e.

37.

c.

d.

Add ifup -irq 11 eth0 to /etc/rc.d/rc.sysinit.e.

What is contained in directory /sbin? Select the single best answer.

Commands needed in the event of a system emergency of interest to all system users.a.

Commands of interest to all system users.b.

Commands needed in the event of a system emergency of interest mainly to the
administrator.

c.

Commands of interest mainly to the administrator.d.

Libraries needed in the event of an emergency.e.

38.

What ext2 filesystem attribute allows a process to take on the ownership of the executable file's
owner?

39.

What is appended to the beginning of a command line in order to modify the execution priority
of the resulting process?

40.

How are the cat and tac commands related? Select one.

cat displays files and tac does the same but in reverse order.a.

cat concatenates files while tac splits a file into pieces.b.

cat creates file catalogs while tac displays the catalogs.c.

The two commands are links to the same executable.d.

There is no relation or similarity between cat and tac.e.

41.

With regard to the use of regular expressions to match text in a file, describe a metacharacter.
Select one.

They are standard text characters used in the regular expression.a.

They are special control characters used in the regular expression.b.

They are used to display results after using a regular expression.c.

They are used by the shell to display graphics.d.

Metacharacters aren't used in regular expressions.e.

42.

How many IDE devices can be installed and simultaneously used in a typical Intel-based
system? Select one.

1a.

b.

c.

43.

a.

2b.

3c.

4d.

5e.

Which one of the following would be a consequence of a filesystem running out of inodes?

More inodes would be automatically created in the filesystem.a.

Quotas would become disabled on the filesystem.b.

The filesystem would be corrupted.c.

The filesystem would be marked read-only.d.

No writes would be possible on the filesystem until existing files were deleted.e.

44.

Consider the following line of console output, excerpted from among other lines of output.
Which one of the commands produced it?

/dev/hda8 1.9G 559M 1.2G 30% /home

du -sa.

du -kb.

df -hc.

df -kd.

df -me.

45.

Which one of the following is true about the LILO boot loader?

It can start the Windows NT Loader.a.

It is started using the lilo command.b.

It is the only boot loader available for Linux.c.

It can start multiple Linux kernels, but no foreign operating systems.d.

It resides entirely in the boot sector.e.

46.

Which one of the following statements correctly describes the > and >> symbols in the context
of the bash shell?

a.

b.

47.

> appends standard output to an existing file, and >> writes standard output to a new file.a.

> writes standard output to a new file, and >> appends standard output to an existing file.b.

> writes standard error to a new file, and >> appends standard error to an existing file.c.

> pipes standard output to a new file, and >> pipes standard output to an existing file.d.

> pipes standard output to an existing file and >> pipes standard error to a new file.e.

What is the correct syntax to remove mypkg entirely from a Debian GNU/Linux system,
including configuration files? Select one.

dpkg -r mypkga.

dpkg --remove mypkgb.

dpkg --kill mypkgc.

dpkg -R mypkgd.

dpkg --purge mypkge.

48.

Your system's FontPath directives include only one entry:

unix/:-1

Which of the following is true? Select one.

Error -1 has occurred during X startupa.

Only the default font will be available to applicationsb.

An X font server is to be usedc.

An X font server failed to initialized.

No fonts were found by XFree86 or by a font servere.

49.

How do you use dpkg to verify the status of an installed package mypkg? Select one.

dpkg -s mypkga.

dpkg -S mypkgb.

dpkg -stat mypkgc.

dpkg --stat mypkgd.

dpkg --Status mypkge.

50.

51.

d.

e.

Which of the following statements is true about an X server? Select one.

An X server is a high-performance system offering graphical programs over a network.a.

An X server sends its graphical output to a window manager.b.

An X server is under the control of a window manager.c.

A window manager is under the control of an X server.d.

A window manager is also known as an X server.e.

51.

What are the two interrupts usually associated with a PC's onboard serial interface?52.

How can you query the RPM database for a list of all installed RPM packages? Select one.

rpm -qa.

rpm -qab.

rpm -ac.

rpm -ald.

rpm -qale.

53.

Which pair of dpkg options are equivalent and what do they do? Select one.

-C and --configure; they reconfigure an unpackaged package.a.

-C and --clear-avail; they erase existing information about what packages are available.b.

-A and --audit; they update information about what packages are available.c.

-C and --audit; they provide resource consumption information on installed packages.d.

-C and --audit; they search for partially installed packages.e.

54.

What will happen when rpm is launched as follows?

rpm -Uvh file

The RPM file will be verified.a.

An installed package may be upgraded with the version in file, with verbose output.b.

An installed package may be upgraded with the version in file, with verbose output and
hash marks indicating progress.

c.

An error will occur because a major mode is not specified.d.

e.

55.

d.

An error will occur because no file options were specified.e.

How are changes to the system BIOS made? Select one.

Using linuxconf.a.

By manually editing text files.b.

Using the lilo command.c.

At boot time using system-specific menus.d.

At boot time using LILO commands.e.

56.

When using xdm, which of the following files can be used to start a window manager? Select
one.

Xserversa.

Xaccessb.

xdm-configc.

Xsessiond.

Xsetup_0e.

57.

When partitioning a disk with more than 1024 cylinders, which of the following could affect the
system's ability to boot? Select all that apply.

Location of LILO on disk.a.

Location of /boot on disk.b.

Location of /var on disk.c.

Disk transfer rate.d.

Disk seek time.e.

58.

Which of the following is a reasonable size for a swap partition for a Linux workstation with 128
MB RAM? Select one.

1 KBa.

0.5 MBb.

100 MBc.

5 GBd.

e.

59.

60.

c.

d.

10 GBe.

What is XDMCP, and how is it used? Select one.

An X utility, used to copy files between a host and an X terminal.a.

An X utility, used to configure XDM.b.

An X utility, used to configure IP addresses on X terminals on the network.c.

An X protocol, used to discover/listen for X terminals on the network.d.

An X protocol, used to exchange graphics information between X clients and X servers
over the network.

e.

60.

How many target devices can be added to an 8-bit SCSI-2 bus? Select one.

6a.

7b.

8c.

15d.

16e.

61.

What is the startx command? Select one.

A script included with XFree86 to make startup user friendly.a.

A script used to start xdm.b.

A compiled binary program that directly launches the X server.c.

A configuration file created by X configuration tools such as XF86Config.d.

A script originated by Linux distributors to tailor X startup to their particular X
implementation.

e.

62.

How can you obtain a list of files contained in an .rpm file? Select one.

rpm -q filea.

rpm -i fileb.

rpm -ql filec.

rpm -qlp filed.

rpm -qal filee.

63.

64.

d.

e.

Which of the following accurately describes the contents of the xdisp:1.0 DISPLAY environment
variable? Select one.

System xdisp is to send X programs to the first display of the local X server.a.

System xdisp is to receive X programs on the first display of its X server.b.

System xdisp is to receive X programs on the second display of its X server.c.

Local program xdisp is to use the second display of the local X server.d.

Local program xdisp is to use the second display of any available X terminal.e.

64.

Which file contains information on the I/O port assignments in use? Select one.

/dev/ioportsa.

/etc/ioportsb.

/etc/sysconfig/ioportsc.

/etc/proc/ioportsd.

/proc/ioportse.

65.

Why might an administrator use the --force option for rpm?

To overwrite a previously installed package.a.

To overwrite a Debian package.b.

To prevent confirmation messages.c.

To force the deletion of installed packages.d.

To force the deletion of package dependencies.e.

66.

Which of the following commands cannot be used to exit from vi when in command mode?
Select one.

ZZa.

:xb.

:qc.

:q!d.

:byee.

67.

Which is not a valid dpkg installation command? Select one.

a.

68.

dpkg -i package_filea.

dpkg -iL package_fileb.

dpkg -iR package_dirc.

dpkg -iG package_filed.

dpkg -iE package_filee.

68.

Which of the following is the text file that contains directories where the dynamic linker should
look for libraries? Select one.

ld.so.confa.

conf.ld.sob.

ld.so.cachec.

so.configd.

configlde.

69.

9.2. Answers

b. Both ps and top yield process status. None of the other listed commands are related to
processes.

1.

e. IDE disk drives are referred to as /dev/hdx, where x is a, b, c, or d. Partitions are

numbered from 1 through 4 for primary and extended partitions and 5 through 16 for logical
partitions.

2.

d. The tail command is used for checking the last lines of a text file. By default, it displays 10
lines.

3.

a. The !! command history expansion executes the previous command. Entering the Ctrl-P
keystroke uses the Emacs key-binding bash to move up one line in the history; pressing Enter
executes that command.

4.

b, c, and d. fsck is a frontend for the programs that actually do the checking. e2fsck and
fsck.ext2 are links to the program that checks native Linux ext2 filesystems.

5.

c. df reports disk information, including a percentage of the filesystems used. Answer a is
incorrect because /home may not be the only partition on the physical disk.

6.

e. /var and /tmp are mainly transient, /usr is typically static (and should be easy to reinstall
from the original OS media), /root is simply a home directory for root, but /etc contains

system configuration information that frequently changes.

7.

d. split -n outfile separates a file into multiple output files, each with n lines, and names them

outfileaa, outfileab, and so on. Since the original file had 12 lines and Carolyn split it into sets
of 4 lines, the result is three files named glaa, glab, and glac, each containing 4 lines.

8.

c. CD-ROMs use the iso9660 filesystem, which is the default for mount, but also indicated using
-t. Without the assistance of an entry in /etc/fstab, both the mount device (/dev/cdrom) and
the mount point (/mnt/cdrom) must be provided.

9.

b. The write will continue until the hard limit of 110 MB is reached, after which the write fails
and data is lost.

10.

b and c. find and locate do not search the contents of files. /etc/passwd is not a script.11.

cmd1 | cmd212.

a. The variable must be set and exported. The semicolon separates the two commands.13.

a and c. /etc, /lib, /bin, /sbin, and /dev must be in the / filesystem.14.

d. The first echo argument is unquoted and thus returns its contents, ls. The second is quoted
with double quotes, which do not preserve the $, so it too returns ls. The third is quoted with
single quotes, which do preserve the $, so it returns the string $MYVAR. The last argument is
backquoted, which means that it returns the result of the command stored in $MYVAR. The
command is ls, which displays the only file in the directory, Afile1.

15.

16.

17.

e. Using the & character puts a program in the background.16.

d. The tr program translates characters from one group into another, including case.17.

b. init, the grandfather of all processes, always has PID 1.18.

c. The g indicates that we're operating on the group privilege, and the +s indicates that we
should add the "set id" bit, which means that the SGID property will be applied.

19.

a. User mode 7 is the same as u=rwx, group mode 5 is the same as g=rx, and other mode 4 is
the same as o=r. The ~/ syntax implies the user's home directory.

20.

ln -s21.

c. The octal dump program, when used with the -t x option, will output in hexadecimal
notation.

22.

d. The -p, or preserve, option is required to retain dates.23.

d. The [Ll] matches both letters.24.

a. kill -9 is drastic but necessary for processes unable to respond to other signals.25.

e. Ctrl-Z stops the job and gives control back to the terminal. bg places the job into the
background and restarts it.

26.

fdisk.27.

b. By default, files do not have the execute privilege, which rules out all responses containing
odd numbers in the mode. They also do not by default have the sticky bit set, which eliminates
response e. Response b is the result of masking initial bits 666 with umask 027, leaving 640,
which is the same as 0640.

28.

c. tar should be used with the extraction option x and a tape device, such as SCSI tape
/dev/st0.

29.

a or b. cp should be aliased to the interactive mode with the -i option in .bashrc. .bash_profile
normally doesn't include aliases, but it will also work.

30.

d. The nl command numbers lines.31.

b and e. The users option grants nonprivileged users the right to mount and unmount the
filesystem. /dev/fd0 is a floppy device.

32.

d. Brackets ([]) are used to group a character set consisting of numbers 18 and characters A-
Z and a-z. The ^ just inside the opening bracket negates the whole string, such that the string
matches numbers 0, 9, and symbols.

33.

d. The shadow password system has been implemented, placing all passwords in /etc/shadow
as denoted by the x following the username.

34.

init 5. telinit 5 would also work, as they are both links to the same file.35.

c. The sticky bit in the mode prevents deletion by non-owners, but root can still delete the file.36.

c. Since Dave is using a modular kernel, the network driver 3c509.o is a kernel module. LILO
can send kernel parameters but not module parameters. These are stored in /etc/conf.modules.

37.

c. While answers b and d are technically correct, answer c best describes /sbin.38.

39.

38.

SUID.39.

nice.40.

a. cat concatenates files, and as a subset, will list one or more files to standard output. tac lists
files in reverse order.

41.

b. A metacharacter is a special character that is used to modify and control the interpretation
of literals. File globbing is generally considered distinct but very similar to the use of regular
expressions.

42.

d. PCs usually have two IDE interfaces, each capable of handling two devices.43.

e. A filesystem without free inodes cannot create new objects until existing objects are
removed.

44.

c. This is an example line from the output of df -h, the "human-readable" mode of df.45.

a. LILO can start the Windows NT boot loader and many other operating systems.46.

b. The > character opens and writes to a new file, while >> appends to an existing file, unless
that file doesn't exist, in which case it is opened first.

47.

e. The --purge option is a variant of -r, remove.48.

c. The directive indicates that a font server should listen on its default port.49.

a. The appropriate option is either -s or --status.50.

d. A window manager is a client, controlled by the X server. Answers a and b are incorrect
because they imply that the X server originates the graphical output. Answers c and e are
common misconceptions.

51.

3 and 4.52.

b. The query mode is required, which implies -q. The -a option in query mode yields all
packages.

53.

e.54.

c. Provided that file is an RPM file, the -U indicates that an upgrade should occur. -h turns on
hash marks.

55.

d. Linux has no control over the BIOS settings.56.

d. Xsession is the system-wide default application startup file.57.

a and b. Both the second stage of LILO and the kernel should be kept within the 1024-cylinder
boundary.

58.

c.59.

d. X terminals use XDMCP to attach to xdm daemons.60.

b. An 8-bit SCSI bus has three address lines, thus providing 23 or 8 addresses. Setting aside
one for the controller, there are 7 addresses for devices.

61.

a. startx is included with XFree86 as a suggestion, and customization is encouraged.62.

63.

64.

62.

d. rpm -qlp queries and lists files in the package.63.

c. The system, xdisp, will display programs on the second display of its X server.64.

e.65.

d.66.

e. :bye is not a valid command in vi.67.

b. Options -i (install) and -L (list installed files) are incompatible and don't make sense
together.

68.

a. ld.so.conf is the text file in which you add library directories. ld.so.cache is the binary index
resulting from ldconfig.

69.

Chapter 10. Exam 101 Highlighter's Index
Section 10.1. Hardware and Architecture

Section 10.2. Linux Installation and Package Management

Section 10.3. GNU and Unix Commands

Section 10.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard

Section 10.5. The X Window System

10.1. Hardware and Architecture

10.1.1. Objective 1: Configure Fundamental BIOS Settings

10.1.1.1. PC BIOS

The BIOS is the PC's firmware.

The BIOS sets date and time for on-board clock, storage device configuration, and so on via
menus.

10.1.1.2. Resource assignments

Interrupts (IRQs) allow peripherals to interrupt the CPU.

I/O addresses are locations in the processor's memory map for hardware devices.

DMA allows certain devices to work directly with memory, freeing the processor (see Table 10-
1).

Table 10-1. Common device settings

Device I/O address IRQ DMA

ttyS0 (COM1) 3f8 4 NA

ttyS1 (COM2) 2f8 3 NA

ttyS2 (COM3) 3e8 4 NA

ttyS3 (COM4) 2e8 3 NA

lp0 (LPT1) 378-37f 7 NA

lp1 (LPT2) 278-27f 5 NA

fd0, fd1 (floppies 1 and 2) 3f0-3f7 6 2

fd2, fd3 (floppies 3 and 4) 370377 10 3

10.1.1.3. 1024-cylinder limit

LILO and the kernel image should be kept within the first 1024 cylinders on hard disks.

10.1.2. Objective 3: Configure Modems and Sound Cards

10.1.2.1. Modems

Modems are serial devices. Some are external and are attached to a serial port. Others are
installed in a computer and include serial port electronics on-board.

Some modems are produced at reduced cost by implementing portions of their functionality in
Windows software libraries. These so-called "winmodems" aren't compatible with Linux without
add-on drivers.

10.1.2.2. Sound devices

PCI sound cards and most ISA PnP cards under 2.4.x kernels are automatically configured
when the card's driver is loaded.

When the old userspace ISA PnP tools are used, pnpdump output is stored for use at boot time
by isapnp, which does plug-n-play configuration.

10.1.3. Objective 4: Set Up Non-IDE Devices

10.1.3.1. SCSI

The SCSI defines a bus for multiple storage devices.

SCSI capabilities range from 5 MBps to 80 MBps and higher for the newest types.

8-bit SCSI offers up to seven devices plus the controller on a single bus.

16-bit SCSI offers up to 15 devices plus the controller on a single bus.

Each device on the bus has a unique SCSI ID, 07 or 015. Controllers often default to address 7.

Linux device files for SCSI disks are typically /dev/sda, /dev/sdb, and so forth.

Linux device files for SCSI tape drives are typically /dev/st0, /dev/st1, and so on.

SCSI buses must be terminated on both ends. Many SCSI devices include internal terminators
to eliminate the need for external terminators.

PC SCSI adapters have their own BIOS, where the default boot device, bus speed, and on-
board termination settings can be made.

10.1.4. Objective 5: Set Up PC Different Expansion Cards

10.1.4.1. /proc

The /proc filesystem includes information on interrupts, I/O ports, and DMA in /proc/interrupts,
/proc/ioports, and /proc/dma.

10.1.4.2. Commands

On 2.2.x and earlier kernels (or 2.4.x kernels configured without kernel ISA PnP support), use
isapnp to configure ISA cards and pnpdump for a report of ISA PnP resource information.

On 2.4.x and higher kernels, use /proc/isapnp to view and set the configuration of ISA PnP
cards.

For a listing of installed PCI devices, use lspci.

10.1.5. Objective 6: Configure Communication Devices

10.1.5.1. Concepts

Internal communication devices are configured the same as other PC expansion cards.

Most broadband communication devices connect to your PC via USB or ethernet interfaces.

10.1.5.2. Commands

setserial is used to set serial port information.

10.1.6. Objective 7: Configure USB Devices

10.1.6.1. Host Controllers

Open Host Controller Interface (OHCI), USB 1.1

Universal Host Controller Interface (UHCI), USB 1.1

Enhanced Host Controller Interface (EHCI), USB 2.0

10.1.6.2. Devices

HID devices include USB peripherals such as keyboards, mice, and tablets.

Communication devices include modems and broadband adapters.

Mass storage devices include hard drives, tape drives, and flash readers.

10.1.6.3. Drivers

Host Controller Drivers include usb-ohci.o, usb-uhci.o, uhci.o, and ehci-hcd.o.

Class drivers include hid.o, usb-storage.o, acm.o, printer.o, and audio.o.

10.1.6.4. Commands

hotplug is used to automatically load and unload USB modules when devices are plugged in or
removed while a system is running.

10.2. Linux Installation and Package Management

10.2.1. Objective 1: Design a Hard Disk Layout

10.2.1.1. Guidelines

Keep / small by distributing larger parts of the directory tree to other filesystems.

Separate a small /boot partition below cylinder 1024 for kernels.

Separate /var into its own partition to prevent runaway logs from filling /.

Separate /tmp.

Separate /usr if it is to be shared read-only among other systems via NFS.

Set swap size to be somewhere between one and two times the size of main memory.

10.2.2. Objective 2: Install a Boot Manager

10.2.2.1. LILO

LILO has historically been the default Linux boot loader.

LILO consists of the lilo command, which installs the boot loader, and the boot loader itself.

LILO is configured using /etc/lilo.conf.

10.2.2.2. GRUB

GRUB can boot Linux as well as most other PC-based operating systems.

GRUB relies on various files in the /boot/grub directory to support reading from various types
of filesystems.

GRUB is configured using /boot/grub/menu.lst (or /boot/grub/grub.conf on some distributions).

GRUB can be configured to present a text or graphical menu interface and also has a
command-line interface.

10.2.3. Objective 3: Make and Install Programs from Source

10.2.3.1. Source Files

Software often comes in a compressed tar archive file.

Larger source code packages include a configure script to verify that everything is in order to
compile the software.

10.2.3.2. make

make is then used to build the software.

make is also often used to install the software into directories such as /usr/local/bin.

10.2.4. Objective 4: Manage Shared Libraries

10.2.4.1. Concepts

System libraries provide many of the functions required by a program.

A program that contains executable code from libraries is statically linked because it stands
alone and contains all necessary code to execute.

Since static linking leads to larger executable files and more resource consumption, system
libraries can be shared among many executing programs at the same time.

10.2.4.2. Commands

A program that contains references to external , shared libraries is dynamically linked at
runtime by the dynamic linker, ld.so.

New locations for shared libraries can be added to the LD_LIBRARY_PATH variable. As an
alternative, the locations can be added to /etc/ld.so.conf, which lists library file directories.
After this, you must run ldconfig to translate this file into the binary index /etc/ld.so.cache.

10.2.5. Objective 5: Use Debian Package Management

10.2.5.1. Commands

dpkg automates the installation and maintenance of software packages and offers a number of
options.

dselect uses a text based interactive menu to select (or deselect) packages for installation.

alien can install RPM packages on Debian-based systems .

apt-get is a powerful tool that interfaces with online repositories of Debian packages to install
and upgrade Debian packages by package name and resolves each package's dependencies
automatically.

10.2.6. Objective 6: Use Red Hat Package Manager (RPM)

10.2.6.1. Concepts

RPM automates the installation and maintenance of software packages.

Package dependencies are defined but not resolved automatically.

-i, -e, -U, -v, -h, --nodeps, and --force are common options.

10.3. GNU and Unix Commands

10.3.1. Objective 1: Work Effectively on the Command Line

10.3.1.1. The interactive shell and shell variables

A shell provides the command prompt and interprets commands.

A shell variable holds a value that is accessible to shell programs.

PATH is a shell variable that contains a listing of directories that hold executable programs.

Commands must be bash built-ins, found in the PATH, or explicitly defined in order to succeed.

When shell variables are exported, they become part of the environment.

10.3.1.2. Entering commands

Commands are comprised of a valid command, with or without one or more options and
arguments, followed by a carriage return.

Interactive commands can include looping structures more often used in shell scripts.

10.3.1.3. Command history, editing, and substitution

Shell sessions can be viewed as a conversation. History, expansion, and editing make that
dialog more productive.

Commands can be reissued, modified, and edited. Examples are shown in Table 10-2.

Command substitution allows the result of a command to be placed into a shell variable.

Table 10-2. Shell expansion, editing, and substitution examples

History type Examples

Expansion !!

 !n

History type Examples

 ^string1^string2

Editing Ctrl-P, previous line

 Ctrl-K, kill to end of line

 Ctrl-Y, paste (yank) text

Substitution VAR=$(command)

10.3.1.4. Recursive execution

Many commands contain either a -r or -R option for recursive execution through a directory
hierarchy.

The find command is inherently recursive, and is intended to descend through directories
looking for files with certain attributes or executing commands.

10.3.2. Objective 2: Process Text Streams Using Filters

10.3.2.1. The Commands

The following programs modify or manipulate text from files and standard input:

cut [files]

Cut out selected columns or fields from one or more files.

expand files

Convert tabs to spaces in files.

fmt [files]

Format text in files to a specified width by filling lines and removing newline characters.

head [files]

Print the first few lines of files.

join file1 file2

Print a line for each pair of input lines, one each from file1 and file2, that have identical join

fields.

 ^string1^string2

Editing Ctrl-P, previous line

 Ctrl-K, kill to end of line

 Ctrl-Y, paste (yank) text

Substitution VAR=$(command)

10.3.1.4. Recursive execution

Many commands contain either a -r or -R option for recursive execution through a directory
hierarchy.

The find command is inherently recursive, and is intended to descend through directories
looking for files with certain attributes or executing commands.

10.3.2. Objective 2: Process Text Streams Using Filters

10.3.2.1. The Commands

The following programs modify or manipulate text from files and standard input:

cut [files]

Cut out selected columns or fields from one or more files.

expand files

Convert tabs to spaces in files.

fmt [files]

Format text in files to a specified width by filling lines and removing newline characters.

head [files]

Print the first few lines of files.

join file1 file2

Print a line for each pair of input lines, one each from file1 and file2, that have identical join

fields.

nl [files]

Number the lines of files, which are concatenated in the output.

od [files]

Dump files in octal, hexadecimal, ASCII, and other formats.

paste files

Paste together corresponding lines of one or more files into vertical columns.

pr [file]

Convert a text file into a paginated, columnar version, with headers and page fills.

split [infile] [outfile]

Split infile into a specified number of line groups; the output will go into a succession of files
of outfileaa, outfileab, and so on.

tac [file]

Print file to standard output in reverse line order.

tail [files]

Print the last few lines of one or more files.

tr [string1 [string2]]

Translate characters by mapping from string1 to the corresponding character in string2.

wc [files]

Print counts of characters, words, and lines for files.

10.3.2.2. The stream editor, sed

sed is a popular text-filtering program found on every Unix system; it has the following syntax:

sed command [files]

sed -e command1 [-e command2] [files]

sed -f script [files]

Execute sed commands, or those found in script, on standard input or files.

10.3.3. Objective 3: Perform Basic File Management

10.3.3.1. Concepts

Filesystem creation prepares a disk device (or partition) for use. Linux usually uses the native
ext2 (second extended) filesystem or the journalled ext3 filesystem, but it supports many other
filesystem types.

The Linux filesystem is arranged into a hierarchical structure anchored at the root directory, or
/. Beneath this is a tree of directories and files.

Identification information for a filesystem object is stored in its inode, which holds location,
modification, and security information. Filesystems are created with a finite number of inodes.

10.3.3.2. File and directory management commands

The following commands are essential for the management of files and directories:

cp file1 file2

cp files directory

Copy file1 to file2, or copy files to directory.

mkdir directories

Create one or more directories.

mv source target

Move or rename files and directories.

rm files

Delete one or more files from the filesystem. When used recursively (with the -r option), rm

also removes directories.

rmdir directories

Delete directories, which must be empty.

touch files

Change the access and/or modification times of files by default to the present time.

10.3.3.3. File-naming wildcards

Wildcards (also called file globs) allow the specification of many files at once. A list of commonly
used wildcards can be found in Table 10-3.

Table 10-3. File-naming wildcards

Wildcard Function

* Match zero or more characters.

? Match exactly one character.

[characters] Match any single character from among characters listed between

brackets.

[!characters] Match any single character other than characters listed between

brackets.

[a-z] Match any single character from among the range of characters listed
between brackets.

[!a-z] Match any single character from among the characters not in the range
listed between brackets.

{frag1,frag2,frag3,...} Brace expansion: create strings frag1, frag2, and frag3, etc., such that

file_{one,two,three} yields file_one, file_two, and file_three.

10.3.4. Objective 4: Use Unix Streams, Pipes, and Redirects

10.3.4.1. Concepts

A central concept for Linux and Unix systems is that everything is a file.

Many system devices are represented in the filesystem using a device file, such as /dev/ttyS0
for a serial port.

10.3.4.2. Standard I/O

The shell provides the standard I/O capability, offering three default file descriptors to running
programs.

Standard input (stdin) is a text input stream, by default attached to the keyboard.

Standard output (stdout) is an output stream for normal program output.

Standard error (stderr) is an additional output stream meant for error messages.

10.3.4.3. Pipes and redirection

It is possible to tie the output of one program to the input of another. This is known as a pipe
and is created by joining commands using the pipe symbol (|).

Pipes are a special form of redirection, which allows you to manage the origin of input streams
and the destination of output streams. Redirection syntax for various shells differs slightly. See
Table 10-4 for examples of common redirection operators.

Table 10-4. Common redirection operators

Redirection function Syntax for bash

Send stdout to file. $ cmd > file

 $ cmd 1> file

Send stderr to file. $ cmd 2> file

Send both stdout and stderr to file. $ cmd > file 2>&1

Receive stdin from file. $ cmd < file

Append stdout to file. $ cmd >> file

 $ cmd 1>> file

Append stderr to file. $ cmd 2>> file

Append both stdout and stderr to file. $ cmd >> file 2>&1

Pipe stdout from cmd1 to cmd2. $ cmd1 | cmd2

Pipe stdout and stderr from cmd1 to cmd2. $ cmd1 2>&1 | cmd2

Pipe stdout from cmd1 to cmd2 while simultaneously writing it to file1

using tee.

$ cmd1 | tee file1 |

cmd2

10.3.5. Objective 5: Create, Monitor, and Kill Processes

10.3.5.1. Concepts

Processes have:

A lifetime.

A PID.

A UID.

A GID.

A parent process.

An environment.

A current working directory.

10.3.5.2. Monitoring commands

ps

Generate a one-time snapshot of the current processes on standard output.

pstree

Display a hierarchical list of processes in a tree format.

top

Generate a continuous, formatted, real-time process activity display on a terminal or in a
terminal window.

10.3.5.3. Signaling processes

Processes listen for signals sent by the kernel or users using the kill command:

kill -sigspec [pids]

Send sigspec to pids.

Common kill signals are listed in Table 10-5.

Table 10-5. Common signals

Signal Number Meaning

HUP 1 Hangup, reread configuration.

INT 2 Interrupt, stop running.

KILL 9 Exit immediately.

Signal Number Meaning

TERM 15 Terminate nicely.

TSTP 18 Stop executing.

10.3.5.4. Shell job control

Shells can run processes in the background, where they execute on their own, or in the foreground,
attached to a terminal. Each process handled in this way is known as a job. Jobs are manipulated
using job control commands:

bg [jobspec]

Place jobspec in the background as if it had been started with &.

fg [jobspec]

Place jobspec in the foreground, making it the current job.

jobs [jobspecs]

List jobspecs on standard output.

10.3.6. Objective 6: Modify Process Execution Priorities

10.3.6.1. Concepts

A process's execution priority is managed by the kernel.

You can bias the execution priority by specifying a nice number in the range of -20 to +19
(default is 0).

Positive nice numbers reduce priority; negative nice numbers increase priority and are
reserved for the superuser.

10.3.6.2. Commands

nice -adjustment [command]

Apply nice number adjustment to the process created to run command.

renice [+|-]nicenumber targets

TERM 15 Terminate nicely.

TSTP 18 Stop executing.

10.3.5.4. Shell job control

Shells can run processes in the background, where they execute on their own, or in the foreground,
attached to a terminal. Each process handled in this way is known as a job. Jobs are manipulated
using job control commands:

bg [jobspec]

Place jobspec in the background as if it had been started with &.

fg [jobspec]

Place jobspec in the foreground, making it the current job.

jobs [jobspecs]

List jobspecs on standard output.

10.3.6. Objective 6: Modify Process Execution Priorities

10.3.6.1. Concepts

A process's execution priority is managed by the kernel.

You can bias the execution priority by specifying a nice number in the range of -20 to +19
(default is 0).

Positive nice numbers reduce priority; negative nice numbers increase priority and are
reserved for the superuser.

10.3.6.2. Commands

nice -adjustment [command]

Apply nice number adjustment to the process created to run command.

renice [+|-]nicenumber targets

Alter the nicenumber, and thus the scheduling priority, of one or more running target

processes.

10.3.7. Objective 7: Search Text Files Using Regular Expressions

10.3.7.1. Concepts

Regular expressions are used to match text. The term is used to describe the loosely defined
text-matching language as well as the patterns themselves. A regular expression is often called
a regex or a regexp.

Regular expressions are made up of metacharacters (with special meaning) and literals
(everything that is not a metacharacter).

The backslash character (\) turns off (escapes) the special meaning of the character that
follows, turning metacharacters into literals. For non-metacharacters, it often turns on some
special meaning.

10.3.7.2. Position anchors

The operators in Table 10-6 match line position.

Table 10-6. Regular expression position anchors

Regular
expression Description

^ Match the beginning of a line.

$ Match the end of a line.

\<

\>

Match word boundaries. Word boundaries are defined as whitespace, the start of
line, the end of line, or punctuation marks. The backslashes are required and
enable this interpretation of < and >.

10.3.7.3. Character sets

The operators in Table 10-7 match text.

Table 10-7. Regular expression character sets

Regular
expression Description

[abc]

[a-z]

Match any single character from among listed characters (abc) or from among
the characters comprising a range (a-z).

[^abc]

[^a-z]

Match any single character not among listed characters or ranges.

. Match any single character except a newline.

10.3.7.4. Modifiers

The operators in Table 10-8 modify the way other operators are interpreted.

Table 10-8. Regular expression modifiers

Basic regular
expression

Extended
regular
expression Description

* * Match zero or more of the character that precedes it.

\? ? Match zero or one instance of the preceding regex.

\+ + Match one or more instances of the preceding regex.

\{n,m\} {n,m} Match a range of occurrences of the single character or regex
that precedes this construct. \{n\} matches n occurrences,
\{n,\} matches at least n occurrences, and \{n,m\} matches any
number of occurrences between n and m, inclusively.

\| | Match the character or expression to the left or right of the
vertical bar.

\(regex\) (regex) Matches regex, but it can be modified as a whole and used in

back-references. (\1 expands to the contents of the first \(\)
and so on up to \9.)

10.3.8. Objective 8: Using vi

10.3.8.1. Subcommands

Start vi with vi file1 [file2 [...]]. See Table 10-9.

Table 10-9. Basic vi editing commands

Command Description

Esc Exit insert mode and put the editor back into command mode.

h Move left one character.

j Move down one line.

k Move up one line.

l Move right one character.

H Move to the top of the screen.

L Move to the bottom of the screen.

G Move to the end of the file.

w Move forward one word.

b Move backward one word.

0 (zero) Move to the beginning of the current line.

^ Move to the first nonwhitespace character on the current line.

$ Move to the end of the current line.

Ctrl-B Move up (back) one screen.

Ctrl-F Move down (forward) one screen.

i Insert at the current cursor position.

I Insert at the beginning of the current line.

a Append after the current cursor position.

A Append to the end of the current line.

o Start a new line after the current line.

O Start a new line before the current line.

r Replace the character at the current cursor position.

R Start replacing (overwriting) at the current cursor position.

x Delete the character at the current cursor position.

X Delete the character immediately before (to the left) of the current cursor position.

s Delete the character at the current cursor position and go into insert mode. (This is the
equivalent of the combination xi.)

S Delete the contents of the current line and go into insert mode.

dX Given a movement command X, cut (delete) the appropriate number of characters,

words, or lines from the current cursor position.

dd Cut the entire current line.

D Cut from the current cursor position to the end of the line. (This is equivalent to d$.)

cX Given a movement command X, cut the appropriate number of characters, words, or

lines from the current cursor position and go into insert mode.

cc Cut the entire current line and go into insert mode.

C Cut from the current cursor position to the end of the line and enter insert mode. (This
is equivalent to c$.)

Command Description

yX Given a movement command X, copy (yank[a]) the appropriate number of characters,

words, or lines from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.[b]

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite
direction.)

:n Next file; when multiple files are specified for editing, this command loads the next file.
Force this action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force the
write (when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.

[a]

[b]

[a] Emacs users should be careful not to confuse the vi definition of yank (copy) with that of Emacs (paste).

[b] Many of the popular vi implementations support multi-level undo. Vim breaks compatibility with traditional vi by making a repeated u

perform another level of undo. Nvi uses . after u to do multi-level undo, and, like traditional vi, uses a repeated u to redo (undo the undo,

so to speak). This can cause some confusion when moving between Linux distributions that have different default implementations of vi.

yX Given a movement command X, copy (yank[a]) the appropriate number of characters,

words, or lines from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.[b]

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite
direction.)

:n Next file; when multiple files are specified for editing, this command loads the next file.
Force this action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force the
write (when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.

[a]

[b]

[a] Emacs users should be careful not to confuse the vi definition of yank (copy) with that of Emacs (paste).

[b] Many of the popular vi implementations support multi-level undo. Vim breaks compatibility with traditional vi by making a repeated u

perform another level of undo. Nvi uses . after u to do multi-level undo, and, like traditional vi, uses a repeated u to redo (undo the undo,

so to speak). This can cause some confusion when moving between Linux distributions that have different default implementations of vi.

10.4. Devices, Linux Filesystems, and the Filesystem
Hierarchy Standard

10.4.1. Objective 1: Create Partitions and Filesystems

10.4.1.1. Disk drives and partitions

IDE disks are known as /dev/hda, /dev/hdb, /dev/hdc, /dev/hdd, and so on.

SCSI disks are known as /dev/sda, /dev/sdb, /dev/sdc, and so on.

Three types of partitions:

Primary

Filesystem container. At least one must exist, and up to four can exist on a single
physical disk. They are identified with numbers 1 to 4, such as /dev/hda1, /dev/hda2,
and so on.

Extended

A variant of a primary partition, but it cannot contain a filesystem. Instead, it contains
one or more logical partitions. Only one extended partition may exist, and it takes one of
the four possible spots for primary partitions.

Logical

Created within the extended partition. From 1 to 12 logical partitions may be created.
They are numbered from 5 to 16, such as /dev/hda5, /dev/hda6, and so on.

Up to 15 partitions with filesystems may exist on a single physical disk.

10.4.1.2. The root filesystem and mount points

The top of the filesystem tree is occupied by the root filesystem. Other filesystems are mounted
under it, creating a unified filesystem.

/etc, /lib, /bin, /sbin, and /dev must be part of the root filesystem.

10.4.1.3. Partition and filesystem management commands

The following commands are commonly used to repair and manage filesystems:

fdisk [device]

Manipulate or display the partition table for device using a command-driven interactive text
interface. device is a physical disk such as /dev/hda, not a partition such as /dev/hda1.

mkfs device

Make a filesystem on device.

mkswap device

Prepare a partition for use as swap space.

10.4.2. Objective 2: Maintain the Integrity of Filesystems

10.4.2.1. Filesystem Commands

df [directories]

Display overall disk utilization information for mounted filesystems on directories.

du [directories]

Display disk utilization information for directories.

fsck filesystems

Check filesystems for errors and optionally correct them.

10.4.3. Objective 3: Control Filesystem Mounting and Unmounting

10.4.3.1. Managing the filesystem table

/etc/fstab contains mount information for filesystems. Each line contains a single filesystem
entry made up of six fields, shown in Table 10-10.

Table 10-10. Fields found in the /etc/fstab file

Entry Description

Device The device file for the partition holding the filesystem.

Mount point The directory upon which the filesystem is to be mounted.

Filesystem type A filesystem type, such as ext2.

Mount options A comma-separated list.

Dump frequency For use with dump.

Pass number for fsck Used at boot time.

10.4.3.2. Mounting and unmounting

The following commands are used to mount and unmount filesystems:

mount device

mount directory

mount device directory

Mount filesystems onto the hierarchy. The first and second forms consult /etc/fstab for
additional information.

umount device

umount directory

Unmount the filesystem on device or mount it on directory.

10.4.3.3. Filesystem types

Common filesystem types compatible with Linux include:

ext2

The standard Linux filesystem.

ext3

A journalling filesystem that is backwards-compatible with ext2.

iso9660

The standard CD-ROM format.

vfat

The Windows FAT filesystem.

nfs

Remote servers.

proc

A system abstraction for access to kernel parameters.

swap

Swap partitions.

10.4.4. Objective 4: Managing Disk Quota

10.4.4.1. Quota Types

Per-user hard

The maximum size for an individual.

Per-user soft

A warning threshold.

Per-group hard

The maximum size for a group.

Per-group soft

A warning threshold.

Grace period

A time restriction on the soft limit.

10.4.4.2. Commands

quota user

quota -g group

Display quota limits on user or group.

quotaon [filesystems]

Enable previously configured disk quotas on one or more filesystems.

quotaoff [filesystems]

Disable disk quotas on one or more filesystems.

quotacheck [filesystems]

Examine filesystems and compile quota databases. Usually run via cron.

edquota names

Modify user or group quotas by spawning a text editor.

repquota filesystems

Display a summary report of quota status for filesystems, or use -a for all filesystems:

Tip: Enabling quotas requires usrquota and/or grpquota options in /etc/fstab, creation of quota.user and quota.group files at the top of the

filesystem, a quotacheck, and a quotaon.

10.4.5. Objective 5: Use File Permissions to Control Access to Files

10.4.5.1. Access control

Access control is implemented using a set of properties called the access mode, stored in the
inode. Three classes of user are defined:

User

The user that owns the file.

Group

The group that owns the file.

Other

All other users on the system.

Three permissions are either granted or not granted to each class of user:

Read (r)

Allows access to file contents and listing of directory contents.

Write (w)

Allows writing a file or creating files in a directory.

Execute (x)

Allows execution of a file and read/write files in a directory.

These comprise nine bits in the mode User rwx, Group rwx, and Other rwx.

Three additional mode bits are defined:

SUID

To grant processes the rights of an executable file's owner.

SGID

To grant processes the rights of an executable file's group.

Sticky bit

Prohibits file deletion by non-owners.

These 12-mode bits are often referred to in octal notation as well as with mnemonic constructs.

Mode bits are displayed using such commands as ls and stat.

10.4.5.2. Setting access modes

New files receive initial access mode as described by the umask.

The umask strips specified bits from the initial mode settings. Typical umasks are 002 and 022.

Existing file modes are changed using chmod with either symbolic or octal mode specifications:

Symbolic:

[ugoa][-+=][rwxXst]

Octal bits:

user r, w, x, group r, w, x, other r, w, x
rwxrwxrwx = 111111111 = 777
rwxr-xr-- = 111101100 = 751

chmod uses the following syntax:

chmod mode files

Modify the access mode on files using a symbolic or octal mode.

10.4.6. Objective 6: Manage File Ownership

10.4.6.1. Concepts

Access modes are tied to file ownership .

Files have both individual and group ownership.

10.4.6.2. Commands

chown user-owner. group-owner files

Change the owner and/or group of files to user-owner and/or group-owner.

chgrp group-owner files

Change the group ownership of files to group-owner.

chgrp functionality is included in chown.

10.4.7. Objective 7: Create and Change Hard and Symbolic Links

10.4.7.1. Concepts

A link is a pseudonym for another file.

Links take very little space in the filesystem.

A symbolic link is a tiny file that contains a pointer to another file. Symbolic links can span
filesystems.

A hard link is a copy of a file's directory entry. Both directory entries point to the same inode
and thus the same data, ownership, and permissions.

10.4.7.2. ln

ln has the following syntax:

ln file link

ln files directory

Create link to file or in directory for all files. Symbolic links are created with the -s option.

10.4.8. Objective 8: Find System Files and Place Files in the Correct
Location

10.4.8.1. File Hierarchy Standard (FHS)

The FHS is used by Linux distributions to standardize filesystem layout . It defines two
categories of data use, each with opposing subtypes:

Data sharing

Sharable data can be used by multiple host systems on a network. Non-sharable data is
unique to one particular host system.

Data modification

Variable data is changed continually by naturally occurring (i.e., frequent) processes.
Static data is left alone, remaining unchanged over extended periods of time.

The FHS seeks to define the filesystem contents in these terms and locate information
accordingly.

10.4.8.2. The directory hierarchy

The root filesystem:

Must contain utilities and files sufficient to boot the operating system, including the ability
to mount other filesystems.

Should contain the utilities needed by the system administrator to repair or restore a
damaged system.

Should be relatively small.

/usr contains system utilities and programs that do not appear in the / (root) filesystem. It
includes directories such as bin, lib, local, and src.

/var contains varying data such as printer spools and log files, including directories such as
log, mail, and spool.

10.4.8.3. Locating files

Various methods can be used to locate files in the filesystem:

which command

Determine the location of command and display the full pathname of the executable

program that the shell would launch to execute it.

find paths expression

Search for files that match expression starting at paths and continuing recursively.

locate patterns

Locate files whose names match one or more patterns by searching an index of files

previously created.

updatedb

Refresh (or create) the slocate database, usually via cron.

whatis keywords

apropos keywords

Search the whatis database for keywords. whatis finds only exact matches, while apropos

finds partial word matches.

10.5. The X Window System

X is a client-server GUI system. XFree86 is the X implementation used on Linux.

An X server is software or hardware that renders graphical output on a display device.

An X client is software whose output is displayed by an X server and is usually managed by a
window manager.

An X window manager is a client that applies frames and controls to other client windows.

10.5.1. Objective 1: Install and Configure X11

10.5.1.1. Selecting and configuring an X server

XFree86 configuration depends on the software version, the video chipset in use, and the
monitor's capabilities.

XFree86 can be installed from Linux distribution packages (.rpm, .deb), precompiled binaries,
or compiled from source.

Configuration of XFree86 is done in the XF86Configfile.

XF86Config contains sections that define input devices, monitors, graphics modes, and so on.

XF86Config files differ between XFree86 Versions 3.x and 4.x.

10.5.1.2. X fonts

The X server uses X fonts to satisfy font requests from X clients.

Fonts are enumerated either through a static list presented in /etc/X11/XF86Config or through
a font server such as xfs.

xfs is configured using its configuration file, /etc/X11/fs/config.

10.5.1.3. .Xresources

X resource settings in the .Xresources file control client program parameters. For example, this
line defines a black background for an xterm:

xterm*background: Black

10.5.2. Objective 2: Setup A Display Manager

10.5.2.1. xdm

xdm, the X Display Manager, handles X sessions on physical displays both locally and across
the network.

xdm handles authentication.

xdm is configured by a series of files in /etc/X11/xdm.

xdm is typically started automatically in runlevel 5 by making the appropriate settings in
/etc/inittab.

xdm may be personalized by changing the resources in /etc/X11/xdm/Xresources.

Command-line options for the X server can be added to the /etc/X11/xdm/Xservers file.

10.5.2.2. X terminals

X terminals, are low-cost hardware systems that implement an X server and display.

xdm can listen for inbound connection requests from X terminals using the xdmcp protocol.

Specific access rules for X terminals to the xdm daemon can be configured in
/etc/X11/xdm/Xaccess.

10.5.3. Objective 4: Install and Customize a Window Manager Environment

10.5.3.1. Concepts

An X server doesn't supply a working user environment.

Starting X usually involves launching not only the X server but also a window manager and
other clients.

A default window manager, such as the basic twm, is started by a combination of the startx
script and xinit.

xinit also calls scripts that include a window manager and default clients.

Default system X configuration can be overridden by files in the user's home directory.

10.5.3.2. Window managers

Each window manager and desktop environment has its own style of configuration.

twm uses .twmrc in the user's home directory. If that file doesn't exist, it uses the system-wide
/etc/X11/twm/system.twmrc.

Window manager configuration files can contain font and color selections, bindings between
actions (such as mouse clicks) and responses, and menu definitions.

10.5.3.3. xterm

A terminal emulator is a program that offers a command-line interface in a GUI window.

xterm is the standard terminal emulator; there are many others.

xterm can be configured in /usr/lib/X11/app-defaults/XTerm.

10.5.3.4. X libraries

X applications are dependent upon shared X libraries.

Various graphical toolkits such as GTK or Qt can be used to develop X client applications.

Software that depends on a particular library will not run unless that library is installed.

You can determine which libraries an executable requires with ldd.

10.5.3.5. Remote X clients

X clients can be displayed on remote X servers.

The DISPLAY environment variable is used to indicate the destination for X client displays.

DISPLAY has the format [host]:display[.screen] where host is a remote hostname or IP
address, display is the display target (starting with 0), and screen is the screen to use on

multiheaded displays.

DISPLAY must be exported.

Part II: General Linux Exam 102
Part 2 covers the Topics and Objectives for the LPI's General Linux Certification for Exam 102
and includes the following sections:

Chapter 11, Exam 102 Overview

Chapter 12, Exam 102 Study Guide

Chapter 13, Kernel (Topic 1.105)

Chapter 14, Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

Chapter 15, Printing (Topic 1.107)

Chapter 16, Documentation (Topic 1.108)

Chapter 17, Shells, Scripting, Programming, and Compiling (Topic 1.109)

Chapter 18, Administrative Tasks (Topic 1.111)

Chapter 19, Networking Fundamentals (Topic 1.112)

Chapter 20, Networking Services (Topic 1.113)

Chapter 21, Security (Topic 1.114)

Chapter 22, Exam 102 Review Questions and Exercises

Chapter 23, Exam 102 Practice Test

Chapter 24, Exam 102 Highlighter's Index

Chapter 11. Exam 102 Overview

LPI Exam 102 is the second of two exams required for the LPI's Level 1 certification. This exam tests
your knowledge on 9 of the 14 major Topic areas specified for LPIC Level 1.

Each Topic contains a series of Objectives covering specific areas of expertise. Each of these
Objectives is assigned a numeric weight, which acts as an indicator of the importance of the
Objective. Weights run between 1 and 8, with higher numbers indicating more importance. An
Objective carrying a weight of 1 can be considered relatively unimportant and isn't likely to be
covered in much depth on the exam. Objectives with larger weights are sure to be covered on the
exam, so you should study these Topics closely. The weights of the Objectives are provided at the
beginning of each Topic section.

Exam Topics are numbered using a level.topic notation (e.g., 1.101, 1.102, 1.113). In LPI's early
stages of development, Topics were assigned to exams based on a different scheme from what we
see today. When the scheme changed, the Topics were redistributed to Exams 101 and 102, but the
pairing of Topic numbers to exams was dropped. As a result, 1.x and 2.x Topics appeared in both
Level 1 exams. In the 2002 revision of the Objectives, LPI decided to reformat the numbering
scheme to be more scalable for its multiple levels of certifications. Therefore, the exams now use an
x.y.z numbering scheme where x equals the LPIC level (e.g., 1 or 2), y equals the Objective Topic
(e.g., 101, 102, 201, 202) which are unique to all levels of LPI exams, and z equals the Objective
number within the Topic area (e.g., 1, 2, 3, 4, and so on).

The Level 1 Topics are distributed between the two exams to create tests of similar length and
difficulty without subject matter overlap. As a result, there's no requirement or advantage to taking
the exams in sequence.

The Topics for Exam 102 are listed in Table 11-1.

Table 11-1. LPI Topics for Exam 102

Name
Number of
objectives Description

Kernel 2 Covers kernel module management, as well as building and
installing a custom kernel.

Boot, Initialization,
Shutdown, and
Runlevels

2 Covers details for when you boot, reboot, or change
runlevels on a Linux system.

Printing 3 Covers all aspects of printing, including configuring local and
remote printers, managing the print queues, and printing
files.

Documentation 3 Covers documentation including using local system
documentation, using online documentation, and using
documentation to work with system users.

Name
Number of
objectives Description

Shells, Scripting,
Programming, and
Compiling

2 Covers the shell and its startup files and writing bash scripts.
Despite the name, compiling programs from source is not
included (it's covered in Topic 1.102).

Administrative Tasks 6 Covers all of the basic administrative tasks done by a junior
level Linux sysadmin, including managing users and groups,
user and system environment variables, system logs, job
scheduling, data backup, and system time.

Networking
Fundamentals

3 Explores TCP/IP, network interfaces, DHCP, and PPP;
includes troubleshooting commands.

Networking Services 6 Covers network-related applications and services such as
inetd as well as basic Sendmail, Apache, NFS, Samba, DNS,
and OpenSSH configuration.

Security 3 Covers security issues such as package verification, SUID
issues, shadow passwords, iptables, and user limits.

Exam 102 lasts a maximum of 90 minutes and contains approximately 73 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. The majority of the exam is made up of multiple-choice single-answer questions. These
questions have only one correct answer and are answered using radio buttons. A few of the
questions present a scenario needing administrative action. Others seek the appropriate commands
for performing a particular task or for proof of understanding of a particular concept.

The exam also includes a few multiple-choice multiple-answer questions, which are answered using
checkboxes. These questions can have multiple correct responses, each of which must be checked.
These are probably the most difficult type of question to answer because the possibility of multiple
answers increases the likelihood of mistakes. An incorrect response on any one of the possible
answers causes you to miss the entire question.

The exam also has some fill-in-the-blank questions. These questions provide a one-line text area
input box for you to fill in your answer. These questions check your knowledge of concepts such as
important files, commands, or well-known facts that you are expected to know.

Shells, Scripting,
Programming, and
Compiling

2 Covers the shell and its startup files and writing bash scripts.
Despite the name, compiling programs from source is not
included (it's covered in Topic 1.102).

Administrative Tasks 6 Covers all of the basic administrative tasks done by a junior
level Linux sysadmin, including managing users and groups,
user and system environment variables, system logs, job
scheduling, data backup, and system time.

Networking
Fundamentals

3 Explores TCP/IP, network interfaces, DHCP, and PPP;
includes troubleshooting commands.

Networking Services 6 Covers network-related applications and services such as
inetd as well as basic Sendmail, Apache, NFS, Samba, DNS,
and OpenSSH configuration.

Security 3 Covers security issues such as package verification, SUID
issues, shadow passwords, iptables, and user limits.

Exam 102 lasts a maximum of 90 minutes and contains approximately 73 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. The majority of the exam is made up of multiple-choice single-answer questions. These
questions have only one correct answer and are answered using radio buttons. A few of the
questions present a scenario needing administrative action. Others seek the appropriate commands
for performing a particular task or for proof of understanding of a particular concept.

The exam also includes a few multiple-choice multiple-answer questions, which are answered using
checkboxes. These questions can have multiple correct responses, each of which must be checked.
These are probably the most difficult type of question to answer because the possibility of multiple
answers increases the likelihood of mistakes. An incorrect response on any one of the possible
answers causes you to miss the entire question.

The exam also has some fill-in-the-blank questions. These questions provide a one-line text area
input box for you to fill in your answer. These questions check your knowledge of concepts such as
important files, commands, or well-known facts that you are expected to know.

Chapter 12. Exam 102 Study Guide
Part II of this book contains a section for each of the nine Topics found on Exam 102 for LPIC Level 1
certification. Each of the following nine chapters details the Objectives described for the
corresponding Topic on the LPI web site , http://www.lpi.org/en/obj_102.html.

http://www.lpi.org/en/obj_102.html

12.1. Exam Preparation

LPI Exam 102 is thorough, but if you have a solid foundation in Linux concepts as described here,
you should find it straightforward. If you've already taken Exam 101, you'll find that 102 covers a
broader range of Linux administration skills. Included are kernel tasks, boot and system
initialization, printing, documentation, shells and scripting, administrative tasks, networking
fundamentals, networking services, and security. Exam 102 is quite specific on some Topics, such as
network applications like Apache and Sendmail, but you won't come across questions intended to
trick you, and you're unlikely to find questions that you feel are ambiguous.

For clarity, this material is presented in the same order as the LPI Topics and Objectives. To assist
you with your preparation, Tables 12-1 through 12-9 provide a complete listing of the Topics and
Objectives for Exam 102. Because of changes made during test development, the final Objectives
are not always in exact numberical order. After you complete your study of each Objective, simply
check it off here to measure and organize your progress.

Table 12-1. Kernel (Topic 1.105)

Objective Weight Description

1 4 Manage/Query Kernel and Kernel Modules at Runtime

2 3 Reconfigure, Build, and Install a Custom Kernel and Kernel Modules

Table 12-3. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

Objective Weight Description

1 3 Boot the System

2 3 Change Runlevels and Shut Down or Reboot System

Table 12-3. Printing (Topic 1.107)

Objective Weight Description

2 1 Manage Printers and Print Queues

3 1 Print Files

4 1 Install and Configure Local and Remote Printers

Table 12-4. Documentation (Topic 1.108)

Objective Weight Description

1 4 Use and Manage Local System Documentation

2 3 Find Linux Documentation on the Internet

5 1 Notify Users on System-related Issues

Table 12-5. Shells, Scripting, Programming, and Compiling (Topic 1.109)

Objective Weight Description

1 5 Customize and Use the Shell Environment

2 3 Customize or Write Simple Scripts

Table 12-6. Administrative Tasks (Topic 1.111)

Objective Weight Description

1 4 Manage Users and Group Accounts and Related System Files

2 3 Tune the User Environment and System Environment Variables

3 3 Configure and Use System Log Files to Meet Administrative and Security Needs

4 4 Automate System Administration Tasks by Scheduling Jobs to Run in the
Future

5 3 Maintain an Effective Data Backup Strategy

6 4 Maintain System Time

Table 12-7. Networking Fundamentals (Topic 1.112)

Objective Weight Description

1 4 Fundamentals of TCP/IP

3 7 TCP/IP Configuration and Troubleshooting

4 3 Configure Linux as a PPP Client

Table 12-8. Networking Services (Topic 1.113)

Objective Weight Description

1 4 Configure and Manage inetd, xinetd, and Related Services

Objective Weight Description

2 4 Operate and Perform Basic Configuration of Mail Transfer Agent (MTA)

3 4 Operate and Perform Basic Configuration of Apache

4 4 Properly Manage the NFS, and Samba Daemons

5 4 Set Up and Configure Basic DNS Services

7 4 Set Up Secure Shell (OpenSSH)

Table 12-9. Security (Topic 1.114)

Objective Weight Description

1 4 Perform Security Administration Tasks

2 3 Set Up Host Security

3 1 Set Up User-level Security

2 4 Operate and Perform Basic Configuration of Mail Transfer Agent (MTA)

3 4 Operate and Perform Basic Configuration of Apache

4 4 Properly Manage the NFS, and Samba Daemons

5 4 Set Up and Configure Basic DNS Services

7 4 Set Up Secure Shell (OpenSSH)

Table 12-9. Security (Topic 1.114)

Objective Weight Description

1 4 Perform Security Administration Tasks

2 3 Set Up Host Security

3 1 Set Up User-level Security

Chapter 13. Kernel (Topic 1.105)
In the early days of personal computing, operating systems were simple interfaces, designed to
provide access to a rudimentary filesystem and to launch programs. Once a program was running, it
had full control of the system. This made the system simple but also contributed to instability,
because a single program failure could cause the entire system to crash. To run a computer in an
organized and reliable fashion, it is important to isolate physical hardware resources from the
software running on the system. In Linux, the kernel is the core software that owns and manages
your system. It controls hardware, memory, and process scheduling and provides an interface for
programs to indirectly access hardware resources.

This Topic on the Linux kernel has two Objectives:

Objective 1: Manage/Query Kernel and Kernel Modules at Runtime

This Objectives states that candidates should be able to manage and query a kernel and its
loadable modules. This Objective includes using command-line utilities to get information
about a running kernel and kernel modules. It also includes manually loading and unloading
modules as appropriate. In addition, a candidate should be able to determine what
parameters a module accepts. Weight: 4.

Objective 2: Reconfigure, Build, and Install a Custom Kernel and Kernel Modules

A candidate should be able to customize, build, and install a kernel and kernel modules from
source. This Objective includes customizing the current kernel configuration, building a new
kernel, and building kernel modules as appropriate. It also includes installing the new kernel
and modules and ensuring that the boot manager can locate the new kernel and associated
files. Weight: 3.

13.1. Objective 1: Manage/Query Kernel and Kernel
Modules at Runtime

With Linux, code for system devices can be compiled into the kernel. Because the kernel already has
built-in support for most devices, it is said to be monolithic , since the kernel manages all system
hardware by itself. Monolithic kernels aren't very flexible because a new kernel build is necessary for
new peripheral devices to be added to the system. Monolithic kernels also have the potential to
become "bloated" by drivers for hardware that aren't physically installed. Instead, most users run
modular kernels, in which device drivers are inserted into the running kernel as needed. Modular
configurations can adapt to changes in the hardware and provide a convenient way of upgrading
driver software while a system is running.

13.1.1. Module Files

Linux kernel modules are object files (.o) produced by the C compiler but not linked into a
completed executable (in this case, the kernel executable file). Most modules are distributed with
the kernel and compiled along with it. Because they are so closely related to the kernel, separate
sets of modules are installed when multiple kernels are installed. This reduces the likelihood that a
kernel module will be inserted into the wrong kernel version.

Modules are stored in /lib/modules/ kernel-version , where kernel-version is the string reported

by uname -r , such as 2.4.18-10 . In this example, the modules directory would be
/lib/modules/2.4.18-10 . Multiple module hierarchies may be available under /lib/modules if multiple
kernels are installed. Within each kernel-version hierarchy is a kernel subdirectory that contains

the kernel modules, sorted into additional subdirectories by category.

Tip: The path to these additional category subdirectories changed for the 2.4 kernel series to include a kernel subdirectory to contain all the

categories. Prior to 2.4, all of the category subdirectories were located directly under /lib/modules/ kernel-version .

Some of the categories are:

block

Modules for a few block-specific devices such as RAID controllers or IDE tape drives.

cdrom

Device driver modules for nonstandard CD-ROM devices.

fs

Device drivers for filesystems such as MS-DOS (the msdos.o module).

ipv4

Kernel features having to do with TCP/IP networking, such as the Netfilter firewall modules.

misc

Anything that doesn't fit into one of the other subdirectories ends up here. Note that no
modules are stored at the top of this tree.

net

Network interface driver modules.

scsi

Driver modules for the SCSI controller.

video

Driver modules for video adapters.

13.1.2. Manipulating Modules

A module is dynamically linked into the running kernel when it is loaded. Much of Linux kernel
module handling is done automatically. However, there may be times when it is necessary for you to
manipulate the modules yourself, and you may come across the manipulation commands in scripts.
For example, if you're having difficulty with a particular driver, you may need to get the source code
for a newer version of the driver, compile it, and insert the new module in the running kernel. The
commands listed in this section can be used to list, insert, remove, and query modules.

Syntax

lsmod

Description

For each kernel module loaded, display its name, size, use count, and a list of other referring
modules. This command yields the same information as is available in /proc/modules .

Example

Here, lsmod shows that quite a few kernel modules are loaded, including filesystem (vfat, fat
), networking (3c59x), and sound (soundcore, mpu401 , etc.) modules, among others:

lsmod
Module Size Used by

radeon 112996 24
agpgart 45824 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]
e100 59428 1
ohci1394 19976 0 (unused)
ieee1394 48300 0 [ohci1394]
scsi_mod 106168 0
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
emu10k1 68104 1
ac97_codec 13512 0 [emu10k1]
sound 73044 0 [emu10k1]
soundcore 6276 7 [emu10k1 sound]
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [printer wacom hid ehci-hcd usb-uhci]
ext3 87240 3
jbd 51156 3 [ext3]

Syntax

insmod [options] module

Description

Insert a module into the running kernel. The module is located automatically and inserted. You must be
logged in as the superuser to insert modules.

Frequently used options

-s

Direct output to syslog instead of stdout.

-v

Set verbose mode.

Example

The msdos filesystem module is installed into the running kernel. In this example, the kernel was
compiled with modular support for the msdos filesystem type, a typical configuration for a Linux
distribution for i386 hardware. To verify that you have this module, check for the existence of
/lib/modules/ kernel-version /fs/msdos.o :

insmod msdos
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_add_cluster_Rsmp_eb84f594
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_cache_inval_inode_Rsmp_6da1654e
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_scan_Rsmp_d61c58c7
 (... additional errors omitted ...)
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_date_unix2dos_Rsmp_83fb36a1
echo $?
1

This insmod msdos command yields a series of unresolved symbol messages and an exit status of 1,
indicating an error. This is the same sort of message that might be seen when attempting to link a
program that referenced variables or functions unavailable to the linker. In the context of a module
insertion, such messages indicate that the functions are not available in the kernel. From the names
of the missing symbols, you can see that the fat module is required to support the msdos module, so
it is inserted first:

insmod fat

Now the msdos module can be loaded:

insmod msdos

Use the modprobe command to automatically determine these dependencies and install prerequisite
modules first.

Syntax

rmmod [options] modules

Description

The rmmod command is used to remove modules from the running kernel. You must be
logged in as the superuser to remove modules, and the command will fail if the module is in
use or being referred to by another module.

Frequently used options

-a

Remove all unused modules.

-s

Direct output to syslog instead of stdout.

Example

Starting with both the fat and msdos modules loaded, remove the fat module (which is used
by the msdos module):

lsmod
Module Size Used by
msdos 8348 0 (unused)
fat 25856 0 [msdos]
rmmod fat
rmmod: fat is in use

In this example, the lsmod command fails because the msdos module is dependent on the fat
module. So, to unload the fat module, the msdos module must be unloaded first:

rmmod msdos
rmmod fat

The modprobe -r command can be used to automatically determine these dependencies and remove
modules and their prerequisites.

Syntax

modinfo [options] module_object_file

Description

Display information about a module from its module_object_file . Some modules contain no

information at all, some have a short one-line description, and others have a fairly descriptive
message.

Options

-a

Display the module's author.

-d

Display the module's description.

-p

Display the typed parameters that a module supports.

Examples

In these examples, modinfo is run using modules compiled for a multiprocessing (SMP) kernel
Version 2.2.5. Your kernel version, and thus the directory hierarchy containing modules, will
be different.

modinfo -d /lib/modules/2.2.5-15smp/misc/zftape.o
zftape for ftape v3.04d 25/11/97 - VFS interface for the
 Linux floppy tape driver. Support for QIC-113
 compatible volume table and builtin compression
 (lzrw3 algorithm)
modinfo -a /lib/modules/2.2.5-15smp/misc/zftape.o
(c) 1996, 1997 Claus-Justus Heine
 (claus@momo.math.rwth-aachen.de)
modinfo -p /lib/modules/2.2.5-15smp/misc/ftape.o
ft_fdc_base int, description "Base address of FDC
 controller."
Ft_fdc_irq int, description "IRQ (interrupt channel)
 to use."
ft_fdc_dma int, description "DMA channel to use."
ft_fdc_threshold int, description "Threshold of the FDC
 Fifo."
Ft_fdc_rate_limit int, description "Maximal data rate
 for FDC."
ft_probe_fc10 int, description "If non-zero, probe for a
 Colorado FC-10/FC-20 controller."
ft_mach2 int, description "If non-zero, probe for a
 Mountain MACH-2 controller."
ft_tracing int, description "Amount of debugging output,
 0 <= tracing <= 8, default 3."

Syntax

modprobe [options] module [symbol=value ...]

Description

Like insmod, modprobe is used to insert modules. In fact, modprobe is a wrapper around
insmod and provides additional functionality. In addition to loading single modules, modprobe
has the ability to load modules along with their prerequisites or all modules stored in a specific
directory. The modprobe command can also remove modules when combined with the -r
option.

A module is inserted with optional symbol=value parameters (see "Configuring Modules " in

the next section for more on parameters). If the module is dependent upon other modules,
they will be loaded first. The modprobe command determines prerequisite relationships
between modules by reading modules.dep at the top of the module directory hierarchy (i.e.,
/lib/modules/2.2.5-15smp/modules.dep).

You must be logged in as the superuser to insert modules.

Frequently used options

-a

Load all modules. When used with the -t moduletype , all is restricted to modules in the
moduletype directory. This action probes hardware by successive module-insertion

attempts for a single type of hardware, such as a network adapter (in which case the
moduletype would be net , representing /lib/modules/ kernel-version /kernel/net).

This may be necessary, for example, to probe for more than one kind of network
interface.

-c

Display a complete module configuration, including defaults and directives found in
/etc/modules.conf (or /etc/conf.modules on older systems). The -c option is not used
with any other options.

-l

List modules. When used with the -t moduletype , list only modules in directory
moduletype . For example, if moduletype is net , then modules in /lib/modules/ kernel-
version /net are displayed.

-r

Remove module , similar to rmmod . Multiple modules may be specified.

-s

Direct output to syslog instead of stdout.

-t moduletype

Attempt to load multiple modules found in the directory moduletype until a module
succeeds or all modules in moduletype are exhausted. This action "probes" hardware by

successive module-insertion attempts for a single type of hardware, such as a network
adapter (in which case moduletype would be net , representing /lib/modules/ kernel-
version /kernel/net).

-v

Set verbose mode.

Example 1

Install the msdos filesystem module into the running kernel:

modprobe msdos

Module msdos and its dependency, fat , will be loaded. modprobe determines that fat is needed by
msdos when it looks through modules.dep . You can see the dependency listing using grep :

grep /msdos.o: /lib/modules/2.2.5-15smp/modules.dep
/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Example 2

Remove fat and msdos modules from the running kernel, assuming msdos is not in use:

modprobe -r fat msdos

Example 3

Attempt to load available network modules until one succeeds:

modprobe -t net

Example 4

Attempt to load all available network modules:

modprobe -at net

Example 5

List all modules available for use:

modprobe -l
/lib/modules/2.2.5-15smp/fs/vfat.o
/lib/modules/2.2.5-15smp/fs/umsdos.o
/lib/modules/2.2.5-15smp/fs/ufs.o
 . . .

Example 6

List all modules in the net directory for 3Com network interfaces:

modprobe -lt net | grep 3c
/lib/modules/2.2.5-15smp/net/3c59x.o
/lib/modules/2.2.5-15smp/net/3c515.o
/lib/modules/2.2.5-15smp/net/3c509.o
/lib/modules/2.2.5-15smp/net/3c507.o
/lib/modules/2.2.5-15smp/net/3c505.o
/lib/modules/2.2.5-15smp/net/3c503.o
/lib/modules/2.2.5-15smp/net/3c501.o

13.1.3. Configuring Modules

You may sometimes need to control elements of a module such as hardware interrupt assignments
or Direct Memory Access (DMA) channel selections. Other situations may dictate special procedures
to prepare for, or clean up after, a module insertion or removal. This special control of modules is
implemented in the configuration file /etc/modules.conf , which controls the behavior of modprobe .
The /etc/modules.conf file can contain the following information:

Comments

Blank lines and lines beginning with # are ignored.

keep

The keep parameter, when found before any path directives, causes the default paths to be
retained and added to any paths specified.

depfile= full_path

This directive overrides the default location for the module dependency file, modules.dep
(described in the next section). For example:

depfile=/lib/modules/2.2.14/modules.dep

path= path_directory

This directive specifies a directory to search for modules.

options module opt1=val1 opt2=val2 ...

Options for modules can be specified using the options configuration line in modules.conf or
on the modprobe command line. The command line overrides configurations in the file. module
is the name of a single module without the .so extension. Options are specified as name=value
pairs, where the name is understood by the module and reported using modinfo -p . For

example:

options opl3 io=0x388

alias

Aliases can be used to associate a generic name with a specific module. For example:

alias scsi_hostadapter aic7xxx
alias eth0 3c59x
alias parport_lowlevel parport_pc

pre-install module command

This directive causes some shell command to be executed prior to insertion of module . For

example, PCMCIA services need to be started prior to installing the pcmcia_core module:

pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start

install module command

This directive allows a specific shell command to override the default module-insertion

command.

post-install module

This directive causes some shell command to be executed after insertion of module .

pre-remove module

This directive causes some shell command to be executed prior to removal of module .

remove module

This directive allows a specific shell command to override the default module-removal

command.

post-remove module

This directive causes some shell command to be executed after removal of module .

The following is an example of the /etc/modules.conf file:

alias scsi_hostadapter aic7xxx
alias eth0 3c59x
alias parport_lowlevel parport_pc
pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start
alias sound opl3sa2
pre-install sound insmod sound dmabuf=1
alias midi opl3
options opl3 io=0x388
options opl3sa2 mss_io=0x530 irq=5 dma=0 dma2=1
 mpu_io=0x388 io=0x370

On the Exam

While it is important for you to understand the configuration lines in /etc/modules.conf , detailed
module configuration is beyond the scope of the LPIC Level 1 Exams.

13.1.4. Module Dependency File

modprobe can determine module dependencies and install prerequisite modules automatically. To
do this, modprobe scans the first column of /lib/modules/ kernel-version /modules.dep to find the

module it is to install. Lines in modules.dep are in the following form:

module_name.o: dependency1 dependency2 ...

A typical dependency looks like this:

/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Here, the msdos module is dependent upon fat .

All of the modules available on the system are listed in the modules.dep file and are referred to with
their full path and filenames, including their .o extension. Those that are not dependent on other
modules are also listed, but without dependencies. Dependencies that are listed are inserted into the
kernel by modprobe first, and when all of them are successfully inserted, the subject module itself

can be loaded.

The modules.dep file must be kept current to ensure the correct operation of modprobe . If module
dependencies were to change without a corresponding modification to modules.dep , then modprobe
may fail, because a dependency could be missed. As a result, modules.dep is created each time the
system is booted. On most distributions, the depmod -a command is called during rc.sysinit :

echo "Finding module dependencies"
/sbin/depmod -a

The depmod -a command re-creates and overwrites modules.dep each time the system is booted.
This procedure is also necessary after any change in module dependencies. (The depmod command
is actually a link to the same executable as modprobe . The functionality of the command differs
depending on which name is used to call it.)

On the Exam

Be sure you know what is in modules.dep , as well as what the file is used for, how it is created, and
when it is created. Be prepared to cite the consequences of a missing or obsolete modules.dep file.

13.2. Objective 2: Reconfigure, Build, and Install a Custom
Kernel and Kernel Modules

Because Linux is an open source operating system, you are free to create a customized Linux kernel
that suits your specific needs and hardware. For example, you may wish to create a kernel for your
system if your distribution installed a generic kernel that was compiled using the 80386 instruction
set. Such a kernel will run on any compatible processor but may not utilize some of the capabilities
of newer processors. Running a kernel optimized for your particular CPU can enhance its
performance.

You can also install new kernels to add features, fix bugs, or experiment with kernels still under
development. While the compilation of such kernels isn't much of a leap beyond recompiling your
existing version, it's beyond the scope of the LPIC Level 1 Exams.

13.2.1. Kernel Background

If you are new to the idea of building a custom kernel, don't feel intimidated. Linux developers have
created a simple and reliable process that you can follow, and everything you need is available in
your Linux distribution.

13.2.1.1. Kernel versions

Nearly all software projects, even small ones, use a numerical version scheme to describe each
successive release. Kernel versions are numbered using the following convention:

major.minor.patchlevel

Major release

Increments in the major release indicate major developmental milestones in the kernel . The
present release is 2.6.13 (don't let the low major release number fool youthere have been
plenty of developmental milestones in the Linux kernel's history).

Minor release

The minor release indicates significant changes and additions, which taken together will
culminate in a new major release. The Linux kernel minor release numbers used to fall into
one of the following categories:

Even-numbered releases

Kernels with even-numbered kernel versions (2.0, 2.2, 2.4, and so on) were considered
stable.

Odd-numbered releases

Kernels with odd-numbered minor release versions (2.1, 2.3, 2.5, and so on) were in
development and were primarily used by kernel developers. Currently, however,
development continues on 2.6 and there is no 2.7.

Patch level

As bugs are found and corrected or as planned features are added, the kernel patch level is
incremented (2.2.15, 2.3.38, 2.4.18, and so on). Generally speaking, it is safest to run the
latest patch level of the kernel to be assured of having the most current bug fixes. In reality, it
is more important to track kernel development and upgrade your kernel only if your existing
version is found to have a serious problem or if you are already experiencing difficulty.

13.2.1.2. Required tools and software

To compile a custom kernel, you need development tools including a C compiler, assembler, linker,
and the make utility. If you selected a kernel development option when you installed Linux, you
should already have these tools on your system. The C compiler is the program that translates C
source code into the binary form used by your system. The standard compiler on most Linux
systems is the GNU C Compiler, gcc . The assembler and linker are needed for some portions of the
kernel compilation.

The compilation process is controlled by make , a utility that executes commands such as gcc as
directed by a list of dependency rules. These rules are stored in the Makefile . A brief introduction to
make was provided in Chapter 4 .

Of course, you also need the kernel source code. The stock kernel source can be found at
ftp://ftp.kernel.org/pub/linux/kernel . In addition, most distributions come with a kernel source
package (usually named kernel-source or something similarly descriptive).

The kernel's source code can be found in /usr/src/linux- kernel-version on most systems. For

example, here is the /usr/src directory for a system with several kernel versions:

ls -l /usr/src
drwxr-xr-x 15 root root 1024 Jan 29 01:13 linux-2.2.14
drwxr-xr-x 17 root root 1024 Feb 16 03:00 linux-2.2.5
drwxr-xr-x 14 root root 1024 Feb 16 04:35 linux-2.3.45

On the Exam

Explore the kernel source tree to familiarize yourself with its contents. Pay particular attention to
.config and the Makefile .

13.2.2. Compiling a Custom Kernel

This section provides an overview of kernel compilation and installation by way of example. This
example uses kernel Version 2.2.5, and our objective is to create a single-processor kernel for a
Pentium system with IDE disks to replace a generic kernel that came with the distribution. (A system
that boots from a SCSI disk and has the SCSI driver compiled as a module requires the use of an
initrd [initial RAM disk], which is not covered here.)

Assume that the development environmentincluding compiler, make , kernel source code, and kernel
headersis installed. The root user will be used to create and install the kernel, although any user

can compile a kernel; however, like most tasks on a Linux system, it is best to avoid doing things as
root .

13.2.2.1. Creating a kernel configuration

The first step in creating a kernel is configuration. There are more than 500 options for the kernel,
such as filesystem, SCSI, and networking support. Many of the options list kernel features that can
be either compiled directly into the kernel or compiled as modules. During configuration, you
indicate for each option whether you:

Want that feature compiled into the kernel (yes response)

Want that feature compiled as a module (module response)

Don't want the feature at all (no response)

Some selections imply a group of other selections. For example, when you indicate that you wish to
include SCSI support, additional options become available for specific SCSI drivers and features. The
results from all of these choices are stored in the kernel configuration file .config , which is a plain
text file that lists the options as shell variables set to y, m , or n in accordance with your response
for each item.

There are several ways to set up .config . Although you can do so, you should not edit the file
manually. Instead, you may select from three interactive approaches. An additional option is
available to construct a default configuration. Each is started using make . The options presented in
each case are the same, as is the outcome.

Syntax

make config

Description

Running make config is the most rudimentary of the automated kernel configuration methods
and does not depend on any form of display capability on your terminal. In response to make
config , the system presents you with a question in your console or window for each kernel
option. You respond to the questions with y, m , or n for yes, module, or no, respectively. This
method can admittedly get a bit tedious and has the liability that you must answer all the
questions before being asked if you wish to save your .config file and exit. However, it is
helpful if you do not have sufficient capability to use one of the menu-based methods. A make
config session looks like this:

make config
rm -f include/asm
(cd include ; ln -sf asm-i386 asm)
/bin/sh scripts/Configure arch/i386/config.in
#
Using defaults found in arch/i386/defconfig
#
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [Y/n/?]Y

Each option is offered in this manner.

Syntax

make menuconfig

Description

This configuration method is more intuitive and can be used as an alternative to make config .
It creates a text mode windowed environment where you may use cursor keys and other keys
to configure the kernel. The menu depends on the ability of your terminal or terminal window
to use curses , a standard library of terminal cursor manipulation instructions. If your terminal
does not support curses (although most do), you must select another method. The make
menuconfig window is illustrated in Figure 13-1 in an xterm .

Figure 13-1. The make menuconfig menu display

Syntax

make xconfig

Description

If you are running the X Window System, the make xconfig configuration method presents a
GUI menu with radio buttons to make the selections. It is the most appealing visually but
requires a graphical console or X display. Figure 13-2 shows the top-level make xconfig
window.

Figure 13-2. The make xconfig menu display

Syntax

make oldconfig

Description

make oldconfig creates a new kernel configuration using .config as a base. User interaction is
required only for options that were not previously configured (such as new options). This is
convenient if you have patched your kernel with code that adds a new configuration option
and want to be prompted only for configuration choices related to the new configuration
option.

In the absence of user responses, menuconfig and xconfig will create a default .config file.

Example

To create the .config file for this example, the target processor is set as Pentium. Using make
xconfig , the selection looks like the window shown in Figure 13-3 .

Figure 13-3. The make xconfig processor-selection window

By setting the Processor family parameter to Pentium/K6/TSC and saving the configuration, you
cause the following revised configuration lines to be written in .config :

Processor type and features
#
CONFIG_M386 is not set
CONFIG_M486 is not set
CONFIG_M586 is not set
CONFIG_M586TSC=y
CONFIG_M686 is not set
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_TSC=y
CONFIG_MATH_EMULATION=y
CONFIG_MTRR=y
CONFIG_SMP is not set

The complete .config file will contain approximately 800 lines. You should look through the other
kernel options with one of the windowed selectors first to familiarize yourself with what is available
before making your selections.

Now that .config is created, one small change is made to the file Makefile in the top level of the
kernel source tree to differentiate our new custom kernel from the generic one. The first four lines
look like this:

VERSION = 2
PATCHLEVEL = 2
SUBLEVEL = 5
EXTRAVERSION = -15

You can see that the kernel version is 2.2.5 and that an additional version number is available. In

this case, the generic kernel had the extra version suffix of -15 , yielding a complete kernel version
number 2.2.5-15. This EXTRAVERSION parameter can be used to indicate just about anything. In this
example, it denotes the 15th build of kernel 2.2.5, but -pentium is added to the end for our custom
version. Edit Makefile and change EXtrAVERSION as follows:

EXTRAVERSION = -15-pentium

This change completes the configuration for this example.

13.2.2.2. Compiling the kernel

Once the .config and Makefile files are customized, the new kernel can be compiled by running the
following commands:

make dep

In this step, source files (.c) are examined for dependencies on header files. A file called
.depend is created in each directory containing source files to hold the resulting list, with a line
for each compiled object file (.o). The .depend files are automatically included in subsequent
make operations to be sure that changes in header files are compiled into new objects. Since
kernel code isn't being developed here, no header file changes are needed. Nevertheless, make
dep is an essential first step in the compilation process.

1.

make clean

The "clean" operation removes old output files that may exist from previous kernel builds.
These include core files, system map files, and others. They must be removed to compile a
new, clean kernel.

2.

make bzImage

The bzImage file is the ultimate goal: a bootable kernel image file, compressed using the gzip
utility. It is created in this step along with some additional support files needed for boot time.
(It is important to remember that the b in bzImage does not refer to being compressed with
bzip2 . The bzImage kernel format allows for a larger image than the old zImage format, so
bzImage just means big zImage .)

3.

make modules

Device drivers and other items that were configured as modules are compiled in this step.

4.

make modules_install

All of the modules compiled during make modules are installed under /lib/modules/ kernel-
version in this step. A directory is created there for each kernel version, including various

extra versions.

5.

The bzImage and modules portions of the kernel-compilation process will take the most time.
Overall, the time required to build a kernel depends on your system's capabilities.

After completing this series of make processes, compilation is complete. The new kernel image is
now located in arch/i386/boot/bzImage in the kernel source tree.

13.2.2.3. Installing the new kernel and configuring LILO

Now that the new kernel has been compiled, the system can be configured to boot it:

The first step is to put a copy of our new bzImage on the boot partition so it can be booted by
LILO. The copy is named just as it was named during compilation, including the extra version:

cp -p arch/i386/boot/bzImage
 /boot/vmlinuz-2.2.5-15-pentium

1.

Now, a listing of kernels should show at least your default kernel and your new one, vmlinuz-
2.2.5-15-pentium :

ls -1 /boot/vmlinuz*
/boot/vmlinuz
/boot/vmlinuz-2.2.14
/boot/vmlinuz-2.2.5-15
/boot/vmlinuz-2.2.5-15-pentium
/boot/vmlinuz-2.2.5-15smp
/boot/vmlinuz-2.3.45

2.

Next, add a new image section to the bottom of /etc/lilo.conf :

image=/boot/vmlinuz-2.2.5-15-pentium
 label=linux-pentium
 root=/dev/sda1
 read-only

3.

If you're using LILO for your boot loader, you must execute lilo (the map installer) to see the
new kernel:

lilo
Added linux-smp *
Added linux-up
Added latest
Added linux-pentium

4.

It's not uncommon to forget the execution of LILO. If you do forget, LILO won't know about the new
kernel you've installed despite the fact that it's listed in the lilo.conf file. This is because lilo.conf is
not consulted at boot time. If you're using GRUB for your boot loader, editing its configuration file is
sufficient. No extra steps are required.

If everything has gone according to plan, it's time to reboot and attempt to load the new kernel.

Tip: As you review the README file that comes with the kernel source, you may see suggestions for overwriting your existing kernel, perhaps

with a generic name such as vmlinuz and reusing your existing LILO configuration unaltered (i.e., without changing lilo.conf). Unless you're

absolutely sure about what you are doing, overwriting a known good kernel is a bad idea. Instead, keep the working kernel around as a fallback

position in case there's a problem with your new one.

13.2.2.4. Examine the new modules

Now that the new kernel is installed, you should take a look at /lib/modules , which now has a new
directory for the new kernel:

ls -1 /lib/modules
2.2.14
2.2.5-15
2.2.5-15-pentium
2.2.5-15smp
2.3.45

On the Exam

Remember the series of make steps required to build the kernel: config (or menuconfig or xconfig),
dep, clean, bzImage, modules , and modules-install . Be aware of where the kernel source code is
installed. Also, note that you need to copy the kernel image file (bzImage) to the boot filesystem
and that you must rerun lilo before you can boot it. By all means, practice compiling and installing a
kernel at least once before taking Exam 102.

Chapter 14. Boot, Initialization, Shutdown,
and Runlevels (Topic 1.106)
Even the most inexpensive PC has a fairly complex series of steps to execute on its way from idle
hardware to productive system. When a system is powered on, a computer's electronics are in a
random state and must be reset to a known condition. After this occurs, the CPU in the system
begins processing instructions at a specific, hardcoded memory location in ROM. For PCs, the ROM is
usually called the BIOS. The startup instructions stored in the BIOS perform basic initialization
chores to discover and configure peripheral hardware. When the system is initialized and ready, it
begins looking in known locations for an operating system (or operating system loader software).
This could be stored on fixed or removable disk media or even placed in memory during
initialization. Once an operating system is launched, it begins an initialization sequence of its own.

This chapter covers the latter portions of the boot process, from the point when the BIOS looks for
an operating system, as required for Exam 102. (The BIOS is covered in Chapter 3.) This Topic has
two Objectives:

Objective 1: Boot the System

Candidates should be able to understand the system booting process. This includes giving
commands to the boot loader and giving options to the kernel at boot time and checking
events in the log files. Weight: 3.

Objective 2: Change Runlevels and Shut Down or Reboot System

This Objective states that a candidate should be able to manage the runlevel of the system.
This includes changing the system to single-user mode, shutting it down, or rebooting it.
Candidates must also be able to alert users and terminate system processes when changing
system runlevels. Weight: 3.

14.1. Objective 1: Boot the System

It is the job of a boot loader, such as LILO or GRUB, to launch the Linux kernel at boot time. In
some cases, the boot loader has to deliver information to the Linux kernel that may be required to
configure peripherals or control other behavior. This information is called a kernel parameter.

14.1.1. Boot-time Kernel Parameters

By default, your system's kernel parameters are set in your boot loader's configuration file
(/etc/lilo.conf or /boot/grub/menu.lst, and boot/grub/grub.conf on Red Hat and some other
distributions). However, the Linux kernel also has the capability to accept information at boot time
from a kernel command-line interface. You access the kernel command line through your installed
boot loader. When your system boots, you can interrupt the "default" boot process when the boot
loader displays and specify your desired kernel parameters. The kernel parameters on the command
line look similar to giving arguments or options to a program during command-line execution.

For an example, let's say you wanted to boot with a root partition other than your default,
/dev/hda1. Using LILO, you could enter the following at the LILO prompt:

LILO: linux root=/dev/hda9

This command boots the kernel whose label is linux and overrides the default value of /dev/hda1 to
/dev/hda9 for the root filesystem.

On the Exam

There are far too many kernel parameters to list in this book. Consequently, you must
familiarize yourself with them in general terms so that you can answer questions on
their form. Remember that they are specified to your boot loader as either a single
item, such as ro, or name=value options such as root=/dev/hda2. Multiple parameters

are always separated by a space.

14.1.2. Introduction to Kernel Module Configuration

Modern Linux kernels are modular, in that modules of code traditionally compiled into the kernel
(say, a sound driver) are loaded as needed. The modules are separate from the kernel and can be
inserted and removed by the superuser if necessary. While parameters in the boot loader's
configuration file and the kernel command line affect the kernel, they do not control kernel modules.

To send parameters to a kernel module, they are inserted into the file /etc/modules.conf as text (in

the past this configuration file was /etc/conf.modules). Common module options you may find in
your module configuration file are I/O address, interrupt, and DMA channel settings for your sound
device. This file will also probably carry PCMCIA driver information when installed on laptops.
Module configuration will probably be handled by your distribution's installation procedure but may
require modifications if hardware is added or changed later. Example 14-1 shows a typical
/etc/modules.conf file.

Example 14-1. A typical /etc/modules.conf file

alias parport_lowlevel parport_pc
alias eth0 8139too
alias sound-slot-0 via82cxxx_audio
post-install sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -L >/dev/null 2>&1 || :
pre-remove sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -S >/dev/null 2>&1 || :
alias usb-controller usb-uhci

On the Exam

Read questions that ask about kernel or module parameters carefully. Kernel options
can be passed on the kernel command line; module options are specified in
modules.conf.

In this example, note that an alias named sound-slot-0 is created for the audio driver
via82cxxx_audio. Most devices won't need any additional configuration, but systems with older ISA
cards may still need to pass options for I/O port, IRQ, and DMA channel settings. In addition, some
drivers may need options to specify nonstandard settings. For example, an ISDN board used in
North America will need to specify NI1 signaling to the driver.

options hisax protocol=4 type=40

14.1.2.1. Kernel boot-time messages

As the Linux kernel boots, it gives detailed status of its progress in the form of console messages.
Modules that are loaded also yield status messages. These messages contain important information
regarding the health and configuration of your hardware. Generally, the kinds of messages you will
see are:

Kernel identification

Memory and CPU information

Information on detected hardware, such as pointers (mice), serial ports, and disks

Partition information and checks

Network initialization

Kernel module output for modules that load at boot time

These messages are displayed on the system console at boot time but often scroll off the screen too
fast to be read. The messages are also logged to disk. They can easily be viewed using the dmesg
command, which displays messages logged at the last system boot. For example, to view messages
from the last boot sequence, simply pipe the output of dmesg to less:

dmesg | less

It is also common to use dmesg to dump boot messages to a file for later inspection or archive, by
simply redirecting the output:

dmesg > bootmsg.txt

Tip: The kernel buffer used for log messages that dmesg displays is a fixed size, so it may lose some (or all) of the boot-time messages as the

kernel writes runtime messages.

14.1.2.2. Reviewing system logs

In addition to kernel messages, many other boot-time messages will be logged using the syslog
system. Such messages will be found in the system log files such as /var/log/messages. For
example, dmesg displays information on your network adapter when it was initialized. However, the
configuration and status of that adapter is logged in /var/log/messages as a result of the network
startup. When examining and debugging boot activity on your system, you need to review both
kinds of information. syslogd, its configuration, and log file examination are covered in the section
"Objective 3: Configure and Use System Log Files to Meet Administrative and Security Needs" in
Chapter 18.

14.2. Objective 2: Change Runlevels and Shut Down or
Reboot System

As mentioned in the introduction, Linux and many Unix systems share the concept of runlevels. This
concept specifies different ways a system can be used by controlling which services are running. For
example, a system that operates a web server program is configured to boot and initiate processing
in a runlevel designated for sharing data, at which point the web server is started. However, the
same system would not run the web server in a runlevel used for emergency administration, when
all but the most basic services are shut down.

Runlevels are specified by the integers through 6 as well as a few single characters. Runlevels 0 and
6 are unusual in that they specify the transitional states of shutdown and reboot, respectively. By
instructing Linux to enter runlevel 0, it begins a clean shutdown procedure. Similarly, the use of
runlevel 6 begins a reboot. The remaining runlevels differ in meaning slightly among Linux
distributions and other Unix systems.

When a Linux system boots, the init process is responsible for taking the system to the default
runlevel, which is usually either 2, 3, or 5 depending on the distribution and the use for the
machine. Typical runlevel meanings are listed in Table 14-1.

Table 14-1. Typical runlevels

Runlevel Description

0 Halt the system; runlevel 0 is a special transitional device used by administrators to shut
down the system quickly. This, of course, shouldn't be a default runlevel, because the
system would never come upit would shut down immediately when the kernel launches
the init process. See also runlevel 6.

1, s, S Single-user mode, sometimes called maintenance mode. In this mode, system services
such as network interfaces, web servers, and file sharing are not started. This mode is
usually used for interactive filesystem maintenance.

2 Multiuser. On Debian this is the default runlevel. On Red Hat it is multiuser without NFS
file sharing.

3 On Red Hat the default full multiuser mode. This and levels 4 and 5 are not usually used
on Debian.

4 Typically unused.

5 On Red Hat: full multiuser mode with GUI login. Runlevel 5 is like runlevel 3 but X11 is
started in addition and a GUI login is available. If your X11 cannot start for some
reason, you should avoid this runlevel.

6 Reboot the system; used by system administrators. Just like runlevel 0, this is a
transitional device for administrators. It shouldn't be a default runlevel because the
system would eternally reboot.

14.2.1. Single-User Mode

Runlevel 1, the single-user runlevel, is a bare-bones operating environment intended for system
maintenance. In single-user mode , remote logins are disabled, networking is disabled, and most
daemons are shut down. Single-user mode is used for system configuration tasks that must be
performed with no user activity. One common reason you might be forced to use single-user mode is
to correct problems with a corrupt filesystem that the system cannot handle automatically.

If you wish to boot directly into single-user mode, you may specify it at boot time with the kernel's
command line through your boot loader. For instance, if you were using LILO, at the LILO: boot
prompt, you would specify your kernel's image name and 1 or single for single-user mode. These
arguments are not interpreted as kernel arguments but are instead passed along to the init process.
For example, if your kernel image is named linux, these commands would take the system to
single-user mode, bypassing the default:

LILO: linux single

or:

LILO: linux 1

To switch into single-user mode from another runlevel, you can simply issue a runlevel change
command with init:

init 1

If others are using resources on the system, they will be unpleasantly surprised, so be sure to give
users plenty of warning before doing this.

14.2.1.1. Overview of the /etc directory tree and the init process

By themselves, the runlevels listed in Table 14-1 don't mean much. It's what the init process does as
a result of a runlevel specification or change that affects the system. The actions of init for each
runlevel are derived from Unix System V-style initialization and are specified in a series of
directories and script files under /etc.

On the Exam

Make certain that you understand the use of the transitional runlevels 1 and 6, the
single-user runlevel, and the difference between GUI and text login configurations. You
should also be prepared to demonstrate how to change the runlevel of a running
system.

When a Linux system starts, a number of scripts in /etc are used to initially configure the system
and switch among runlevels. System initialization techniques differ among Linux distributions. (The
examples here are typical of a Red Hat Linux system. Any LSB-compliant distribution should be
similar.)

rc.sysinit or /etc/init.d/rcS

On Red Hat systems, rc.sysinit is a monolithic system initialization script. The Debian rcS
script does the same job but by running several small scripts placed in two different
directories. This file is a script launched by init at boot time. It handles some essential chores
to ready the system for use, such as mounting filesystems.

rc.local

Not used on Debian. On Red Hat and many other distributions, this file is a script that is called
after all other init scripts. It contains local customizations affecting system startup and
provides an alternative to modifying the other init files. Many administrators prefer to avoid
changing rc.sysint because those changes will be lost during a system upgrade. The contents
of rc.local are not lost in an upgrade.

rc

This file is a script that is used to change between runlevels.

The job of starting and stopping system services such as web servers is handled by the files and
symbolic links in /etc/init.d and by a series of runlevel-specific directories, rc0.d through rc6.d:

init.d

This directory contains individual startup/shutdown scripts for each service on the system. For
example, the script /etc/init.d/httpd is a Bourne shell script that safely starts or stops the
Apache web server. These scripts have a standard basic form and take a single argument.
Valid arguments include at least the words start and stop. Additional arguments are
sometimes accepted by the script; examples are restart, status, and sometimes reload (to ask
the service to reconfigure itself without exiting). Administrators can use these scripts directly
to start and stop services. For example, to restart Apache, an administrator could issue
commands like these:

/etc/init.d/httpd stop
/etc/init.d/httpd start

or simply:

/etc/init.d/httpd restart

Either form would completely shut down and start up the web server. To ask Apache to remain
running but reread its configuration file, you might enter:

/etc/init.d/httpd reload

This has the effect of sending the SIGHUP signal to the running httpd process, instructing it to
initialize. Signals, such as SIGHUP, are covered in Chapter 3, "Objective 6: Configure
Communications Devices."

If you add a new service (a daemon, intended to always run in the background), one of these
initialization files may be installed automatically for you. In other cases, you may need to create one
yourself or, as a last resort, place startup commands in the rc.local file.

Directories rc0.d through rc6.d

The initialization scripts in /etc/init.d are not directly executed by the init process. Instead,
each of the directories /etc/rc0.d through rc6.d contain symbolic (soft) links to the scripts in
directory init.d. (These symbolic links could also be files, but using script files in each of the
directories would be an administrative headache, since changes to any of the startup scripts
would mean identical edits to multiple files.) When the init process enters runlevel n, it
examines all of the links in the associated rcn.d directory. These links are given special names
in the form of [K|S]Nname, described as follows:

K and S prefixes

The K and S prefixes mean kill and start, respectively. A runlevel implies a state in which
certain services are running and all others are not. The S prefix is used for all services
that are to be running (started) for the runlevel. The K prefix is used for all other
services, which should not be running.

N

Sequence number. This part of the link name is a two-digit integer (with a leading zero,
if necessary). It specifies the relative order for services to be started or stopped. The
lowest number is the first link executed by init, and the largest number is the last. There
are no hard-and-fast rules for choosing these numbers, but it is important when adding
a new service to be sure that it starts after any other required services are already
running. If two services have an identical start order number, the order is indeterminate
but probably alphabetical.

name

By convention, the name of the script being linked is used as the last part of the link
name. init does not use this name, but excluding it makes things difficult for human
readers.

As an example, when init enters the default runlevel (3 for the sake of this example) at boot time, all
of the links with the S prefix in /etc/rc3.d will be executed in the order given by their sequence
number (S10network, S12syslog, and so on). They will be run with the single argument start to
launch their respective services. After the last of the scripts is executed, the requirements for
runlevel 3 are satisfied.

14.2.1.2. Setting the default runlevel

To determine the default runlevel at boot time, init reads the configuration file /etc/inittab looking
for a line containing the word initdefault, which will look like this:

id:n:initdefault:

In the preceding, n is a valid runlevel number, such as 3. This number is used as the default runlevel

by init. The S scripts in the corresponding /etc/rcN.d directory are executed to start their respective
services. If you change the default runlevel for your system, it will most likely be to switch between
the standard text login runlevel and the GUI login runlevel. In any case, never change the default
runlevel to 0 or 6, or your system will not boot to a usable state.

14.2.1.3. Determining your system's runlevel

From time to time, you may be unsure just what runlevel your system is in. For example, you may
have logged into a Linux system from a remote location and not know how it was booted or
maintained. You may also need to know what runlevel your system was in prior to its current
runlevelperhaps wondering if the system was last in single-user mode for maintenance.

To determine this information, use the runlevel command. When executed, runlevel displays the
previous and current runlevel as integers, separated by a space, on standard output. If no runlevel
change has occurred since the system was booted, the previous runlevel is displayed as the letter N.
For a system that was in runlevel 3 and is now in runlevel 5, the output is:

runlevel
3 5

For a system with a default runlevel of 5 that has just completed booting, the output would be:

runlevel
N 5

runlevel does not alter the system runlevel. To do this, use the init command (or the historical alias
telinit).

14.2.2. Changing Runlevels with init and telinit

The init process is the grandfather of all processes. If used as a command on a running system, init
sends signals to the executing init process, instructing it to change to a specified runlevel. You must
be logged in as the superuser to use the init command.

Syntax

init n

Description

The number of the runlevel, n, can be changed to an integer from 1 through 6.

The numeric arguments instruct init to switch to the specified runlevel. init also supports a few
alphabetical options such as S and s, which are equivalent to runlevel 1, and q, which is used
to tell init to reread its configuration file, /etc/inittab.

Examples

Shut down immediately:

init 0

Reboot immediately:

init 6

Go to single-user mode immediately:

init 1

or:

init s

The telinit command may be used in place of init. telinit is simply a link to init, and the two may be
used interchangeably.

Generally, you will use a runlevel change for the following reasons:

To shut down the system using runlevel 0.

To go to single-user mode using runlevel 1.

To reboot the system using runlevel 6.

To switch between text-based and X11 GUI login modes, usually runlevels 3 and 5,
respectively.

On the Exam

Remember that init and telinit can be used interchangeably.

14.2.3. System Shutdown with shutdown

When shutdown is initiated, all users who are logged into terminal sessions are notified that the
system is going down. In addition, further logins are blocked to prevent new users from entering the
system as it is being shut down.

Syntax

shutdown [options] time [warning_message]

Description

The shutdown command brings the system down in a secure, organized fashion. By default,
shutdown takes the system to single-user mode. Options can be used to either halt or reboot
instead. The command uses init with an appropriate runlevel argument to affect the system
change.

The mandatory time argument tells the shutdown command when to initiate the shutdown
procedure. It can be a time of day in the form hh:mm, or it can be in the form +n, where n is a
number of minutes to wait. time can also be the word now, in which case the shutdown
proceeds immediately. If the time specified is more than 15 minutes away, shutdown waits

until 15 minutes remain before shutdown before making its first announcement.

If warning message (a text string) is provided, it is used in the system's announcements to end
users. No quoting is necessary for warning message unless the message includes special

characters such as * or &.

Frequently used options

-f

Fast boot; this skips filesystem checks on the next boot.

-h

Halt after shutdown.

-k

Don't really shut down, but send the warning messages anyway.

-r

Reboot after shutdown.

-F

Force filesystem checks on the next boot.

Examples

To reboot immediately:

shutdown -r now

To reboot in five minutes with a maintenance message:

shutdown -r +5 System maintenance is required

To halt the system just before midnight tonight:

shutdown -h 23:59

The two most common uses of shutdown by individuals are:

shutdown -h now

and

shutdown -r now

These initiate for immediate halts and reboots, respectively. Although it's not really a bug, the
shutdown manpage notes that omission of the required time argument yields unusual results. If you
do forget the time argument, shutdown will probably exit without an error message. This might lead

you to believe that a shutdown is starting, so it's important to be sure of your syntax when using
shutdown.

On the Exam

Make certain that you are aware of the differences between system shutdown using init
(and its link telinit) and shutdown.

Chapter 15. Printing (Topic 1.107)
As long as the paperless office remains a myth, printing will be an important aspect of the
computing experience. While printing may not be something you deal with on a daily basis, as a
system administrator it will inevitably be an important part of your job.

This Topic covers the setup, administration, and use of lpr, lpd, and related utilities. Although they
are not covered in the current LPI Objectives, this chapter also includes an introduction to other
printing systems that may be used on Linux systems.

This chapter includes three Objectives (numbered 2 through 4, because of changes during test
development):

Objective 2: Manage Printers and Print Queues

An LPIC-1 candidate should be able to manage print queues and user print jobs. This
Objective includes monitoring print servers and user print queues and troubleshooting general
printing problems. Weight: 1.

Objective 3: Print Files

This Objective states that a candidate should be able to manage print queues and manipulate
print jobs. This includes adding and removing jobs from configured printer queues and
converting text files to postscript for printing. Weight: 1.

Objective 4: Install and Configure Local and Remote Printers

Candidates should be able to install a printer daemon and print filters. This Objective includes
making local and remote printers accessible for Linux systems, including postscript and Samba
printers. Weight: 1.

15.1. An Overview of Printing

There are several implementations of printing available for Linux systems, but they all have a basic
architecture in common. In every printing system, a central daemon receives print jobs, via either a
user command (such as lpr) or the network. The print job is then processed as necessary and either
sent to a local printer or another printing daemon.

Historically, there have been two competing printing implementations on Unix systems, one invented
for BSD Unix, and another for System V (SysV) Unix. While the implementations are similar, they
have completely different commands. The BSD printing commands include lpd, lpr, lprm, and lpc.
The System V printing commands include lp, enable, disable, cancel, lpstat, and lpadmin. Table 15-1
compares the commands used by the two printing systems.

Table 15-1. BSD versus SysV printing

Description BSD command System V command

Printing daemon lpd lpsched

Print files lpr lp

List print queues lpq lpstat -o

Remove files from a queue lprm cancel

Enable a queue lpc enable enable

Disable a queue lpc disable disable

Move a job to another queue lpc move lpmove

On System V-based systems, there is a command, lpadmin, used to configure print queues. There is
no equivalent to it on BSD-based systems, other than to simply edit /etc/printcap. Other than that
one command, there is a one-to-one relationship between BSD and System V printing commands.
However, the internal details, such as files used, vary considerably.

Older Linux distributions tended to use a port of the BSD lpd code (and related commands). Due to
various security issues with the BSD code (mostly the over-use of root), current distributions have

largely dropped the BSD code in favor of either LPRng or Common UNIX Printing System (CUPS).

LPRng is a complete rewrite of the BSD utilities. It is designed to be portable and secure. Unlike the
BSD utilities, the client programs do not need to run setuid. The server (still called lpd) is a complete
implementation of the RFC 1179 Line Printer Daemon Protocol. It also includes lp and lpstat
commands for System V compatibility.

While LPRng is a complete rewrite, configuration is still mostly the same as for the BSD utilities. It
still uses /etc/printcap (described in "Linux Printing Overview" later in this chapter). It also has two
additional configuration files: /etc/lpd.conf, which is used to control details of LPRng's lpd, and
/etc/lpd.perms, which is used to configure access controls for lpd.

LPRng is available from http://www.lprng.com.

CUPS is a more recent printing system that was initially designed to support Internet Printing
Protocol (IPP) but has evolved into drop-in replacement for both the BSD and System V utilities,
including client replacements for both and RFC 1179 (lpd protocol) support. It also includes support
for SMB and JetDirect printing.

While it retains backward compatibility with older printing systems, the internal details of CUPS are
significantly different. The server component cupsd handles queueing, but it also includes a web
server for configuration and management. Nearly everything can be configured through the web
interface or the included lpadmin. The various configuration files in the /etc/cups directory rarely
need to be edited by hand.

CUPS is available from http://www.cups.org.

http://www.lprng.com
http://www.cups.org

15.2. Objective 2: Manage Printers and Print Queues

Printing documents is a slow and error-prone process. Printers accept data in small amounts; they
run out of paper, jam, and go offline for other reasons. Printers also must accept requests from
multiple system users. As a result, by design, the end user is isolated from printing functions on
most computer systems. This isolation comes in the form of a print queue, which holds print
requests until the printer is ready for them. It also manages the order in which print jobs are
processed.

Linux systems typically use a family of printing utilities developed for BSD Unix. This Objective
describes printer management using the lpd daemon. The companion commands lpr, lpq, and lprm
are SUID programs, which run with privileges of the superuser. This is necessary to allow their use
by all users, because they manipulate files in the protected print spooling directories. lpr is covered
in the Objective 3 section. Filters and /etc/printcap are covered in the Objective 4 section.

15.2.1. Linux Printing Overview

On Linux, the default printing system is derived from the BSD Unix printing system. It consists of the
following elements:

lpd

The lpd daemon is started at boot time and runs constantly, listening for print requests
directed at multiple printers. When a job is submitted to a print queue, lpd forks a copy of
itself to handle jobs on that queue. The copy exits when the queue is emptied. Thus, during
idle periods, one lpd process will be running on your system. When printing is active, one
additional lpd process will be running for each active queue.

/etc/printcap

The printcap (printer capabilities) file contains printer names, parameters, and rules; it is used
by lpd when spooling print jobs. See Objective 4 for additional information on the
/etc/printcap file.

lpr

The lpr (line print) program submits both files and information piped to its standard input to
print queues .

lpq

The lpq program queries and displays the status and contents of print queues.

lprm

lprm removes print jobs from print queues.

lpc

The superuser administers print queues with lpc (line printer control).

Filters

When a printer lacks the ability to directly render a print job, software filters are used to
transform the original data into something the printer can handle. A common example is the
conversion from PostScript to PCL for laser printers without native PostScript capability.

Spool directories

The lpd daemon uses /var/spool/lpd for the spooling of data awaiting printing. This directory
contains a subdirectory for each printer configured on the system (both local and remote). For
example, the default locally attached printer on most Linux systems is simply called lp (line
printer), and all of its control files and queued jobs are stored in directory /var/spool/lpd/lp.

Print jobs

Each submitted print request is spooled to a queue and assigned a unique number. The
numbered print jobs can be examined and manipulated as needed.

15.2.2. Managing Print Queues

As a system administrator, you'll be asked to manage and manipulate printer queues more often
than you'd like. On Linux, the lpq, lprm, and lpc commands are your tools.

Syntax

lpq [options] [users] [job#s]

Description

Query a print queue. If numeric job#s are included, only those jobs are listed. If users are

listed, only jobs submitted by those users are listed.

Options

-l

Long output format. This option results in a multiline display for each print job.

-P name

This specifies the print queue name. In the absence of -P, the default printer is queried.

Example 1

Examine active jobs:

$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active root 193 filter 9443 bytes
1st root 194 resume.txt 11024 bytes
2nd root 196 (standard input) 18998 bytes

Here, filter is currently being printed. resume.txt is up next, followed by the 18,998 bytes of data
piped into lpr's standard input.

Example 2

Examine queue lp, which turns out to be empty:

$ lpq -Plp
no entries

Example 3

Examine those same jobs using the long format:

$ lpq -l
lp is ready and printing
root: active [job 193AsJRzIt]
 filter 9443 bytes
root: 1st [job 194AMj9lo9]
 resume.txt 11024 bytes
root: 2nd [job 196A6rUGu5]
 (standard input) 18998 bytes

Example 4

Examine jobs owned by bsmith:

$ lpq bsmith

Rank Owner Job Files Total Size
7th bsmith 202 .bash_history 1263 bytes
9th bsmith 204 .bash_profile 5676 bytes

Using the job numbers reported by lpq, any user may remove her own print jobs from the queue, or
the superuser may remove any job.

Syntax

lprm [-Pname] [users] [job#s]
lprm -

Description

Remove jobs from a print queue. In the first form, remove jobs from queue name or from the
default queue if -P is omitted. If users or jobs are specified, only those jobs will be removed.

In the second form, all of a normal user's jobs will be omitted; for the superuser, the queue
will be emptied.

Example 1

As a normal user, remove all of your print jobs:

$ lprm -

Example 2

As the superuser, remove all jobs from queue ps:

lprm -Pps -

You may occasionally be surprised to see a no entries response from lpq, despite observing that the
printer is dutifully printing a document. In such cases, the spool has probably been emptied into the
printer's buffer memory, and the result is that the job is no longer under the control of the printing
system. To kill such jobs, you need to use the printer's controls to stop and delete the job from
memory.

15.2.2.1. Managing print queues with lpc

Printer control on Linux includes the oversight of three distinct and independently controlled
activities managed by the lpd daemon:

Job queuing

Turn new print jobs on and off.

Printing

Turn on and off the transfer of data to your printer.

lpd child processes

Force the per-queue lpd subprocesses to exit and restart.

lpc can be used in either interactive or command-line form. If lpc is entered without any options, it
enters interactive mode and displays its own prompt where lpc commands may then be entered. For
example:

lpc
lpc> help
Commands may be abbreviated. Commands are:
abort enable disable help restart status topq ?
clean exit down quit start stop up
lpc>

If valid commands are included on the command line, lpc responds identically but returns control to
the terminal:

lpc help
Commands may be abbreviated. Commands are:
abort enable disable help restart status topq ?
clean exit down quit start stop up
#

For the discussion that follows, lpc commands are shown as entered on the command line, but
results in interactive mode are identical.

Syntax

lpc

lpc [command]

Description

In the first form, enter interactive mode and accept lpc commands. In the second form, submit
command for processing directly from the command line. lpc has no command-line options.

Instead, it has commands (see Table 15-2), which are separated here into two groups: those
that affect print queues and those that don't. Most of the commands require a single
argument: either the word all (meaning all printers) or a specific printer name.

Table 15-2. Commands for lpc

Command Description

abort {all|printer} This command works like stop but terminates printing immediately,
even in the middle of a job. The job is retained for reprint when the
printer is again started.

disable
{all|printer}

enable
{all|printer}

These two commands control the queuing of new print jobs. With a
queue disabled but printing started, printing continues but new jobs are
rejected.

down {all|printer}
[message]

disable, stop, and store the free-form message for display by lpr,

informing the user why the printer is unavailable.

exit or quit Terminate lpc's interactive mode.

help Display help information on commands, as shown earlier.

restart
{all|printer}

Kill and restart child lpd, or start one when none was previously running.

start {all|printer}
stop {all|printer}

These two commands control printing and the child lpd processes. When
a stop command is issued, the current print job is allowed to complete.
Then the child daemon is stopped and further printing is disabled. start
enables printing and starts the child lpd if jobs are pending. The print
queues remain active.

status [all|printer] Display queue status.

topq name jobs Place jobs at the top of queue name, behind any active jobs.

up {all|printer} enable and start.

Example 1

Use the status command to display current printing activity:

lpc status
lp:
 queuing is enabled
 printing is enabled
 2 entries in spool area
 lp is ready and printing

Example 2

Suppose user jdean has submitted two important print jobs, 206 and 207, and he needs job

207 to be moved to the top of the queue, followed immediately by 206 (see the emphasized
lines in the lpq output). First, examine the existing jobs:

lpq
Rank Owner Job Files Total Size
active root 203 filter 9443 bytes
1st root 204 status 25 bytes
2nd root 205 (standard input) 6827 bytes
3rd jdean 206 (standard input) 403 bytes
4th jdean 207 cert1.txt 4865 bytes

Now modify the position of print jobs 206 and 207:

lpc topq lp 207 206
lp:
 moved cfA206AlIwYoh
 moved cfA207Ad6utse

Finally, verify the results:

lpq
Rank Owner Job Files Total Size
1st jdean 207 cert1.txt 4865 bytes
2nd jdean 206 (standard input) 403 bytes
3rd root 203 filter 9443 bytes
4th root 204 status 25 bytes
5th root 205 (standard input) 6827 bytes

With this reconfiguration, printing continues with jobs 207 and 206 first, and then reverts to jobs
203 through 205.

Example 3

Disable and enable print queue lp, to allow current printing to complete while rejecting new
jobs:

lpc disable lp
lp:
 queuing disabled
lpc enable lp
lp:
 queuing enabled

Example 4

Stop and restart printing on the printer attached to queue lp, but allow new jobs to be queued
for future printing:

lpc stop lp
lp:
 printing disabled
lpc start lp
lp:
 printing enabled
 daemon started

If no jobs are pending, a child lpd will not start immediately in response to start, though the daemon
started message is still displayed. Note also that when a child lpd process is stopped, its
subprocesses (such as filters) are also stopped.

Example 5

Abandon all printing activity on the print queue lp. Note that a printer with data in its print
buffer may continue to print even after an abort:

lpc abort lp
lp:
printing disabled
daemon (pid 2012) killed

15.3. Objective 3: Print Files

The ability to manage your printers and print queues isn't very helpful until you actually need to
print files . LPI 102 covers the lpr command to send jobs to the lpd daemon for printing. You can
also use a combination of lpr with mpage to manipulate your print jobs to print multiple pages to a
single sheet of paper.

Syntax

lpr [options] [files]

Description

Send files or standard input to a print queue. A copy of the input source is placed in the

spool directory under /var/spool/lpr until the print job is complete.

Frequently used options

-#number

Send number copies of the print job to the printer.

-s

Instead of copying a file to the print spooling area, make a symbolic link to the file
instead, thereby eliminating transfer time and storage requirements in /var/spool/lpr for
very large files.

-Pname

Specify the print queue name. In the absence of -P, the default printer is queried.

Example 1

Print the file /etc/lilo.conf on the default print queue:

lpr /etc/lilo.conf

Example 2

Print a manpage by piping to lpr's standard input:

man -t 5 printcap | lpr

Example 3

Disable a print queue:

lpc disable lp

Then attempt to print three copies of a file to the disabled queue as superuser:

lpr -#3 /etc/lilo.conf

Success, despite the disabled printer queue. Now try as a regular user:

$ lpr -#3 ~/resume.txt
lpr: Printer queue is disabled

As expected, normal users can't print to the disabled queue.

On the Exam

You must be familiar with lpr and its use with both files and standard input. Also
remember that lpr doesn't send data to the printer, but to lpd, which handles sending it
to the printer.

Syntax

mpage [options] [files]

Description

The mpage command reads plain text (or PostScript) files and manipulates the text size to fit
multiple print pages on single sheets of paper. This tool requires a PostScript printer to print
the results.

Frequently used options

-#number (1, 2, 4, or 8)

Prints number of normal pages per sheet. mpage supports printing 1, 2, 4, or 8 pages per

sheet.

15.4. Objective 4: Install and Configure Local and Remote
Printers

If you've been able to run the commands listed in Objectives 2 and 3, you already have the printing
system installed on your system. However, if you don't have the package, you can get the source
code from ibiblio.org (ftp://ibiblio.org/pub/linux/system/printing), along with the other software

mentioned later in this Objective. You should be able to build the software simply using make
followed by make install.

The printing system implemented by the lpd suite is primitive by today's standards. It provides for
queuing, administrative control, and some handling of special file formats but doesn't directly
address the recent trend away from character-oriented printers to more programmable machines.
Fortunately, the software is modular, making its foundation easy to build upon, making it sufficient
for most printing situations.

15.4.1. /etc/printcap

The printing process on Linux systems is governed by the printer capability file /etc/printcap. This
text file defines all of the system's available print queues and their characteristics. The file is parsed
by lpd, which ignores blank lines and comments beginning with a pound sign (#). Each printer
definition in the file comprises one logical line, which is often broken up among multiple physical
lines in the file using the \ line-continuation character. The definition itself is made up of fields
delimited by colons. The first field, which begins in the first column of the file, holds the system
name for the printer, such as lp. This field may contain aliases for the printer name separated by
vertical bars. The rest of the fields in the definition hold mnemonics providing control flags and
printer parameters. A basic printcap file defining a single printer is shown in Example 15-1.

Example 15-1. A basic /etc/printcap file

A basic /etc/printcap
#
lp|ljet:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:

In this example, printer lp is defined with the alias ljet. Either name could be used to print with
this printer, using lpr -Plp or lpr -Pljet. lp is the default printer unless the user overrides it by

placing a different name in the PRINTER environment variable. Note that the name of the printer has
a trailing colon, followed by the line-continuation character. The subsequent lines contain printer
attributes inside colon pairs. Some of the frequently used attributes are:

if=input_filter

Input filter (see the following section, "Filters").

lp=printer_device

Local printer device, such as /dev/lp0.

lf=log_file

Error message log file.

mx=max_size

Maximum size of a print job in blocks. A maximum size of #0 indicates no limit.

sd=spool_directory

Spool directory under /var/spool/lpd.

sh

Suppress header pages for a single printer definition.

Both locally attached and remote printers will have queues defined in /etc/printcap.

On the Exam

Familiarize yourself with the /etc/printcap file and the attribute variables. Remember
that a single printer definition can have multiple names and that multiple printer
definitions can refer to the same hardware.

15.4.2. Filters

The printing process involves the rendering of various data formats by a single hardware device.
Considering the wide range of possible formats (plain text, HTML, PostScript, troff, TEX, and
graphics files such as JPEG and TIFF, just to name a few), affordable printers can't be expected to
natively handle them all. Instead, Linux systems use a two-step transformation process:

Raw input data is translated by a filter program into a standard Page Description Language1.

(PDL), which is a form of PostScript for Linux. PostScript data is not printed itself but is
interpreted as a program to be executed by a PostScript interpreter. PostScript can handle
images, fonts, and complex page layout.

1.

The PostScript program is sent to the Ghostscript utility (gs) from Aladdin Enterprises. (A
GPL'd version of gs is offered for free by Aladdin, which makes it appropriate for inclusion in
Linux distributions.) Ghostscript is a PostScript interpreter that contains a number of specific
printer drivers. As a result, it can translate PostScript into a printer-specific format and send it
to the printer.

2.

This translation process and its intermediate data formats are depicted in Figure 15-1.

Figure 15-1. Print data translation steps

Each print queue found in /etc/printcap can use a different input filter, as directed by the if=filter

specification.

This data translation process sometimes isn't necessary. For example, plain text can be printed
directly by most printers, making the translation to PostScript and subsequent Ghostscript
invocation unnecessary for basic output. Many printers, particularly laser printers, have a built-in
PostScript interpreter, making Ghostscript unnecessary. These situations are detected and controlled
by the filter program.

A filter can be very simple. For example, you may have implemented a filter yourself by using a
utility like pr to add a margin to a plain text print job before piping it into lpr. In practice, filters are
conceptually similar, but are more complex and capable than this and usually handle multiple input
formats. They do this by looking at the magic number at the beginning of the data file to be printed.
(See the file command's manpage for more information on magic and magic numbers.) As a result,
the filters are referred to as magic filters. Two such filters are APSfilter and magicfilter. Your
familiarity with both filters is required for Exam 102.

15.4.2.1. APSfilter

This popular filter program accepts files in the PostScript, TEX DVI, ASCII, PCL, GIF, TIFF, Sun
Raster files, FIG, PNM (pbmplus), HTML, and PDF formats. As mentioned earlier, APSfilter and the
other software discussed here can be found at ibiblio.org. After downloading APSfilter, the

compressed tarfile should be unpacked in /usr/lib. Then, simply invoke cd apsfilter and run the
installer, ./SETUP. This interactive program presents a menu-based installation, where you direct
such things as the Ghostscript printer driver selection, the choice of printer interface (such as
/dev/lp0), the default print resolution, the use of color, and the output paper format. It then creates

new printer entries in /etc/printcap, as well as creates new printer spool directories, and sets file
permissions and ownership. It also compiles a few utilities necessary for the proper use of the filter.
Once APSfilter is installed, your /etc/printcap will look something like that shown in Example 15-2.
(SETUP makes a backup copy of /etc/printcap called /etc/printcap.orig before creating its new
printcap file.)

Example 15-2. The APSfilter /etc/printcap description

apsfilter setup Tue Mar 21 02:38:48 EST 2000
#
ascii|lp1|ljet3d-letter-ascii-mono|ljet3d ascii mono:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-letter-ascii-mono:\
 :lf=/var/spool/lpd/ljet3d-letter-ascii-mono/log:\
 :af=/var/spool/lpd/ljet3d-letter-ascii-mono/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-ascii-mono:\
 :mx#0:\
 :sh:
#
lp|lp2|ljet3d-letter-auto-mono|ljet3d auto mono:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-letter-auto-mono:\
 :lf=/var/spool/lpd/ljet3d-letter-auto-mono/log:\
 :af=/var/spool/lpd/ljet3d-letter-auto-mono/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-auto-mono:\
 :mx#0:\
 :sh:
#
raw|lp3|ljet3d-letter-raw|ljet3d auto raw:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-raw:\
 :lf=/var/spool/lpd/ljet3d-raw/log:\
 :af=/var/spool/lpd/ljet3d-raw/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-raw:\
 :mx#0:\
 :sh:

As you can see, the installation creates three printer definitions, each with multiple aliases and each
using the same output device. This allows some degree of control over the filter, because the
selection of the queue implies specific print parameters. The first definition (ascii) is intended to
allow the user to force the printing of plain text even if the data is a PostScript program. The second
entry (lp, the default) is the standard magic APSfilter, which tries to identify the data type itself. The
last definition allows users to force APSfilter to send raw data directly to the printer with no
intervention. This can be useful, for example, if you wish to print a PostScript file's programming
instructions. APSfilter also configures logging and accounting for each printer queue. Finally, the
setup routine optionally prints a graphical test page to verify your installation.

After APSfilter is installed, you must restart lpd to enable the new print queues:

lpc restart all

or:

/etc/init.d/lpd stop
/etc/init.d/lpd start

APSfilter allows for some controls in /etc/apsfilterrc (and the user file ~/.apsfilterrc). Examples of
these controls are configuration for Ghostscript features, special control sequences for printers, and
configuration for the use of a particular filter method. Although this file is beyond the scope of LPIC
Level 1 Objectives, you should be familiar with it and its purpose.

On the Exam

You should install APSfilter to become familiar with the software and its setup.

15.4.2.2. magicfilter

Another filter you may wish to try is magicfilter, which can also be obtained from ibiblio.org.

Unlike APSfilter, which is implemented as scripts, magicfilter is compiled from C and comes with a
traditional configure; make; make install procedure. (See Chapter 4, "Objective 3: Make and Install
Programs from Source," for additional information on how to install software.) Building and
installing magicfilter is straightforward and shouldn't cause any difficulty. However, the installation
does not automatically create print queues in /etc/printcap, although you can easily define one by
setting the input filter to /usr/local/bin/magicfilter, as shown in Example 15-3.

Example 15-3. The magicfilter print queue

lp|lpmagic:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/usr/local/bin/magicfilter:

15.4.2.3. Multiple filters

When a filter is installed, it is placed in a directory from where it can be called as needed. The

printer definitions in /etc/printcap put the filter into service. Because you can create as many printer
definitions as you like, it is possible to have multiple filters in place at the same time.

On the Exam

You should have a working knowledge of the printing process, the role of filters, the
role of Ghostscript, and where PostScript data is used. Also remember that PostScript is
rendered directly on some printers, eliminating the need for Ghostscript.

15.4.3. Remote lpd and Samba Printers

Configuring your system to use a remote Linux printer (or other lpd device, such as a network-
attached printer) can be as simple as adding a local printer. Two additional configuration variables
are added to the printer definition in /etc/printcap to specify the remote host and the queue name
on that host. For example:

rlp:\
 :sd=/var/spool/lpd/rlp:\
 :rm=lphost:\
 :rp=rlp:\
 :mx#0:\
 :sh:\
 :if=/usr/local/bin/magicfilter:

Here, this local print queue will send jobs to printer rlp residing on lphost. Since remote printers

still have local queues, you must create the spool directory, in this example, /var/spool/lpd/rlp.

Configuring a remote printer that's on a Windows network is also straightforward. (The Windows
printer must be properly shared.) First, a local spool directory is created as usual, for example,
/var/spool/lpd/winpr. Next, an /etc/printcap entry is added that looks something like this:

winpr:\
 :sd=/var/spool/lpd/winpr:\
 :mx#0:\
 :sh:\
 :if=/usr/bin/smbprint
:

The input filter for this printer is smbprint, a utility from the Samba software suite. Finally, a .config
file is created in the spool directory, which contains:

The NetBIOS name of the Windows machine with the printer

The service name that represents the printer

The password used to access that service

The service name and password are set in the Sharing dialog box on the Windows machine. The
.config file might look similar to the following:

server=WINBOX
service=WINPR
password=""

After restarting lpd, you should be able to print text documents to the Windows printer.

On the Exam

Remember the rm and rp printer configuration variables for remote lpd printers. For
Samba printing on Windows clients, remember to use the smbprint input filter and to
create the .config file in the local spool directory.

Chapter 16. Documentation (Topic 1.108)
As a system administrator, your ability to navigate through daily computing tasks depends on your
access to documentation . It is appropriate then that the LPI has made Linux documentation a part
of Exam 102. There are three Objectives for this Topic:

Objective 1: Use and Manage Local System Documentation

This Objective covers two primary areas of documentation on Linux systems: the man
(manual) facility and files stored in /usr/share/doc. Weight: 4.

Objective 2: Find Linux Documentation on the Internet

Just as Linux itself is available via the Internet, a variety of documentation is also available.
Weight: 3.

Objective 5: Notify Users on System-related Issues

As a system administrator, you'll regularly have to take responsibility to interact with users
and keep them informed of scheduled downtimes, system upgrades, or new features. Such
information is easily provided systemwide through the use of /etc/motd and /etc/issue.
Weight: 1.

16.1. Objective 1: Use and Manage Local System
Documentation

Each Linux system is configured by default with extensive documentation from developers, authors,
and Linux community members. With these documentation projects combined, your Linux
distribution offers a comprehensive body of knowledge to enhance your skills as a sysadmin.

16.1.1. Text Files and Paging

At a fundamental level, documents stored electronically may be encoded in a variety of formats. For
example, most word processors use proprietary file formats to store characters, text formatting, and
printing control languages. While these relatively modern applications can be found on your Linux
system, most of the documents and configuration files for both the operating system and system
tools are in plain text.

In the context of Linux systems, plain text means files or streams of both printable characters and
control characters. Each is represented using a standard encoding scheme, such as the American
Standard Code for Information Interchange (ASCII) or one of its relatives. Text files are most
conveniently viewed using a paging program.

16.1.1.1. Paging programs

A paging program displays contents of a text file one "page" at a time. Paging programs have the
advantage of speed and simplicity over text editors (such as vi) because only pieces of the text files
are loaded into a buffer at a time, instead of the entire file. In addition, since paging programs
cannot edit file contents directly, unless you tell them to invoke an editor, there isn't a chance of
accidentally changing a file.

The two paging applications commonly used on Linux are more and less. The more tool is named
because it gives you "one more screen." Humorously, the less command is so known because "less is
more."

more is the older of the two Unix paging systems and has limited capabilities, though more has been
beefed up on Linux systems compared to their original Unix versions. The standard Unix more
simply presents you with the text document one screen at a time, progressing forward through the
screens with the spacebar. This functionality is shadowed by less's ability to move both forward and
backward through a file, either line by line or a full screen at a time utilizing cursor keys and page
up and page down keys, as well as standard vi movement keystrokes such as j, k, G, and so on.
While both more and less on Linux have the ability for multidirectional movement and advanced
searching capability, less has more movement options and supports more keyboard functions.

As a sysadmin, you will have the most exposure to these programs while reviewing manpages and
system documentation.

16.1.2. Manpages

Traditional computer manuals covered everything from physical maintenance to programming
libraries. While the books were convenient, many users didn't always want to dig through printed
documentation or carry it around. So, as space became available, the man (manual) command was
created to put the books on the system, allowing users immediate access to the information they
needed in a searchable, quick-reference format.

There is a manpage for most commands on your system. There are also manpages for important
files, library functions, shells, languages, devices, and other features. man is to your system what a
dictionary is to your written language. That is, nearly everything is defined in detail, but you
probably need to know in advance just what you're looking for.

Syntax

man [options] [section] name

Description

Format and display system manual pages from section on the topic of name. If section is

omitted, the first manpage found is displayed.

Frequently used options

-a

Normally, man exits after displaying a single manpage. The -a option instructs man to
display all manpages that match name, in a sequential fashion.

-d

Display debugging information.

-w

Print the locations of manpages instead of displaying them.

Example 1

View a manpage for mkfifo:

$ man mkfifo
...

Results for the first manpage found are scrolled on the screen.

Example 2

Determine what manpages are available for mkfifo:

$ man -wa mkfifo
/usr/share/man/man1/mkfifo.1
/usr/share/man/man3/mkfifo.3

This shows that two manpages are available, one in section 1 (mkfifo.1) of the manual and another
in section 3 (mkfifo.3). See the next section for a description of manpage sections .

Example 3

Display the mkfifo manpage from manual section 3:

$ man 3 mkfifo

16.1.2.1. Manual sections

Manpages are grouped into sections, and there are times when you should know the appropriate
section in which to search for an item. For example, if you were interested in the mkfifo C-language
function rather than the command, you must tell the man program to search the section on library
functions (in this case, section 3, Linux Programmer's Manual):

$ man 3 mkfifo

An alternative would be to have the man program search all manual sections :

$ man -a mkfifo

The first example returns the mkfifo(3) manpage regarding the library function. The second returns
pages for both the command and the function. In this case, the pages are delivered separately;
terminating the pager on the first manpage with Ctrl-C causes the second to be displayed.

Manual sections are detailed in Table 16-1.

Table 16-1. Man sections

Section Description

1 User programs

2 System calls

3 Library calls

4 Special files (usually found in /dev)

5 File formats

6 Games

7 Miscellaneous

8 System administration

Tip: Some systems might also have sections 9, n, and others, but only sections 1 through 8 are defined by the FHS.

The order in which man searches the sections for manpages is controlled by the MANSECT
environment variable. MANSECT contains a colon-separated list of section numbers. If it is not set,
man (as of Version 1.5k) behaves as if it were set to 1:8:2:3:4:5:6:7:9:tcl:n:l:p:o.

16.1.2.2. Manpage format

Most manpages are presented in a concise format with information grouped under well-known
standard headings such as those shown in Table 16-2. Other manpage headings depend on the
context of the individual manpage.

Table 16-2. Standard manpage headings

Heading Description

Name The name of the item, along with a description

Synopsis A complete description of syntax or usage

Description A brief description of the item

Options Detailed information on each command-line option (for commands)

Return values Information on function return values (for programming references)

See also A list of related items that may be helpful

Bugs Descriptions of unusual program behavior or known defects

Files A list of important files related to the item, such as configuration files

Copying or copyright A description of how the item is to be distributed or protected

Authors A list of those who are responsible for the item

16.1.2.3. man mechanics

System manpages are stored in /usr/share/man and elsewhere. At any time, the manual pages
available to the man command are contained within directories configured in your man configuration
file, /etc/man.config. This file contains directives to the man, telling it where to search for pages
(the MANPATH directive), the paging program to use (PAGER), and many others. This file essentially
controls how man works on your system. To observe this, use the debug (-d) option to man to watch
as it constructs a manpath (a directory search list) and prepares to display your selection:

$ man -d mkfifo

16.1.3. Information in /usr/share/doc

Manpages are particularly useful when you know what you're looking for, or at least have some good
leads on how to find it. However, they are not tutorial in nature, nor do they often describe overall
concepts. Fortunately, individuals in the Linux world not only contribute their programming skills,
but many also generate excellent tutorial documents to assist others with features, procedures, or
common problems. Many of these documents end up as HOWTO guides, FAQs (lists of Frequently
Asked Questions), README files, or even exhaustive user manuals. These documents are often part
of the source distribution of a particular program and, while valuable, don't fit elsewhere on the
Linux system and are deposited in /usr/share/doc. Most of these files are ASCII text, which can be
viewed with a pager, such as less, or with your favorite text editor. Some documents may be written
in HTML for use with your web browser. Some text files may also be compressed with the gzip
program and thus have the .gz extension.

Tip: /usr/share/doc is not required by the FHS, so its contents and layout are distribution-specific.

16.1.4. Info Pages

The Free Software Foundation (http://www.fsf.org) has moved much of the documentation for the
GNU project to a documentation format called info. Info pages are part of a system called Texinfo,
which uses a single source file to display information on screen and on paper. Texinfo is hypertext
and creates a browserlike interface on a terminal or terminal window (Emacs users will recognize
the menu system as the editor's online help). For GNU software, Texinfo is the definitive
documentation mechanism. Texinfo can be viewed by running the info command. For example, the
texinfo document on mkfifo can be displayed using the following command:

$ info mkfifo

The result will be a display similar to the example in Figure 16-1.

Figure 16-1. Info display in a terminal window

http://www.fsf.org

Basic navigation commands for the info system are listed in Table 16-3.

Table 16-3. Info commands

Command Description

Tab Move among hypertext links.

Enter Follow hypertext links.

d Return to the top (directory node) of the menu.

? List all info commands.

p and n Move to previous and next pages, respectively.

u Move up one level in the texinfo hierarchy.

q Terminate the system.

h Show a primer for first-time users.

/string Enter a string.

/pattern Search forward for pattern, which can be a regular expression.

Tip: Many Linux distributions also include the info viewer pinfo, which works much like the text-based web browser lynx.

Manpages and other types of system documentation are packaged and installed by default with most
Linux distributions. For example, this means that both the manpage and executable program for wc
are contained in the coreutils (or textutils on older distributions) package. Other documentation,
such as Linux Documentation Project (LDP) guides and HOWTOs, may be contained in standalone
packages, depending on the distribution.

16.2. Objective 2: Find Linux Documentation on the
Internet

No doubt you've heard media reports regarding the genesis of Linux from a bunch of hackers. It is
well-known that coders around the world are contributing to the Linux code base. Rarely mentioned,
however, are the many dedicated writers working in the public domain to make sure that Linux is as
well-understood as it is stable. Most of the people who contribute to the LDP do so on their own
time, providing information learned from their own experiences. In most cases, the people who write
for the LDP provide their names and email addresses so you can contact them with questions that
remain unanswered. These writers are partially responsible for the widespread growth of Linux,
because they make it understandable to individuals through documentation efforts not usually seen
with commercial software.

16.2.1. The Linux Documentation Project

Most of the documentation in /usr/share/doc and elsewhere on a Linux system is part of an
organized approach to system documentation. The LDP is a loosely knit team of writers,
proofreaders, and editors who work together to create the definitive set of documentation for Linux.
The main web site can be found at http://www.tldp.org and at many mirror sites throughout the
world.

The LDP contains a collection of freely contributed documents. Like Linux, all of the LDP's content
may be freely distributed, copied, and even published for a fee without royalties to authors or to the
LDP. Documents that are contributed to the LDP can be licensed a variety of ways. The LDP offers its
own licensing terms, but authors aren't tied to using it. Some have opted to write their own license,
while others have published their work under the GNU Public License (GPL) or the GNU Free
Documentation License (GFDL).

The scope of the LDP is broad, ranging from online documents such as manpages to complete books
in the form of reference guides. Some of the documents have software-style version numbers to
assist with keeping up-to-date. Some of the more commonly used LDP reference guides include:

Installation and Getting Started Guide

The Linux Users' Guide

The Linux System Administrators' Guide

The Linux Network Administrators' Guide

The Linux Programmer's Guide

The Linux Kernel

The Linux Kernel Hackers' Guide

The Linux Kernel Module Programming Guide

http://www.tldp.org

Some of these LDP guides have been published in traditional book form, with mixed success. Any
publisher can produce its own edition of the text, but since content must be identical, competing
publishers can find themselves in a discounting exercise. This, coupled with frequent and
unadvertised modifications, makes printed versions of LDP documents a speculative business
venture at best.

16.2.2. Usenet Newsgroups

Usenet newsgroups can be thought of as a worldwide bulletin board service, with topics beyond your
imagination (some of which probably belong beyond your imagination!). Unlike the older traditional
proprietary bulletin board services you may remember from the early online days, Usenet is a
distributed system where messages are posted to a user's local news server in a newsgroup. The
message is then copied among thousands of news servers worldwide that also serve that same
newsgroup. Some newsgroups are moderated by a responsible party to keep the content from
getting out of hand. Many are not monitored at all and are a free-for-all of opinions, ideas, and
occasional off-topic color.

You can access Usenet content through your ISP's news server, if one is offered, or you may use a
web-based news-reading service, such as Google Groups (http://groups.google.com). Regardless of
the method you choose, the content is the same. Messages posted to newsgroups are stored on your
news server and not on a remote origin server. This fact sometimes leads ISPs and corporations to
abandon news services altogether, due to the sheer volume of information that gets relayed on a
daily basis.

If you use a Usenet news server, you will read messages with a news reader application. Many mail
programs and web browsers contain news readers that communicate with Usenet news servers.
Standalone GUI- and text-based news readers are also available. Since Usenet messages are plain
text, they can be viewed by any paging or editing program. However, many news readers optionally
group messages by thread, which makes following a particular discussion easy. Another benefit of
using a news reader is that they manage read and unread message status, mark messages for later
review, and so on.

A search for Linux in the growing list of newsgroups yields hundreds of individual groups, far too
many for any single individual to keep up with. There are groups specific to development, to
distributions, and to hardware platforms. There are Linux advocacy groups (both pro and con) and
security groups. Perhaps the most popular are those under the comp.os hierarchy, which are
moderated by a person who filters incoming messages before sending them out to subscribers.
Some Linux-related newsgroups you should follow include:

comp.os.linux

A general discussion on Linux

comp.os.linux.advocacy

A less technical discussion of Linux, mainly by enthusiastic supporters

comp.os.linux.development

A Linux-related software development discussion

http://groups.google.com

comp.os.linux.announce

Announcements from vendors, programmers, and so on

comp.os.linux.hardware

A discussion on hardware issues specific to Linux

comp.os.linux.answers

A Q&A forum

comp.os.linux.networking

Internetworking discussion, with such topics as TCP/IP, the Internet, and the like

comp.os.linux.x

A discussion on the X Window System

Subscribing to one or more of these groups for at least a few weeks will give you a good feel for the
type of communication that goes on and how useful they may be to you.

16.2.2.1. Newsgroup archives

Given the explosive growth of the Usenet service, many people turn to newsgroup archives on the
Internet rather than watch specific groups on a daily basis. Many groups serve hundreds of
messages a day, so unless the topic is very close to your daily activity (or heart), monitoring a busy
group can become a full-time job. For example, unless you are a kernel developer or are debugging
specific kernel problems, watching redhat.kernel.general won't be of much interest to you. Archives
offer information as you need it.

You'll find a searchable archive of Usenet postings that can be helpful when you need to find recent
or historical comments on a particular topic at http://groups.google.com.

Newsgroup archives provide you with an alternate view of Usenet threaded topics. Rather than
posting a request for information and waiting for a response, searching an archive may yield
immediate answers found in communications that have already occurred. An archive can free you
from reading the headers to messages that are ultimately of no interest to you.

16.2.2.2. Contributing to Usenet

Depending on your level of expertise on the topic you're reading, you will inevitably come across a
user question that you can answer with authority. Such a question is an opportunity for you to help
someone. Think of the time needed to construct a helpful response as the payment for all the tips
and assistance you yourself have received from other Usenet users over time.

16.2.3. Mailing Lists

http://groups.google.com

Usenet provides an organized set of communications channels on specific topics. Often, however, a
system administrator or an organization will want to set up a limited group of users with basic
messaging capabilities. Without universal demand or failing to make the case for a legitimate new
Usenet group, a mailing list is often constructed using list-processing software.

A mailing list is an email autoresponder with a known list of mail recipients. Any inbound mail to the
list server from among the known list members will be mirrored to each of the other recipients on
the list. This service keeps list subscribers tuned into their topic but increases email volume, and
subscriptions to a few active mailing lists can fill your inbox daily.

On the other hand, a mailing list is proactive, and email received may be more likely to be read than
Usenet newsgroup information. Usenet messages are easily missed simply because recipients are
not paying attention. Mailing lists can be found on many web sites , where instructions for joining
the lists are available. For example, the LDP maintains a general-discussion mailing list that you can
join by sending email to discuss-subscribe@en.tldp.org. This list is for the discussion of LDP issues,
document proposals, and other commentary. Your local Linux User's Group (LUG) probably also has
a mailing list to keep members up-to-date on events, meetings, and opinions.

16.2.4. Vendor Web Sites and Other Resources

It is impossible to list the ever-increasing number of Linux-related sites on the Internet. Each
distribution and many major projects have their own sites, as do groups such as the Free Software
Foundation. Table 16-4 lists some of the most popular, grouped into categories, in case you've
missed them.

Table 16-4. Some Linux-related web sites

Category Web sites

Certification http://www.lpi.org

Documentation http://www.tldp.org

http://linux.oreilly.com

News http://linux.oreillynet.com

http://www.lwn.net

http://www.linuxtoday.com

Open source http://freshmeat.net

http://www.gnu.org

http://www.kernel.org

Search engines http://www.google.com/linux

Training http://www.lintraining.com

Of course, it's impossible to create a static list of resources that will fulfill your ever-changing needs.
If standard and familiar sources don't offer what you're looking for, don't hesitate to use a search

http://www.lpi.org
http://www.tldp.org
http://linux.oreilly.com
http://linux.oreillynet.com
http://www.lwn.net
http://www.linuxtoday.com
http://freshmeat.net
http://www.gnu.org
http://www.kernel.org
http://www.google.com/linux
http://www.lintraining.com

engine. A targeted search on a high-quality search site can be surprisingly fruitful.

16.3. Objective 5: Notify Users on System-related Issues

A key, but difficult to test, skill for Linux sysadmins is the ability to communicate with your system
users. Rather than require a face-to-face visit with you to test your communication skills, LPI covers
only the system-related resources to help you relay information to your system users.

There are a variety of methods to relay information to your users. For general communication or
notices, you may opt to simply send a broadcast email to all users on your system. For the LPI
exams, however, you are simply expected to make use of the /etc/issue and /etc/motd files on your
server, which notify shell users.

16.3.1. /etc/issue

The /etc/issue file is responsible for the text that appears after a login at the system console. The
text that appears when you log in remotely is controlled by /etc/issue.net.

Both issue files are completely text based and can contain anything from a customized system
introduction to basic system information or specialized system notifications. The information within
these files can be escape sequences to generate relevant system information such as the current
date, time, number of system users, kernel release, and even operating system version. Some
common options are listed in Table 16-5.

Table 16-5. Common escape characters

Character Description

\d Insert the current date.

\m Insert the architecture identifier of the machine, e.g., i686

\n Insert the node name of the machine, also known as the hostname.

\o Insert the domain name of the system.

\r Insert the release number of the kernel, e.g., 2.4.20.

\s Insert the system name, the name of the operating system.

\t Insert the current time.

\u Insert the number of current users logged in.

v Insert the version of the OS.

\U Insert the string "n users" where n is the number of current users logged in.

16.3.1.1. Example

The following is a simple example of an /etc/issue file. The same content may be used within

/etc/issue.net.

$ cat /etc/issue
Red Hat Linux release 9 (Shrike)
Kernel \r on an \m

The result of this /etc/issue looks like this:

Red Hat Linux release 9 (Shrike)
Kernel 2.4.20-18.9 on an i686

16.3.2. /etc/motd

The /etc/motd is intended to be used as the message of the day. Its development was designed to
get messages to system users using less disk space than required by sending mass email. The
format of /etc/motd, like /etc/issue, is text based.

Chapter 17. Shells, Scripting, Programming,
and Compiling (Topic 1.109)
Depending upon the computing environments you're used to, the concepts of shells and shell
programs (usually called scripts) may be a little foreign. On Linux systems, the shell is a full
programming environment that can be scripted or used interactively.

This chapter covers Topic 1.109 and its two Objectives:

Objective 1: Customize and Use the Shell Environment

This Objective covers your shell and basic scripting concepts, including environment variables,
functions, and script files that control the login environment. Weight: 5.

Objective 2: Customize or Write Simple Scripts

Customization of the many scripts found on a Linux system is important for its management
and automation. Topics for this Objective include shell syntax, checking the status of executed
programs, and issues surrounding the properties of script files. Weight: 3.

It is important for Linux administrators to become comfortable with at least one shell and its
programming language. This can be an area of some concern to those used to graphics-only
environments, where the use of a command interpreter is not a daily activity. As you'll see,
becoming adept at working with your favorite shell will empower you and will allow you to let your
computer carry a larger share of your daily responsibilities.

17.1. Objective 1: Customize and Use the Shell
Environment

This Objective could be considered a brief "getting started with shells" overview because it details
many of the basic concepts necessary to utilize the shell environment on Linux. These concepts are
fundamental and very important for system administrators working on Linux and Unix systems. If
you're new to shells and shell scripting, take heart. You can think of it as a combination of computer
interaction (conversation) and computer programming (automation). It is nothing more than that,
but the result is far more than this simplicity implies. If you're an old hand with shell programming,
you may want to skip ahead to brush up on some of the particulars necessary for Exam 102.

17.1.1. An Overview of Shells

A shell is a fundamental and important part of your Linux computing environment. Shells are user
programs not unlike other text-based programs and utilities. They offer a rich customizable interface
to your system. Some of the main items provided by your shell are:

An interactive textual user interface to the operating system

In this role, the shell is a command interpreter and display portal to the system. It offers you
a communications channel to the kernel and is often thought of as the "shell around the
kernel." That's where the name shell originates and is a good metaphor for conceptualizing
how shells fit into the overall Linux picture.

An operating environment

Shells set up an environment for the execution of other programs, which affects the way some
of them behave. This environment consists of any number of environment variables, each of
which describes one particular environment property by defining a name=value pair. Other

features such as aliases enhance your operating environment by offering shorthand notations
for commonly used commands.

A facility for launching and managing commands and programs

Shells are used not only by users but also by the system to launch programs and support
those programs with an operating environment.

A programming language

Shells offer their own programming languages. At its simplest, this feature allows user
commands to be assembled into useful sequences. At the other end of the spectrum, complete
programs can be written in shell languages, with loop control, variables, and all of the
capabilities of Linux's rich set of operating system commands.

All of the shells share some common concepts:

They are all distinct from the kernel and run as user programs.

Each shell can be customized by tuning the shell's operating environment.

Shells are run for both interactive use by end users and noninteractive use by the system.

A shell can be run from within another shell, enabling you to try a shell other than your default
shell. To do this, you simply start the other shell from the command line of your current shell.
In fact, this happens constantly on your system as scripts are executed and programs are
launched. The new shell does not replace the shell that launched it. Instead, the new shell is a
process running with the original shell as a parent process. When you terminate the child shell,
you go back to the original one.

Shells use a series of configuration files in order to establish their operating environment.

Shells pass on environment variables to child processes.

17.1.2. The Bash Shell

bash is a free implementation of the standard Unix shell sh from the GNU Project. As the bash home
page (http://www.gnu.org/software/bash) says:

Bash is an sh-compatible shell that incorporates useful features from the Korn shell (ksh) and C
shell (csh). It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools
standard. It offers functional improvements over sh for both programming and interactive use.

While there are a number of shells available to choose from on a Linux system, bash is very popular
and powerful, and it is the default shell for new accounts. Exam 102 concentrates on its use and
configuration. The next few sections deal with common shell concepts, but the examples are specific
to bash.

17.1.2.1. Shell and environment variables

Many programs running under Linux require information about you and your personal preferences to
operate sensibly. While you could instruct each program you run with important details it needs to
proceed, much of the information you'd convey would be redundant because you'd be telling every
command you enter the same ancillary information at each invocation. For example, you'd need to
tell your paging program about the size and nature of your terminal or terminal window each time
you use it. You would also need to give fully qualified directory names for the programs you run.

Rather than force users to include so much detail to issue commands, the shell handles much of this
information for you automatically. You've already seen that the shell creates an operating
environment for you. That environment is made up of a series of variables, each of which has a
value that is used by programs and other shells. The two types of variables used by most shells are:

Environment variables

These variables can be thought of as global variables because they are passed on to all
processes started by the shell, including other shells. This means that child processes inherit

http://www.gnu.org/software/bash

the environment. By convention, environment variables are given uppercase names. bash
doesn't require the case convention. It is intended for clarity to humans. However, variable
names are case-sensitive. Your shell maintains many environment variables, including the
following examples:

PATH

A list of directories through which the shell looks for executable programs as you enter
them on the command line. All of the directories that contain programs that you'll want
to execute are stored together in the PATH environment variable. Your shell looks
through this list in sequence, from left to right, searching for each command you enter.
Your PATH may differ from the PATHs of other users on your system because you may use
programs found in different locations or you may have a local directory with your own
custom programs that need to be available. The PATH variable can become quite long as
more and more directories are added.

HOME

Your home directory, such as /home/bsmith.

USERNAME

Your username.

TERM

The type of terminal or terminal window you are running. This variable is likely to have
a value such as xterm or xterm-color. If you are running on a physical VT100 (or
compatible) terminal, TERM is set to vt100.

Shell variables

These variables can be thought of as local because they are specific only to the current shell .
Child processes do not inherit them. Some shell variables are automatically set by the shell
and are available for use in shell scripts. By convention, shell variables are given lowercase
names.

To create a new bash shell variable, simply enter a name=value pair on the command line:

PI=3.14

To see that this value is now assigned to the local variable PI, use the echo command to display its
contents:

echo $PI
3.14

The dollar sign preceding the variable name indicates that the name will be replaced with the
variable's value. Without the dollar sign, echo would just return the text that was typed, which in
this case is the variable name PI. At this point, PI is a local variable and is not available to child
shells or programs. To make it available to other shells or programs, the variable must be exported
to the environment:

export PI

17.1.2.2. Aliases

Among the features missing from sh was the ability to easily make new commands or modify
existing commands. bash has the ability to set an alias for commonly used commands or sequences
of commands. For example, if you habitually call for the older pager more but actually prefer less,
an alias can be handy to get the desired behavior, regardless of the command you use:

$ alias more='less'

This has the effect of intercepting any command entries for more, substituting less. The revised
command is passed along to the shell's command interpreter.

Another common use for an alias is to modify a command slightly so that its default behavior is
more to your liking. Many people, particularly when operating with superuser privileges, will use this
alias:

$ alias cp='cp -i'

With this alias in effect, the use of the cp (copy) command becomes safer, because with the -i option
always enforced by the alias, cp prompts you for approval before overwriting a file of the same
name. Additional options you enter on the command line are appended to the end of the new
command, such that cp -p becomes cp -i -p and so on.

If the righthand side of the aliased command is bigger than a single word or if it contains multiple
commands (separated by semicolons, bash's command terminator), you probably need to enclose it
in single quotation marks to get your point across. This is because you need to prevent the shell in
which you're working (your current bash process) from interpreting file globbing or other characters
that might be part of your alias value. For example, suppose you wished to use a single alias to pair
two simple commands:

$ alias lsps=ls -l; ps

Your current bash process will interpret this command not as a single alias but as two separate

commands. First the alias lsps will be created for ls -l, and then a ps command will be added for
immediate execution. What you really want is:

$ alias lsps='ls -l; ps'

Now, entering the command lsps will be aliased to ls -l; ps, and will correctly generate ls output
immediately followed by ps output, as this example shows:

$ lsps
total 1253
drwx------ 5 root root 1024 May 27 17:15 dir1
drwxr-xr-x 3 root root 1024 May 27 22:41 dir2
-rw-r--r-- 1 root root 23344 May 27 22:44 file1
drwxr-xr-x 2 root root 12288 May 25 16:13 dir3
 PID TTY TIME CMD
 892 ttyp0 00:00:00 bash
 1388 ttyp0 00:00:00 ps

Admittedly, this isn't a very useful command, but it is built upon in the next section.

After adding aliases, it may become easy to confuse which commands are aliases or native. To list
the aliases defined for your current shell, simply enter the alias command by itself. This results in a
listing of all the aliases currently in place:

$ alias
alias cp='cp -i'
alias lsps='ls -l;ps'
alias mv='mv -i'
alias rm='rm -i'

Note that aliases are local to your shell and are not passed down to programs or to other shells.
You'll see how to ensure that your aliases are always available in the next section, "Configuration
files."

Aliases are mainly used for simple command replacement. The shell inserts your aliased text in place
of your alias name before interpreting the command. Aliases don't offer logical constructs and are
limited to a few simple variable replacements. Aliases can also get messy when the use of
complicated quoting is necessary, usually to prevent the shell from interpreting characters in your
alias.

17.1.2.3. Functions

In addition to aliases, bash also offers functions . They work in much the same way as aliases, in
that some function name of your choosing is assigned to a more complex construction. However, in
this case that construction is a small program rather than a simple command substitution. Functions

have a simple syntax:

[function] name () { command-list ; }

This declaration defines a function called name. function is optional, and the parentheses after name
are required if function is omitted. The body of the function is the command-list between the curly

brackets ({ and }). This list is a series of commands, separated by semicolons or by newlines. The
series of commands is executed whenever name is specified as a command. The simple lsps alias

shown earlier could be implemented as a function like this:

$ lsps () { ls -l; ps; }

Using this new function as a command yields exactly the same result the alias did. However, if you
implement this command as a function, parameters can be added to the command. Here is a new
version of the same function, this time entered on multiple lines (which eliminates the need for
semicolons within the function):

$ lsps () {
> ls -l $1
> ps -aux | grep '/bin/basename $1'
> }

The > characters come from bash during interactive entry, indicating that bash is awaiting additional
function commands or the } character, which terminates the function definition. This new function
allows us to enter a single argument to the function, which is inserted everywhere $1 is found in the
function. These arguments are called positional parameters because each one's number denotes its
position in the argument list. This example uses only one positional parameter; there can be many,
and the number of parameters is stored for your use in a special variable $# .

The command implemented in the previous example function now returns a directory listing and
process status for any program given as an argument. For example, if the Apache web server is
running, the command:

$ lsps /usr/sbin/httpd

yields a directory listing for /usr/sbin/httpd and also displays all currently running processes that
match httpd:

-rwxr-xr-x 1 root root 165740 Apr 7 17:17 /usr/sbin/httpd
root 3802 0.0 3.8 2384 1192 ? S 16:34 0:00 httpd
nobody 3810 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3811 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3812 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd

nobody 3813 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3814 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
root 3872 0.0 1.4 1152 432 ttyp0 S 16:45 0:00 grep httpd

17.1.2.4. Configuration files

It's a good assumption that every Linux user will want to define a few aliases, functions, and
environment variables to suit her needs. However, it's undesirable to manually enter them upon
each login or for each new invocation of bash. To set up these things automatically, bash uses a
number of configuration files to set its operating environment when it starts. Some of these files are
used only upon initial login, while others are executed for each instance of bash you start, including
at login time. Some of these configuration files are systemwide files for all users to use, while others
reside in your home directory for your use alone.

bash configuration files important to Exam 102 are listed in Table 17-1.

Table 17-1. bash configuration files

File Description

/etc/profile This is the systemwide initialization file executed during login. It usually contains
environment variables, including an initial PATH, and startup programs.

/etc/bashrc This is another systemwide initialization file that may be executed by a user's
.bashrc for each bash shell launched. It usually contains functions and aliases.

~/.bash_profile If this file exists, it is executed automatically after /etc/profile during login.

~/.bash_login If .bash_profile doesn't exist, this file is executed automatically during login.

~/.profile If neither .bash_profile nor .bash_login exists, this file is executed automatically
during login. Note that this is the original Bourne shell configuration file.

~/.bashrc This file is executed automatically when bash starts. This includes login, as well as
subsequent interactive and noninteractive invocations of bash.

~/.bash_logout This file is executed automatically during logout.

~/.inputrc This file contains optional key bindings and variables that affect how bash
responds to keystrokes. By default, bash is configured to respond like the Emacs
editor.

Tip: The syntax ~/ refers to bash's "home directory." While this shortcut may not represent much of a savings in typing, some Linux

configurations may place users' directories in various and sometimes nonobvious places in the filesystem. Using the tilde syntax reduces the

need for you to know exactly where a user's home directory is located.

In practice, users will generally (and often unknowingly) use the systemwide /etc/profile
configuration file to start. In addition, they'll often have three personal files in their home directory:
~/.bash_profile, ~/.bashrc, and ~/.bash_logout. The local files are optional, and bash does not mind
if one or all of them are not available in your directory.

Each of these configuration files consists entirely of plain text. They are typically simple, often

containing just a few commands to be executed in sequence to prepare the shell environment for the
user. Since they are evaluated by bash as lines of program code, they are said to be sourced, or
interpreted, when bash executes them.

Like most programming languages, shell programs allow the use of comments. Most shells including
bash consider everything immediately following the hash mark (#) on a single line to be a comment.
An important exception is the $# variable, which has nothing to do with comments but contains the
number of positional parameters passed to a function. Comments can span an entire line or share a
line by following program code. All of your shell scripts and configuration files should use comments
liberally.

Files sourced at login time are created mainly to establish default settings. These settings include
such things as where to search for programs requested by the user (the PATH) and creation of
shortcut names for commonly used tasks (aliases and functions). After login, files sourced by each
subsequent shell invocation won't explicitly need to do these things again because they inherit the
environment established by the login shell. Regardless, it isn't unusual to see a user's .bashrc file
filled with all of their personal customizations. It also doesn't hurt anything, provided the .bashrc file
is small and quick to execute.

While it is not necessary to have detailed knowledge of every item in your shell configuration files,
Exam 102 requires that you understand them and that you can edit them to modify their behavior
and your resulting operating environment. The following examples are typical of those found on
Linux systems and are annotated with comments. Example 17-1 shows a typical Linux systemwide
profile. This file is executed by every user's bash process at login time. A few environment variables
and other parameters are set in it.

Example 17-1. An example systemwide Bash profile

/etc/profile
Systemwide environment and startup programs
Functions and aliases go in systemwide /etc/bashrc
PATH was already set, this is an extension
PATH="$PATH:/usr/X11R6/bin"
Set a default prompt string
PS1="[\u@\h \W]\\$ "
Set an upper limit for "core" files
ulimit -c 1000000
Set a default umask, used to set default file permissions
if ['id -gn' = 'id -un' -a 'id -u' -gt 14]; then
 umask 002
else
 umask 022
fi
Set up some shell variables
USER='id -un'
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME='/bin/hostname'
HISTSIZE=1000
HISTFILESIZE=1000
INPUTRC=/etc/inputrc
Make all these into environment variables

export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE
 USER LOGNAME MAIL INPUTRC
Execute a series of other files
for i in /etc/profile.d/*.sh ; do
 if [-x $i]; then
 . $i
 fi
done
unset I # Clean up the variable used above

Example 17-2 shows a systemwide .bashrc file. This file is not sourced by default when bash starts.
Instead, it is optionally sourced by users' local .bashrc files.

Example 17-2. An example systemwide .bashrc file

/etc/bashrc
alias more='less' # prefer the "less" pager
alias lsps='ls -l;ps' # a dubious command

Example 17-3 shows an example user's local .bash_profile. Note that this file sources the
systemwide /etc/bashrc, then goes on to local customizations.

Example 17-3. An example user .bash_profile file

.bash_profile
Get the aliases and functions from the system administrator
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi
User-specific environment and startup programs
PATH=$PATH:$HOME/bin # Add my binaries directory to the path
EDITOR=emacs # Set my preferred editor to Emacs
VISUAL=emacs # Set my preferred editor to Emacs
PAGER=less # Set my preferred pager to less
Make my variables part of the environment
export PATH EDITOR VISUAL PAGER

Example 17-4 shows an individual's .bashrc file. Like the .bash_profile earlier, this file also sources
the systemwide /etc/bashrc.

Example 17-4. An example user's .bashrc file

.bashrc
User-specific aliases and functions
Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi
alias rm='rm -i' # Add a safety net to rm
alias cp='cp -i' # Add a safety net to cp
alias mv='mv -i' # Add a safety net to mv
lsps() { # Define a personal function
 ls -l $1
 ps -aux | grep '/bin/basename $1'
}

Example 17-5 shows a short, simple, and not uncommon .bash_logout file. Probably the most likely
command to find in a logout file is the clear command. Including a clear in your logout file is a nice
way of being certain that whatever you were doing just before you logging out won't linger on the
screen for the next user to ponder. This file is intended to execute commands for a logout from a
text session, such as a system console or terminal. In a GUI environment where logout and login are
handled by a GUI program, .bash_logout may not be of much value.

Example 17-5. A simple .bash_logout file

.bash_logout
This file is executed when a user logs out of the system
/usr/bin/clear # Clear the screen
/usr/games/fortune # Print a random adage

On the Exam

Make certain that you understand the difference between execution at login and
execution at shell invocation, as well as which of the startup files serves each of those
purposes.

17.1.2.5. .inputrc

Among the many enhancements added to bash is the ability to perform as if your history of
commands is the buffer of an editor. That is, your command history is available to you, and you may
cut, paste, and even search among command lines entered previously. This powerful capability can
significantly reduce typing and increase accuracy. By default, bash is configured to emulate the
Emacs editor, but a vi editing interface is also available.

The portion of bash that handles this function, and in fact handles all of the line input during

interactive use, is known as readline. Readline may be customized by putting commands into an
initialization file, which by default is in your home directory and called .inputrc. For example, to
configure bash to use vi-style editing keys, add this line to .inputrc:

set editing-mode vi

Tip: You may also set the INPUTRC variable to the name of another file if you prefer. On your system, this variable may be set to /etc/initrc by

default, which would override any settings you put into a local .initrc. To use your own file, you must first explicitly place unset INPUTRC in your

.bash_profile.

The default editing facilities enabled in bash are extensive and are beyond the scope of this section
and Exam 102. However, you need to understand the concepts of adding your own custom key
bindings to the .inputrc file and how they can help automate common keystrokes unique to your
daily routine for the test.

For example, suppose you often use top to watch your system's activity (top is a useful process-
monitoring utility that is described in Chapter 3):

$ top -Ssd1

If you do this often enough, you'll get tired of typing the command over and over and will eventually
want an alias for it. To create the alias, simply alias this command to top:

$ alias top='/usr/bin/top -Ssd1'

Better yet, you can use .inputrc to create a key binding that will enter it for you. Here's how the
.inputrc file would look if you were to bind your top command to the key sequence Ctrl-t:

my .inputrc file
Control-t: "top -Ssd1 \C-m"

The lefthand side of the second line indicates the key combination you wish to use (Ctrl-t). The
righthand side indicates what you wish to bind to that key sequence. In this case, bash outputs top -
Ssd1 and a carriage return, denoted here by \C-m (Ctrl-m), when Ctrl-t is pressed.

Through modifications of your local configuration files, you can customize your environment and
automate many of your daily tasks. You may also override systemwide settings in your personal files
simply by setting variables, aliases, and functions.

On the Exam

You won't need to have detailed knowledge of this key-binding syntax, but be aware of
the .inputrc file and the kinds of things it enables bash to do.

17.2. Objective 2: Customize or Write Simple Scripts

You've seen how the use of bash configuration files, aliases, functions, variables, and key bindings
can customize and make interaction with your Linux system efficient. The next step in your
relationship with the shell is to use its natural programming capability, or scripting language. The
scripting language of the original Bourne shell is found throughout a Linux system, and bash is fully
compatible with it. This section covers essential bash scripting language concepts as required for
Exam 102.

In order to have a full appreciation of shell scripting on Linux, it's important to look at your Linux
system as a collection of unique and powerful tools. Each of the commands available on your Linux
system, along with those you create yourself, has some special capability. Bringing these capabilities
together to solve problems is among the basic philosophies of the Unix world.

17.2.1. Script Files

Just as the configuration files discussed in the last section are plain text files, so are the scripts for
your shell. In addition, unlike compiled languages such as C or Pascal, no compilation of a shell
program is necessary before it is executed. You can use any editor to create script files, and you'll
find that many scripts you write are portable from Linux to other Unix systems.

17.2.1.1. Creating a simple bash script

The simplest scripts are those that simply string together some basic commands and perhaps do
something useful with the output. Of course, this can be done with a simple alias or function, but
eventually you'll have a requirement that exceeds a one-line request, and a shell script is the natural
solution. Aliases and functions have already been used to create a rudimentary new command, lsps.
Now let's look at a shell script (Example 17-6) that accomplishes the same thing.

Example 17-6. The lsps script

A basic lsps command script for bash
ls -l $1
ps -aux | grep '/bin/basename $1'

As you can see, the commands used in this simple script are identical to those used in the alias and
in the function created earlier. To make use of this new file, instruct your currently running bash
shell to source it, giving it an option for the $1 positional parameter:

$ source ./lsps /usr/sbin/httpd

If you have /usr/sbin/httpd running, you should receive output similar to that found previously for
the alias. By replacing the word source with a single dot, you can create an alternate shorthand
notation to tell bash to source a file, as follows:

$. ./lsps /usr/sbin/httpd

Another way to invoke a script is to start a new invocation of bash and tell that process to source the
file. To do this, simply start bash and pass the script name and argument to it:

$ /bin/bash ./lsps /usr/sbin/httpd

This last example gives us the same result; however, it is significantly different from the alias, the
function, or the sourcing of the lsps file. In this particular case, a new invocation of bash was started
to execute the commands in the script. This is important, because the environment in which the
commands are running is distinct from the environment in which the user is typing. This is described
in more detail later in this section.

Tip: The ./ syntax indicates that the file you're referring to is in the current working directory. To avoid specifying ./ for users other than the

superuser, put the directory . in the PATH. The PATH of the superuser should not include the current working directory, as a security precaution

against Trojan horse-style attacks.

Thus far, a shell script has been created and invoked in a variety of ways, but it hasn't been made
into a command. A script really becomes useful when it can be called by name like any other
command.

17.2.1.2. Executable files

On a Linux system, programs are said to be executable if they have content that can be run by the
processor (native execution) or by another program such as a shell (interpreted execution).
However, in order to be eligible for execution when called at the command line, the files must have
attributes that indicate to the shell that they are executable. To make a file executable, it must have
at least one of its executable bits set. To turn the example script from a plain text file to an
executable program, that bit must be set using the chmod command:

$ chmod a+x lsps

Once this is done, the script is executable by its owner, group members, and everyone else on the
system. At this point, running the new command from the bash prompt yields the familiar output:

$./lsps /usr/sbin/httpd

When lsps is called by name, the commands in the script are interpreted and executed by the bash
shell. However, this isn't ultimately what is desired. In many cases, users will be running some other
shell interactively but will still want to program in bash. Programmers also use other scripting
languages such as Perl. To have the scripts interpreted correctly, the system must be told which
program should interpret the commands in the scripts.

17.2.1.3. She-bang!

Many kinds of script files are found on a Linux system, and each interpreted language comes with a
unique and specific command structure. There needs to be a way to tell Linux which interpreter to
use. This is accomplished by using a special line at the top of the script naming the appropriate
interpreter. Linux examines this line and launches the specified interpreter program, which then
reads the rest of the file. The special line must begin with #!, a construct often called she-bang. For
bash, the she-bang line is:

#!/bin/bash

This command explicitly states that the program named bash can be found in the /bin directory and
designates bash to be the interpreter for the script. You'll also see other types of lines on script files,
including:

#!/bin/sh

The Bourne shell

#!/bin/csh

The C-shell

#!/bin/tcsh

The enhanced C-shell

#!/bin/sed

The stream editor

#!/usr/bin/awk

The awk programming language

#!/usr/bin/perl

The Perl programming language

Each of these lines specifies a unique command interpreter for the script lines that follow. (bash is
fully backward-compatible with sh; sh is just a link to bash on Linux systems.)

On the Exam

An incorrectly stated she-bang line can cause the wrong interpreter to attempt to
execute commands in a script.

17.2.1.4. The shell script's environment

When running a script with #!/bin/bash, a new invocation of bash with its own environment is
started to execute the script's commands as the parent shell waits. Exported variables in the parent
shell are copied into the child's environment; the child shell executes the appropriate shell
configuration files (such as .bash_profile). Because configuration files will be run, additional shell
variables may be set and environment variables may be overwritten. If you are depending upon a
variable in your shell script, be sure that it is either set by the shell configuration files or exported
into the environment for your use, but not both.

Another important concept regarding your shell's environment is one-way inheritance. Although your
current shell's environment is passed into a shell script, that environment is not passed back to the
original shell when your program terminates. This means that changes made to variables during the
execution of your script are not preserved when the script exits. Instead, the values in the parent
shell's variables are the same as they were before the script executed. This is a basic Unix construct;
inheritance goes from parent process to child process, and not the other way around.

On the Exam

It is important to remember how variables are set, how they are inherited, and that
they are inherited only from parent process to child process.

17.2.1.5. Location, ownership, and permissions

The ability to run any executable program, including a script, under Linux depends in part upon its
location in the filesystem. Either the user must explicitly specify the location of the file to run or it
must be located in a directory known by the shell to contain executables. Such directories are listed
in the PATH environment variable. For example, the shells on a Linux system (including bash) are
located in /bin. This directory is usually in the PATH, because you're likely to run programs that are
stored there. When you create shell programs or other utilities of your own, you may want to keep
them together and add the location to your own PATH. If you maintain your own bin directory, you
might add the following line to your .bash_profile:

PATH=$PATH:$HOME/bin

This statement modifies your path to include your /home/bin directory. If you add personal scripts
and programs to this directory, bash finds them automatically.

Execute permissions (covered in Chapter 6, "Objective 5: Use File Permissions to Control Access to
Files") also affect your ability to run a script. Since scripts are just text files, execute permission
must be granted to them before they are considered executable, as shown earlier.

You may wish to limit access to the file from other users using:

$ chmod 700 ~/bin/lsps

This prevents anyone but the owner from making changes to the script.

The issue of file ownership is dovetailed with making a script executable. By default, you own all of
the files you create. However, if you are the system administrator, you'll often be working as the
superuser and will be creating files with username root as well. It is important to assign the correct

ownership and permission to scripts to ensure that they are secured.

17.2.1.6. SUID and GUID rights

On rare occasions, it may become necessary to allow a user to run a program under the name of a
different user. This is usually associated with programs run by nonprivileged users who need special
privileges to execute correctly. Linux offers two such rights: SUID and SGID.

When an executable file is granted the SUID right, processes created to execute it are owned by the
user who owns the file instead of the user who launched the program. This is a security
enhancement, in that the delegation of a privileged task or ability does not imply that the superuser
password must be widely known. On the other hand, any process whose file is owned by root and
which has the SUID set will run as root for everyone. This could represent an opportunity to break
the security of a system if the file itself is easy to attack (as a script is). For this reason, Linux
systems will ignore SUID and SGID attributes for script files. Setting SUID and SGID attributes is
detailed in Chapter 6, "Objective 5: Use File Permissions to Control Access to Files."

On the Exam

Be sure to think through any questions that require you to determine a user's right to
execute a file. Consider location, ownership, execute permissions, and SUID/SGID
rights together. Also, watch for new scripts that haven't been granted any execute
privileges.

17.2.2. Basic Bash Scripts

Now that some of the requirements for creating and using executable scripts are established, some
of the features that make them so powerful can be introduced. This section contains basic
information needed to customize and create new bash scripts.

17.2.2.1. Return values

As shell scripts execute, it is important to confirm that their constituent commands complete
successfully. Most commands offer a return value to the shell when they terminate. This value is a
simple integer and has meaning specific to the program you're using. Almost all programs return the
value when they are successful and return a nonzero value when a problem is encountered. The
value is stored in the special bash variable $?, which can be tested in your scripts to check for
successful command execution. This variable is reset for every command executed by the shell, so
you must test it immediately after execution of the command you're verifying. As a simple example,
try using the cat program on a nonexistent file:

$ cat bogus_file
cat: bogus_file: No such file or directory

Then immediately examine the status variable twice:

$ echo $?
1
$ echo $?

The first echo yielded 1 (failure) because the cat program failed to find the file you specified. The
second echo yielded 0 (success) because the first echo command succeeded. A good script makes
use of these status flags to exit gracefully in case of errors.

If it sounds backward to equate zero with success and nonzero with failure, consider how these
results are used in practice:

Error detection

Scripts that check for errors include if-then code to evaluate a command's return status:

command
if (failure_returned) ; then
 ...error recovery code...
fi

In a bash script, failure_returned is simply the $? variable, which contains the result of the
command's execution.

Error classification

Since commands can fail for multiple reasons, many return more than one failure code. For
example, grep returns 0 if matches are found and 1 if no matches are found; it returns 2 if

there is a problem with the search pattern or input files. Scripts may need to respond
differently to various error conditions.

On the Exam

Make certain you understand the meaning of return values in general and that they are
stored in the $? variable.

17.2.2.2. File tests

During the execution of a shell script, specific information about a filesuch as whether it exists, is
writable, is a directory or a file, and so on, may sometimes be required. In bash, the built-in
command test performs this function. (There is also a standalone executable version of test
available in /usr/bin for non-bash shells.) test has two general forms:

test expression

In this form, test and an expression are explicitly stated.

[expression]

In this form, test isn't mentioned; instead, the expression is enclosed inside brackets.

The expression can be formed to look for such things as empty files, the existence of files, the

existence of directories, equality of strings, and others. (See the more complete list with their
operators in the later section, "Abbreviated Bash command reference.")

When used in a script's if or while statement, the brackets ([and]) may appear to be grouping the
test logically. In reality, [is simply another form of the test command, which requires the trailing].
A side effect of this bit of trickery is that the spaces around [and] are mandatory, a detail that is
sure to get you into trouble eventually.

17.2.2.3. Command substitution

bash offers a handy ability to do command substitution . This feature allows you to replace
$(command) with the result of command, usually in a script. That is, wherever $(command) is found, its

output is substituted prior to interpretation by the shell. For example, to set a variable to the
number of lines in your .bashrc file, you could use wc -l:

$ RCSIZE=$(wc -l ~/.bashrc)

Another form of command substitution encloses command in backquotes ('):

$ RCSIZE='wc -l ~/.bashrc'

The result is the same, except that the backquote syntax allows the backslash character to escape
the dollar symbol ($), the backquote ('), and another backslash (\). The $(command) syntax avoids

this nuance by treating all characters between the parentheses literally.

17.2.2.4. Mailing from scripts

The scripts you write will often be rummaging around your system at night when you're asleep or at
least while you're not watching. Since you're too busy to check on every script's progress, a script
will sometimes need to send some mail to you or another administrator. This is particularly
important when something big goes wrong or when something important depends on the script's
outcome. Sending mail is as simple as piping into the mail command:

echo "Backup failure 5" | mail -s "Backup failed" root

The -s option indicates that a quoted subject for the email follows. The recipient could be yourself,
root, or if your system is configured correctly, any Internet email address. If you need to send a log
file, redirect the input of mail from that file:

mail -s "subject" recipient < log_file

Sending email from scripts is easy and makes tracking status easier than reviewing log files every
day. On the downside, having an inbox full of "success" messages can be a nuisance too, so many
scripts are written so that mail is sent only in response to an important event, such as a fatal error.

17.2.2.5. Abbreviated Bash command reference

This section lists some of the important bash built-in commands used when writing scripts. Please
note that not all of the bash commands are listed here; for a complete overview of the bash shell,
see Learning the bash Shell, Cameron Newham (O'Reilly).

Syntax

break [n]

Description

Exit from the innermost (most deeply nested) for, while, or until loop or from the n innermost

levels of the loop.

Syntax

case string in

 pattern1)

 commands1
 ;;

 pattern2)

 commands2
 ;;
 ...
esac

Description

Choose string from among a series of possible patterns. These patterns use the same form as
file globs (wildcards). If string matches pattern pattern1, perform the subsequent commands1.
If string matches pattern2, perform commands2. Proceed down the list of patterns until one is

found. To catch all remaining strings, use *) at the end.

Syntax

continue [n]

Description

Skip remaining commands in a for, while, or until loop, resuming with the next iteration of
the loop (or skipping n loops).

Syntax

echo [options] [string]

Description

Write string to standard output, terminated by a newline. If no string is supplied, echo only a
newline.

Frequently used options

-e

Enable interpretation of escape characters

-n

Suppress the trailing newline in the output

Useful special characters

\a

Sound an audible alert

\b

Insert a backspace

\c

Suppress the trailing newline (same as -n)

\f

Form feed

Syntax

exit [n]

Description

Exit a shell script with status n. The value for n can be 0 (success) or nonzero (failure). If n is

not given, the exit status is that of the most recent command.

Example

if ! test -f somefile
then
 echo "Error: Missing file somefile"
 exit 1

fi

Syntax

for x in list
do
 commands
done

Description

Assign each word in list to x in turn and execute commands. If list is omitted, it is assumed

that positional parameters from the command line, which are stored in $@, are to be used.

Example

for filename in bigfile* ; do
 echo "Compressing $filename"
 gzip $filename
done

Syntax

function name
{

 commands
}

Description

Define function name. Positional parameters ($1, $2, ...) can be used within commands.

Example

function myfunc
{
 echo "parameter is $1"
}
myfunc 1

parameter is 1
myfunc two
parameter is two

Syntax

getopts string name [args]

Description

Process command-line arguments (or args, if specified) and check for legal options. The

getopts command is used in shell script loops and is intended to ensure standard syntax for
command-line options. The string contains the option letters to be recognized by getopts

when running the script. Valid options are processed in turn and stored in the shell variable
name. If an option letter is followed by a colon, the option must be followed by one or more

arguments when the command is entered by the user.

Syntax

if expression1
then

 commands1

elif expression2
then

 commands2
else

 commands
fi

Description

The if command is used to define a conditional statement. There are three possible formats
for using the if command:

if-then-fi
if-then-else-fi
if-then-elif-then-...fi

Syntax

kill [options] IDs

Description

Send signals to each specified process or job ID, which you must own unless you are a
privileged user. The default signal sent with the kill command is TERM, instructing processes to
shut down.

Options

-l

List the signal names.

-s signal or -signal

Specify the signal number or name.

Syntax

read [options] variable1 [variable2...]

Description

Read one line of standard input, and assign each word to the corresponding variable, with all
remaining words assigned to the last variable.

Example

echo -n "Enter last-name, age, height, and weight > "
read lastname everythingelse
echo $lastname
echo $everythingelese

The name entered is placed in variable $lastname; all of the other values, including the spaces
between them, are placed in $everythingelse.

Syntax

return [n]

Description

This command is used inside a function definition to exit the function with status n. If n is

omitted, the exit status of the previously executed command is returned.

Syntax

shift [n]

Description

Shift positional parameters down n elements. If n is omitted, the default is 1, so $2 becomes

$1, $3 becomes $2, and so on.

Syntax

source file [arguments]

. file [arguments]

Description

Read and execute lines in file. The file does not need to be executable but must be in a

directory listed in PATH. The dot syntax is equivalent to stating source.

Syntax

test expression

[expression]

Description

Evaluate the conditional expression and return a status of 0 (true) or 1 (false). The first form
explicitly calls out the test command. The second form implies the test command. The spaces
around expression are required in the second form. expression is constructed using options.

Frequently used options

-d file

True if file exists and is a directory

-e file

True if file exists

-f file

True if file exists and is a regular file

-L file

True if file exists and is a symbolic link

-n string

True if the length of string is nonzero

-r file

True if file exists and is readable

-s file

True if file exists and has a size greater than zero

-w file

True if file exists and is writable

-x file

True if file exists and is executable

-z string

True if the length of string is zero

file1 -ot file2

True if file1 is older than file2

string1 = string2

True if the strings are equal

string1 != string2

True if the strings are not equal

Example

To determine if a file exists and is readable, use the -r option:

if test -r file
then
 echo "file exists"
fi

Using the [] form instead, the same test looks like this:

if [-r file]
then
 echo "file exists"
fi

Syntax

until

 test-commands
do

 commands
done

Description

Execute test-commands (usually a test command) and if the exit status is nonzero (that is, the

test fails), perform commands and repeat. Opposite of while.

Syntax

while

 test-commands
do

 commands
done

Description

Execute test-commands (usually a test command) and if the exit status is nonzero (that is, the

test fails), perform commands and repeat. Opposite of until.

Example

Example 17-7 shows a typical script from a Linux system. This example is
/etc/rc.d/init.d/sendmail, which is the script that starts and stops sendmail. This script
demonstrates many of the built-in commands referenced in the last section.

Example 17-7. Sample sendmail startup script

#!/bin/sh
#
sendmail This shell script takes care of starting
and stopping sendmail.
#
chkconfig: 2345 80 30
description: Sendmail is a Mail Transport Agent, which
is the program that moves mail from one
machine to another.
processname: sendmail
config: /etc/sendmail.cf
pidfile: /var/run/sendmail.pid
Source function library.
. /etc/rc.d/init.d/functions
Source networking configuration.
. /etc/sysconfig/network
Source sendmail configuration.
if [-f /etc/sysconfig/sendmail] ; then
 . /etc/sysconfig/sendmail
else
 DAEMON=yes
 QUEUE=1h
fi
Check that networking is up.
[${NETWORKING} = "no"] && exit 0
[-f /usr/sbin/sendmail] || exit 0
See how we were called.
case "$1" in
 start)
 # Start daemons.
 echo -n "Starting sendmail: "
 /usr/bin/newaliases > /dev/null 2>&1
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then

 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 daemon /usr/sbin/sendmail $(["$DAEMON" = yes] \
 && echo -bd) $([-n "$QUEUE"] && echo -q$QUEUE)
 echo
 touch /var/lock/subsys/sendmail
 ;;
 stop)
 # Stop daemons.
 echo -n "Shutting down sendmail: "
 killproc sendmail
 echo
 rm -f /var/lock/subsys/sendmail
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 status)
 status sendmail
 ;;
 *)
 echo "Usage: sendmail {start|stop|restart|status}"
 exit 1
esac
exit 0

On the Exam

You should be familiar with a script's general structure, as well as the use of she-bang,
test, if statements and their syntax (including the trailing fi), return values, exit values,
and so on.

Chapter 18. Administrative Tasks (Topic
1.111)
As a system administrator in a multiuser environment, much of your activity is related to users and
their system accounts, the automation of routine tasks, and system backup. This chapter covers
these administrative aspects of Linux as required for Exam 102. This chapter has six Objectives:

Objective 1: Manage Users and Group Accounts and Related System Files

Candidates should be able to add, remove, suspend, and change user accounts. Tasks include
to add and remove groups, to change user/group info in password/group databases. This
Objective also includes creating special purpose and limited accounts. Weight: 4.

Objective 2: Tune the User Environment and System Environment Variables

Candidates should be able to modify global and user profiles. This includes setting
environment variables, maintaining skel directories for new user accounts, and setting a
command search path to the proper directory. Weight: 3.

Objective 3: Configure and Use System Log Files to Meet Administrative and Security Needs

Candidates should be able to configure system logs. This Objective includes managing the type
and level of information logged, manually scanning log files for notable activity, monitoring
log files, arranging for automatic rotation and archiving of logs, and tracking down problems
noted in logs. Weight: 3.

Objective 4: Automate System Administration Tasks by Scheduling Jobs to Run in the Future

Candidates should be able to use cron or anacron to run jobs at regular intervals and to use at
to run jobs at a specific time. Tasks include managing cron and at jobs and configuring user
access to cron and at services. Weight. 4.

Objective 5: Maintain an Effective Data Backup Strategy

Candidates should be able to plan a backup strategy and back up filesystems automatically to
various media. Tasks include dumping a raw device to a file or vice versa, performing partial
and manual backups, verifying the integrity of backup files, and partially or fully restoring
backups. Weight: 3.

Objective 6: Maintain System Time

Candidates should be able to properly maintain the system time and synchronize the clock
over NTP. Tasks include setting the system date and time, setting the BIOS clock to the correct

time in UTC, configuring the correct time zone for the system, and configuring the system to
correct clock drift to match NTP clock. Weight: 4.

18.1. Objective 1: Manage Users and Group Accounts and
Related System Files

Whether on a corporate server or personal desktop machine, managing user accounts is an
important aspect of running a Linux system. The root, or superuser, account is established when you
first install Linux. Unlike single-user systems (such as MS-DOS), multiuser systems require the
notion of an owner for files, processes, and other system objects. A owner may be a human system
user or a system service, such as a web server. Each of these owners is differentiated from others by
a unique user account, which is assigned to it by the system administrator.

18.1.1. User Accounts and the Password File

When a new user account is added to a Linux system, an entry is added to a list of users in the
password file, which is stored in /etc/passwd. This file gets its name from its original use, which was
to store user information including an encrypted form of the user's password. The password file is in
plain text and is readable by everyone on the system. Each line in the password file contains
information for a single user account, with fields separated by colons as illustrated in Figure 18-1.

Figure 18-1. Sample lines from a password file

Each line in the file contains information for a single system account and contains the following
pieces of information in colon-separated fields:

Username

The first field on a line is a unique username for the person or service using the account.

Password

Each username has an associated password. The password stored in this field is in a hashed
(unreadable and unrecoverable) form. Despite the hash, for security reasons, most systems
now store user passwords in a separate /etc/shadow file that has restricted permissions. If the

password is not included, its field is filled by the letter x, which indicates that the shadow
password system is in use.

User ID

Each username requires a unique user identifier, or UID. The UID is simply a nonnegative
integer. The root account is assigned the UID of 0, which gives it global privilege on the

system. By convention, the UID values from 0 to 99 are reserved for administrative use; those
over 99 are for regular system users. It's not unusual for new system accounts to start at 500.

Group ID

Each username has a default group identifier, or GID. The GID is also a nonnegative integer.
Groups are a way of allowing users to share files through mutual group membership. Group
numbers and their associated names are specified in the /etc/group file. The GID stored for
each user in /etc/passwd is its default group ID, though a user may belong to many groups.

Full name (or other comment)

The user's full name or other information is stored as plain text. This field may contain spaces.

Home directory

The home directory is the default directory in the filesystem for the user's account. If a new
account is meant for a person, a home directory will probably be created in the filesystem with
standard configuration files that the user may then personalize. The full path to that home
directory is listed here.

Default shell

This field specifies the default shell for the user or service, which is the shell that runs when
the user logs in or opens a shell window. In most cases, the shell will be /bin/bash, but it can
be any shell, or even another executable program. (Nonshell entries may be seen in the case
of some services that should own files but never log in interactively. You may see the shell
field filled with /bin/false, a small program that does nothing but yield an error and terminate.
This ensures that a service account is secured from login.)

Looking back at Figure 18-1, the first line shows the definition of the root account with UID and GID
of 0, a name of root, a home directory of /root, and a default shell of /bin/bash. The second line

shows a standard user account for Jeff Dean, with UID and GID of 500. The home directory is
/home/jdean and the default shell is /bin/tcsh.

18.1.2. Groups and the Group File

In addition to ownership by individual system users, filesystem objects have separate ownership
settings for groups of users. This group ownership allows an additional level of user-specific access
control beyond that of a file's individual owner. Groups are similar to users in their administration
and are defined in the file /etc/group. Like the passwd file, the group file contains colon-separated
fields:

Group name

Each group must have a unique name.

Group password

Just as user accounts have passwords, groups can have passwords for their membership. If
the password field is empty, the group does not require a password.

Group ID

Each group requires a unique GID. Like a UID, a GID is a nonnegative integer.

Group member list

The last field is a list of group members by username, separated by commas.

Together, these pieces of information define a group; colons separate the fields. Here are a few
sample lines from a group file:

root:x:0:root
pppusers:x:230:jdean,jdoe
finance:x:300:jdean,jdoe,bsmith
jdean:x:500:
jdoe:x:501:
bsmith:x:502:

In this example, both jdean and jdoe are members of the pppusers group (GID 230), and jdean,
jdoe, and bsmith are all members of the finance group (GID 300). The remaining groups, root,
jdean, jdoe, and bsmith are single-user groups. These groups are not intended for multiple users

and do not contain additional members. For security purposes, it is common to create new users
with their own personal single-user group. Doing this enhances security because new files and
directories will not have group privileges for other users. (Although the GID of these single-user
groups may match the UID of the user for which they're created, there is no direct relationship
between the UID and GID.)

18.1.3. The Shadow Password and Shadow Group Systems

Encrypted passwords must be secure from all users on the system, while leaving the remainder of
the information in /etc/passwd world-readable. To do this, the encrypted password is moved to a
new file that shadows the password file line for line. The file is aptly called /etc/shadow and is
generally said to contain shadow passwords . Here are a couple of example lines from a shadow file:

root:1oxEaSzzdXZESTGTU:10927:0:99999:7:-1:-1:134538444
jdean:1IviLopPn461z47J:10927:0:99999:7::11688:134538412

The first two fields contain the username and the encrypted passwords. The remaining fields contain
optional additional information on password aging information.

18.1.3.1. Group passwords and shadow groups

Just as user accounts listed in /etc/passwd are protected by encrypted passwords, groups listed in
/etc/group can also be protected by passwords. A group password can be used to allow access to a
group by a user account that is not actually a member of the group. Account users can use the
newgrp command to change their default group and enter the group password. If the password is
correct, the account is granted the group privileges, just as a group member would be.

The group definition file, like the password file, is readable by everyone on the system. If group
passwords are stored there, a dictionary attack could be made against them. To protect against such
attacks, passwords in /etc/group can be shadowed. The protected passwords are stored in
/etc/gshadow, which is readable only by root. Here are a few sample lines from a gshadow file:

root:::root
pppusers:!::
finance:0cf7ipLtpSBGg::
jdean:!::
jdoe:!::
bsmith:!::

In this example, the groups pppusers, jdean, jdoe, and bsmith do not have group passwords as
indicated by the ! in the password field. The finance group is the only one with a password, which is

hashed.

On the Exam

A major contrast between passwd/group and shadow/gshadow is the permissions on
the files. The standard files are readable by everyone on the system, but the shadow
files are readable only by root, which protects encrypted passwords from theft and
possible cracking.

18.1.4. User and Group Management Commands

Although possible, it is rarely necessary (or advised) to manipulate the account and group definition
files manually with a text editor. Instead, a family of convenient administrative commands is
available for managing accounts, groups, password shadowing, group shadowing, and password
aging. Password aging (rules governing change intervals and automated expiration of passwords) is
not an explicit Objective for the LPIC Level 1 Exams.

Syntax

useradd [options] user

Description

Create the account user on the system. Both system defaults and specified options define how

the account is configured. All system account files are updated as required. An initial password
must subsequently be set for new users using the passwd command. It is the user's
responsibility to go back and change that password when he first logs in to the system.

Frequently used options

-c comment

Define the comment field, probably the user's name.

-d homedir

Use homedir as the user's home directory.

-m

Create and populate the home directory.

-s shell

Use shell as the default for the account.

-D

List (and optionally change) system default values.

Example

Add a new user, bsmith, with all default settings:

useradd bsmith

Add a new user, jdoe, with a name, default home directory, and the tcsh shell:

useradd -mc "Jane Doe" -s /bin/tcsh jdoe

Syntax

usermod [options] user

Description

Modify an existing user account. The usermod command accepts many of the same options
useradd does.

Frequently used options

-L

Lock the password, disabling the account.

-U

Unlock the user's password, enabling the user to once again log in to the system.

Examples

Change jdoe's name in the comment field:

usermod -c "Jane Deer-Doe" jdoe

Lock the password for bsmith:

usermod -L bsmith

Syntax

userdel [-r] user

Description

Delete an existing user account. When combined with the -r option, the user's home directory
is deleted. Note that completely deleting accounts may lead to confusion when files owned by
the deleted user remain in other system directories. For this reason, it is common to disable

an account rather than delete it. Accounts can be disabled using the chage, usermod, and
passwd commands.

Example

Delete the user bsmith, including the home directory:

userdel -r bsmith

Syntax

groupadd group

Description

Add group to the system. In the rare case that a group password is desired on group, it must

be added using the gpasswd command after the group is created.

Syntax

groupmod [option] group

Description

Modify the parameters of group.

Option

-n name

Change the name of group to name.

Syntax

groupdel group

Description

Delete group from the system. Deleting groups can lead to the same confusion in the

filesystem as described previously for deleting a user (see userdel).

Syntax

passwd [options] username

Description

Interactively set the password for username. The password cannot be entered on the command

line.

Option

-l

Available only to the superuser, this option locks the password for the account.

Syntax

gpasswd groupname

Description

Interactively set the group password for groupname. The password cannot be entered on the

command line.

18.1.4.1. Additional shadow password management commands

The shadow password utilities include a few commands for converting to and from the shadow
system, as well as a command to display and adjust password aging settings for users.

Syntax

pwconv

Description

Convert a standard password file to a password and shadow password combination, enabling
shadow passwords on the system.

Syntax

pwunconv

Description

Revert from a shadow password configuration to a standard password file.

Syntax

grpconv

Description

Convert a standard group file to a group and shadow group combination, enabling shadow
groups on the system. Shadow passwords are rarely necessary.

Syntax

grpunconv

Description

Revert from a shadow group configuration to a standard group file.

18.2. Objective 2: Tune the User Environment and System
Environment Variables

When you create a new user account on your Linux system, some basic setup information is
necessary for the user to initially become productive. When the user logs into the system, she will
need:

A minimal set of environment variables, including a PATH that is meaningful for your system

Basic configuration files in her home directory

The amount of default information you provide can range from minimal to extremely detailed. In
general, you'll want to provide the setup information that will allow the user to begin working
without extensive personal customization.

18.2.1. Systemwide Startup Scripts

When the bash shell starts, it looks for a number of configuration script files, including /etc/profile.
Commands in this file are executed at login time and contain global startup information and settings
for all users. Example 18-1 contains an example profile.

Example 18-1. Sample /etc/profile

PATH="$PATH:/usr/X11R6/bin"
PS1="[\u@\h \W]\\$ "
ulimit -c 1000000
if ['id -gn' = 'id -un' -a 'id -u' -gt 14]; then
 umask 002
else
 umask 022
fi
USER='id -un'
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME='/bin/hostname'
HISTSIZE=1000
HISTFILESIZE=1000
INPUTRC=/etc/inputrc
PATH="$PATH:/usr/local/bin"
export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE
USER LOGNAME MAIL INPUTRC

The syntax for bash programming is in Chapter 17. However, you can see that this file does basic
shell setup for the user, including the assignment of a number of environment variables. As an
example of a common local customization, note the line containing PATH= adds an additional
directory to those already listed in the PATH environment variable. In this case, the system
administrator expects that most users will need to run programs stored in /usr/X11R6/bin. Making
this modification once in /etc/profile eliminates the need for individuals to make it in their personal
bash profiles.

Functions and aliases are not inherited by new shells, and commands in /etc/profile are executed
only at login time. For these reasons, the definition of functions and aliases typically is not done in
/etc/profile, but instead either in each individual user's .bashrc, or a central location such as
/etc/bashrc that is called by the user's .bashrc. Commands in the .bashrc file are executed each time
a new shell starts; their effects will apply to all new shells.

On the Exam

Remember that /etc/profile is executed only when a new login shell is started, while
.bashrc in the user's home directory is called for each new shell invocation.

18.2.2. Setting the Home Directory for New Accounts

When creating a new account, usually you'll want to create a default home directory for the user of
the account. On Linux systems, the home directory is most likely something like /home/username, but

you can define it in any way you like.

When you create a new home directory, it is a courtesy to the new user to initially populate the
directory with useful files. These might include startup files for the user's shell, for his desktop, or
for X Window applications. To facilitate the automated population of new user directories, an
example home directory is created in a skeleton directory /etc/skel. This directory should contain all
of the files and subdirectories that all new users will need. Example 18-2 shows the contents of an
example /etc/skel directory.

Example 18-2. Sample skeleton (/etc/skel) directory

-rw-r--r-- 1 root root 24 Jun 24 .bash_logout
-rw-r--r-- 1 root root 191 Apr 9 07:59 .bash_profile
-rw-r--r-- 1 root root 124 Apr 9 07:59 .bashrc
-rw-r--r-- 1 root root 854 Aug 28 2002 .emacs
drwxr-xr-x 3 root root 4096 Aug 12 2002 .kde

This example /etc/skel directory contains:

Three configuration files for the shell (.bash_logout, .bash_profile, and .bashrc)

A configuration file for the Emacs editor (.emacs)

A directory for KDE (.kde)

The specifics of this example are not important, but illustrate that a number of default files can be
included in a new user's account setup. Additions could include default files for other desktop
environments such as GNOME as well as startup files for other shells.

When a new account is created with a home directory, the entire contents of /etc/skel are copied
recursively (that is, including subdirectories) to the new home directory location. The home directory
and its entire contents are then set to the new account's UID and GID, making the new user owner
of her initial files. She is then free to modify these files and directories as necessary.

As the system administrator, you may add, modify, and delete files in /etc/skel as needed for your
environment.

18.3. Objective 3: Configure and Use System Log Files to
Meet Administrative and Security Needs

Many events occur on your Linux system that should be logged for administrative purposes. Linux
uses the syslogd system to display and record messages describing these events. This system allows
finely controlled logging of messages from the kernel as well as processes running on your system
and remote systems. Messages can be placed on the console display, in log files, and on the text
screens of users logged in to the system.

18.3.1. Configuring syslogd

The behavior of syslogd is controlled by its configuration file, /etc/syslog .conf . This text file
contains lines indicating what is to be logged and where. Each line contains directives in this form:

facility.level action

The directives are defined as follows:

facility

This represents the creator of the message (that is, the kernel or a process) and is one of the
following: auth (the facility security is equivalent to auth , but its use is deprecated),
authpriv, cron, daemon, kern, lpr, mail, mark (the mark facility is meant for syslogd 's
internal use only), news, syslog, user, uucp , or local0 through local7 . The use of these
facility designators allows you to control the destination of messages based on their origin.
Facilities local0 through local7 are for any use you may wish to assign to them in your own
programs and scripts. It's possible that your distribution has assigned one or more of the local
facilities already. Check your configuration before using a local facility.

level

Specifies a severity threshold beyond which messages are logged, and is one of the following
(from lowest to highest severity): debug, info, notice, warning (or warn), err (or error),
crit, alert , or emerg (or panic). (warn, error , and panic are all deprecated, but you may
see them on older systems.) There is also a special level called none that will disable a facility.
The level defines the amount of detail recorded in the log file. A single period separates the
facility from the level, and together they comprise the message selector . The asterisk (*) can
be used to describe all facilities or all levels.

action

The action directive is arguably misnamed. It represents the destination for messages that

correspond to a given selector (facility.level). The action can be a filename (including the

full pathname), a hostname preceded by the @ sign, or a comma-separated list of users or an
asterisk (this means all logged-in users will be included).

For example, if you wanted to create a separate log file for activity reported by the scripts you write,
you might include a line like this in /etc/syslog.conf :

Define a new log file for the local5 facility
local5.* /var/log/local5

You could then use the logger utility to write messages to the facility from your shell script (syslogd
must be restarted or signaled to reinitialize before the new log file is created.):

$ logger -p local5.info "Script terminated normally"

The message "Script terminated normally" would be placed into /var/log/local5 , along with a
timestamp and the hostname that sent the message. Example 18-3 contains an example
/etc/syslog.conf file.

Example 18-3. Sample /etc/syslog.conf file

Log everything except mail & authpriv of level info
or higher to messages.
*.info;mail.none;authpriv.none /var/log/messages
The authpriv file has restricted access.
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
Everybody gets emergency messages.
*.emerg *
Save boot messages also to boot.log
local7.* /var/log/boot.log

On the Exam

If you're not yet familiar with syslogd , spend some time with it, modifying /etc/syslog.conf and
directing messages to various files. An understanding of syslogd is critical because so many
programs depend on it.

If you examine this syslog.conf file, you'll see that nearly all system messages are sent to the
/var/log/messages file via the *.info message selector. In this case, the asterisk directs syslogd to
send messages from all facilities except mail and authpriv , which are excluded using the special
none level. The /var/log/messages file is the default system message destination, and you will
consult it frequently for information on processes running (or failing to run) and other events on

your system. In this example, the low severity level of info is used for the messages file, which logs
all but debugging messages. On heavily loaded servers, this may result in an unwieldy file size due
to message volume. Depending upon your available disk space, you may choose to save less
information by raising the level for the messages file.

18.3.2. Log File Rotation

Most distributions will install a default syslog configuration for you, including logging to messages
and other log files in /var/log . To prevent any of these files from growing unattended to extreme
sizes, a log file rotation scheme should be installed as well. The cron system issues commands on a
regular basis (usually once per day) to establish new log files; the old files are renamed with
numeric suffixes (see "Objective 4: Automate System Administration Tasks by Scheduling Jobs to
Run in the Future " later in this chapter for more on cron). With this kind of rotation, yesterday's
/var/log/messages file becomes today's messages.1 , and a new messages file is created. The
rotation is configured with a maximum number of files to keep, and the oldest log files are deleted
when the rotation is run.

The utility that establishes the rotation is logrotate . This privileged command is configured using
one or more files, which are specified as arguments to the logrotate command. These configuration
files can contain directives to include other files as well. The default configuration file is
/etc/logrotate.conf . Example 18-4 depicts an example logrotate.conf file.

Example 18-4. Sample /etc/logrotate.conf file

global options
rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4
send errors to root
errors root
create new (empty) log files after rotating old ones
create
compress log files
compress
specific files
/var/log/wtmp {
 monthly
 create 0664 root utmp
 rotate 1
}
/var/log/messages {
 postrotate
 /usr/bin/killall -HUP syslogd
 endscript
}

This example specifies rotations for two files, /var/log/wtmp and /var/log/messages . Your
configuration will be much more complete, automatically rotating all log files on your system. A
complete understanding of logrotate configuration is not necessary for LPIC Level 1 Exams, but you
must be familiar with the concepts involved. See the logrotate manpages for more information.

18.3.3. Examining Log Files

You can learn a lot about the activity of your system by reviewing the log files it creates. At times, it
will be necessary to debug problems using logged information. Since most of the log files are plain
text, it is very easy to review their contents with tools such as tail, less , and grep .

Syslog stores the messages it creates with the following information, separated by (but also
including) spaces:

Date/time

Origin hostname

Message sender (such as kernel, sendmail , or a username)

Message text

Typical messages will look like this:

Aug 3 18:45:16 moya kernel: Partition check:
Aug 3 18:45:16 moya kernel: sda: sda1 sda2 sda3 < sda5 sda6 sda7 sda8 sda9 sda10 > sda4
Aug 3 18:45:16 moya kernel: SCSI device sdb: 195369520 512-byte hdwr sectors (100029 MB)
Aug 3 18:45:16 moya kernel: sdb: sdb1
Aug 3 18:45:16 moya kernel: Journalled Block Device driver loaded
Aug 3 18:45:16 moya kernel: kjournald starting. Commit interval 5 seconds
Aug 3 18:45:16 moya kernel: EXT3-fs: mounted filesystem with ordered data mode.
Aug 3 18:45:16 moya kernel: Freeing unused kernel memory: 116k freed
Aug 3 18:45:16 moya kernel: Adding Swap: 1044216k swap-space (priority -1)

In this case, moya is the hostname, and the messages are coming from the kernel. At any time, you

can review the entire contents of your log files using less :

less /var/log/messages

You can then page through the file. This is a good way to become familiar with the types of
messages you'll see on your system. To actively monitor the output to your messages file, you could
use tail :

tail -f /var/log/messages

This might be useful, for example, to watch system activity as an Internet connection is established
via modem. To look specifically for messages regarding your mouse, you might use grep :

grep '[Mm]ouse' /var/log/messages
Dec 8 00:15:28 smp kernel: Detected PS/2 Mouse Port.

Dec 8 10:55:02 smp gpm: Shutting down gpm mouse services:

Often, if you are using grep to look for a particular item you expect to find in /var/log/messages ,
you will need to search all of the rotated files with a wildcard. For example, to look for all messages
from sendmail , you may issue a command like this:

grep 'sendmail:' /var/log/messages*

When you note problems in log files, look at the hostname and sender of the message first, then the
message text. In many cases, you will be able to determine what is wrong from the message.
Sometimes the messages are only clues, so a broader review of your logs may be necessary. In this
case, it may be helpful to temporarily turn on more messaging by using the debug level in
/etc/syslog.conf to help yield additional information that can lead you to the problem.

18.4. Objective 4: Automate System Administration Tasks
by Scheduling Jobs to Run in the Future

There is a surprising amount of housekeeping that must be done to keep a complex operating
system such as Linux running smoothly. Log file rotation, cleanup of temporary files and directories,
system database rebuilds, backups, and other tasks should be done routinely. Clearly such mundane
things should be automated by the system, freeing weary system administrators for more
interesting work. Fortunately, any system task that can be accomplished without real-time human
intervention can be automated on Linux using the cron and at facilities. Both have the ability to
execute system commands, which may start any executable program or script, at selectable times.
Further, cron and at can execute these commands on behalf of any authorized system user. cron is
intended mainly for regularly scheduled recurring activities, and at is most useful for scheduling
single commands for execution in the future.

18.4.1. Using cron

The cron facility consists of two programs (There is no individual program called cron, which is the
overall name given to the facility. If you execute man cron, however, you will see the manpage for
crond.):

crond

This is the cron daemon. This is the process that executes your instructions. It starts at system
initialization time and runs in the background thereafter.

crontab

This is the cron table manipulation program. This program gives you access to your cron table
or crontab file. Each authorized user may have his own crontab file to run commands and
processes on a regular basis.

The cron daemon wakes up every minute and examines all crontab files, executing any commands
scheduled for that time.

18.4.1.1. User crontab files

To use the cron facility, users do not need to interact directly with the crond daemon. Instead, each
system user has access to the cron facility through her crontab file. These files are stored together in
a single directory (usually /var/spool/cron) and are created and maintained using the crontab utility.

Syntax

crontab [options]

Description

View or edit crontab files.

Frequently used options

-e

Interactively edit the crontab file. Unless otherwise specified in either the EDITOR or
VISUAL environment variables, the editor is vi.

-l

Display the contents of the crontab file.

-r

Remove the crontab file.

-u user

Operate on user's crontab file instead of your own. Only root can edit or delete the

crontab files of other users.

Example

Display the crontab file for user jdoe:

crontab -l -u jdoe

Edit your own crontab file:

$ crontab -e

crontab files use a flexible format to specify times for command execution. Each line contains six
fields:

minute hour day month dayofweek command

These fields are specified as follows:

Minute (0 through 59)

Hour (0 through 23)

Day of the month (1 through 31)

Month (1 through 12 or jan through dec)

Day of the week (0 through 7where 0 or 7 is Sundayor sun through sat)

Command (any valid command, including spaces and standard Bourne shell syntax)

For example, to execute myprogram once per day at 6:15 a.m., use this crontab entry:

run myprogram at 6:15am
15 6 * * * myprogram

Lines that begin with the pound sign (#) are comment lines and are ignored by crond. Comments
must begin on a new line and may not appear within commands. The asterisks in this crontab are
placeholders and match any date or time for the field where they're found. Here, they indicate that
myprogram should execute at 6:15 a.m. on all days of the month, every month, all days of the
week.

Each of the time specifications may be single, list (1,3,5), or range (1-5 or wed-fri) entries or
combinations thereof. To modify the previous example to execute at 6:15 and 18:15 on the 1st and
15th of the month, use:

run myprogram at 6:15am and 6:15pm on the 1st and 15th
15 6,18 1,15 * * myprogram

As you can see, the time specifications are very flexible.

Because the cron daemon evaluates each crontab entry when it wakes up each minute, it is not
necessary to restart or reinitialize crond when crontab entries are changed or new files are created.

18.4.1.2. System crontab files

In addition to crontab files owned by individual users, crond also looks for the system crontab files
/etc/crontab and files in the directory /etc/cron.d. The format for these system crontabs differs
slightly from user crontabs. System crontabs have an additional field for a username between the
time specifications and the command. For example:

/etc/crontab
run myprogram at 6:15am as root

15 6 * * * root myprogram

In this example, myprogram will be executed by cron as the root user.

System crontab files located in /etc/cron.d are of the same form as /etc/crontab, including the extra
user field. These files are usually associated with some package or service that includes a system
crontab. Allowing a collection of files in /etc/cron.d allows software installation and upgrade
procedures to keep the cron configuration up-to-date on an individual package basis. In most cases,
however, you won't need to change the crontab files in /etc/cron.d.

On the Exam

Memorize the sequence of time/date fields used in crontab files.

On most Linux distributions, /etc/crontab contains some standard content to enable the execution of
programs and scripts on the minute, hour, week, and month. These arrangements allow you to
simply drop executable files into the appropriate directory (such as /etc/cron.hourly), where they
are executed automatically. This eliminates cron configuration altogether for many tasks and avoids
cluttering the root crontab file with common commands.

18.4.2. Using at

The cron system is intended for the execution of commands on a regular, periodic schedule. When
you need to simply delay execution of a command or a group of commands to some other time in
the future, you should use at. The at facility accepts commands from standard input or from a file.

Syntax

at [-f file] time

at [options]

Description

In the first form, enter commands to the at queue for execution at time. at allows fairly
complex time specifications. It accepts times of the form HH:MM to run a job at a specific time

of day. (If that time is already past, the next day is assumed.) You may also specify midnight,
noon, or teatime (4 p.m.), and you suffix a time of day with AM or PM for running in the
morning or evening. You can also say what day the job will be run by giving a date in month-
day form, with the year being optional, or by giving a date in MMDDYY, MM/DD/YY, or DD.MM.YY

form. The date specification must follow the time-of-day specification. You can also give times
like now + count time-units, where time-units can be minutes, hours, days, or weeks; you

can tell at to run the job today by suffixing the time with today, and you can tell it to run the
job tomorrow by suffixing the time with tomorrow.

If -f file is given, commands are taken from the file; otherwise, at will prompt the user for

commands.

In the second form, list or delete jobs from the at queue.

Frequently used options

-d job1 [, job2, ...]

Delete jobs from the at queue by number (same as the atrm command).

-l

List items in the at queue (same as the atq command).

Example1

Run myprogram once at 6:15 p.m. tomorrow:

$ at 6:15pm tomorrow
at> myprogram
at> ^D

In the previous code listing, ^D indicates that the user typed Ctrl-D on the keyboard, sending the
end-of-file character to terminate the at command.

Example2

Run commands that are listed in the file command_list at 9 p.m. two days from now:

$ at -f command_list 9pm + 2 days

List items in the at queue (root sees all users' entries):

$ at -l

Remove job number 5 from the at queue:

$ at -d 5

Using at to schedule jobs for delayed execution, such as while you're asleep or on vacation, is simple
and doesn't require creation of a recurring cron entry.

18.4.3. Controlling User Access to cron and at

In most cases, it is safe to allow users to use the cron and at facilities. However, if your
circumstances dictate that one or more users should be prohibited from using these services, two
simple authorization files exist for each:

cron.allow, cron.deny

at.allow, at.deny

These files are simply lists of account names. If the allow file exists, only those users listed in the
allow file may use the service. If the allow file does not exist but the deny file does, only those users
not listed in the deny file may use the service. For cron, if neither file exists, all users have access to
cron. For at, if neither file exists, only root has access to at. An empty at.deny file allows access to

all users and is the default.

18.5. Objective 5: Maintain an Effective Data Backup
Strategy

Regardless of how careful we are or how robust our hardware might be, it is highly likely that
sometimes data will be lost. Though fatal system problems are rare, accidentally deleted files or
mistakes using mv or cp are common. Routine system backup is essential to avoid losing precious
data.

There are many reasons to routinely back up your systems:

Protection against disk failures

Protection against accidental file deletion and corruption

Protection against disasters, such as fire, water, or vandalism

Retention of historical data

Creation of multiple copies of data, with one or more copies stored at off-site locations for
redundancy

All of these reasons for creating a backup strategy could be summarized as insurance. Far too much
time and effort goes into a computer system to allow random incidents to force repeated work.

18.5.1. Backup Concepts and Strategies

Most backup strategies involve copying data between at least two locations. At a prescribed time,
data is transferred from a source medium (such as a hard disk) to some form of backup medium.
Backup media are usually removable and include tapes, floppy disks, Zip disks, and so on. These
media are relatively inexpensive, compact, and easy to store off-site. On the other hand, they are
slow relative to hard disk drives.

18.5.1.1. Backup types

Backups are usually run in one of three general forms:

Full backup

A full, or complete, backup saves all of the files on your system. Depending on circumstances,
"all files" may mean all files on the system, all files on a physical disk, all files on a single
partition, or all files that cannot be recovered from original installation media. Depending on
the size of the drive being backed up, a full backup can take hours to complete.

Differential backup

Save only files that have been modified or created since the last full backup. Compared to full
backups, differentials are relatively fast because of the reduced number of files written to the
backup media. A typical differential scheme would include full backup media plus the latest
differential media. Intermediate differential media are superseded by the latest and can be
recycled.

Incremental backup

Save only files that have been modified or created since the last backup, including the last
incremental backup. These backups are also relatively fast. A typical incremental backup
would include full backup media plus the entire series of subsequent incremental media. All
incremental media are required to reconstruct changes to the filesystem since the last full
backup.

Typically, a full backup is coupled with a series of either differential backups or incremental backups,
but not both. For example, a full backup could be run once per week with six daily differential
backups on the remaining days. Using this scheme, a restoration is possible from the full backup
media and the most recent differential backup media. Using incremental backups in the same
scenario, the full backup media and all incremental backup media would be required to restore the
system. The choice between the two is related mainly to the trade-off between media consumption
(incremental backup requires more media) versus backup time (differential backup takes longer,
particularly on heavily used systems).

For large organizations that require retention of historical data, a backup scheme longer than a
week is created. Incremental or differential backup media are retained for a few weeks, after which
the tapes are reformatted and reused. Full backup media are retained for an extended period,
perhaps permanently. At the very least, one full backup from each month should be retained for a
year or more.

A backup scheme such as this is called a media rotation scheme , because media are continually
written, retained for a defined period, and then reused. The media themselves are said to belong to
a media pool, which defines the monthly full, the weekly full, and differential or incremental media
assignments, as well as when media can be reused. When media with full backups are removed from
the pool for long-term storage, new media join the pool, keeping the size of the pool constant. Media
may also be removed from the pool if your organization chooses to limit the number of uses media
are allowed, assuming that reliability goes down as the number of passes through a tape mechanism
increases.

Your organization's data storage requirements dictate the complexity of your backup scheme. On
systems in which many people frequently update mission-critical data, a conservative and detailed
backup scheme is essential. For casual-use systems, such as desktop PCs, only a basic backup
scheme is needed, if at all.

18.5.1.2. Backup verification

To be effective, backup media must be capable of yielding a successful restoration of files. To ensure
this, a backup scheme must also include some kind of backup verification in which recently written
backup media are tested for successful restore operations. This could take the form of a comparison
of files after the backup, an automated restoration of a select group of files on a periodic basis, or
even a random audit of media on a recurring basis. However the verification is performed, it must
prove that the media, tape drives, and programming will deliver a restored system. Proof that your

backups are solid and reliable ensures that they will be useful in case of data loss.

18.5.2. Device Files

Before discussing actual backup procedures, a word on so-called device files is necessary. When
performing backup operations to tape and other removable media, you must specify the device
using its device file. These files are stored in /dev and are understood by the kernel to stimulate the
use of device drivers that control the device. Archiving programs that use the device files need no
knowledge of how to make the device work. Here are some typical device files you may find on Linux
systems:

/dev/st0

First SCSI tape drive

/dev/ft0

First floppy-controller tape drive, such as Travan drives

/dev/fd0

First floppy disk drive

/dev/hdd

The slave device on the second IDE controller in a system, which could be an ATAPI Zip or
other removable disk

These names are just examples. The names on your system will be hardware- and distribution-
specific.

Did I Rewind That Tape?

When using tape drives, the kernel driver for devices such as /dev/st0 and /dev/ft0
automatically sends a rewind command after any operation. However, there may be
times when rewinding the tape is not desirable. Since the archive program has no
knowledge of how to send special instructions to the device, a nonrewinding device file
exists that instructs the driver to omit the rewind instruction. These files have a leading
n added to the filename. For example, the nonrewinding device file for /dev/st0 is
/dev/nst0. When using nonrewinding devices, the tape is left at the location just after
the last operation by the archive program. This allows the addition of more archives to
the same tape.

18.5.3. Using tar and mt

The tar (tape archive) program is used to recursively read files and directories and then write them
onto a tape or into a file. Along with the data goes detailed information on the files and directories
copied, including modification times, owners, modes, and so on. This makes tar much better for
archiving than simply making a copy, because the restored data has all of the properties of the
original.

The tar utility stores and extracts files from an archive file known as a tarfile, (conventionally named
with a .tar extension). Since tape drives and other storage devices in Linux are viewed by the
system as files, one type of tarfile is a device file, such as /dev/st0 (SCSI tape drive 0). However,
nothing prevents using regular files with tar. This is common practice and a convenient way to
distribute complete directory hierarchies as a single file.

During restoration of files from a tape with multiple archives, the need arises to position the tape to
the archive that holds the necessary files. To accomplish this control, use the mt command. (The
name comes from "magnetic tape.") The mt command uses a set of simple instructions that directs
the tape drive to perform a particular action.

Syntax

tar [options] files

Description

Archive or restore files. tar recursively creates archives of files and directories, including file
properties. It requires at least one basic mode option to specify the operational mode.

Most tar options will work with or without a leading -.

Basic mode options

-c

Create a new tarfile.

-t

List the contents of a tarfile.

-x

Extract files from a tarfile.

Frequently used options

-f tarfile

Unless tar is using standard I/O, use the -f option with tar to specify the tarfile. This
might be simply a regular file or it may be a device such as /dev/st0.

-v

Verbose mode. By default, tar runs silently. When -v is specified, tar reports each file as
it is transferred.

-w

Interactive mode. In this mode, tar asks for confirmation before archiving or restoring
files. This option is useful only for small archives.

-z

Enable compression. When using -z, data is filtered through the gzip compression
program prior to being written to the tarfile, saving additional space. The savings can be
substantial, at times better than an order of magnitude depending on the data being
compressed. An archive created using the -z option must also be listed and extracted
with -z; tar will not recognize a compressed file as a valid archive without the -z option.
Tarfiles created with this option often have the .tar.gz or .tgz file extension.

-N date

Store only files newer than the date specified. This option can be used to construct an

incremental or differential backup scheme.

-V label

Adds a label to the tar archive. A label is handy if you find an unmarked tape or poorly

named tar file.

Don't forget quotes around label if it includes spaces or special characters.

Example1

Create an archive on SCSI tape of the /etc directory, reporting progress:

tar cvf /dev/st0 /etc
tar: Removing leading '/' from absolute path names
in the archive
etc/
etc/hosts
etc/csh.cshrc
etc/exports
etc/group
etc/host.conf
etc/hosts.allow
etc/hosts.deny
etc/motd
...

Note the message indicating that tar will strip the leading slash from /etc for the filenames in the
archive. This is done to protect the filesystem from accidental restores to /etc from this archive,
which could be disastrous.

Example2

List the contents of the tar archive on SCSI tape 0:

tar tf /dev/st0
...

Example3

Extract the entire contents of the tar archive on SCSI tape 0, reporting progress:

tar xvf /dev/st0
...

Example4

Extract only the /etc/hosts file:

tar xvf /dev/st0 etc/hosts
etc/hosts

Note that the leading slash is omitted in the file specification (etc/hosts), to match the archive with
the stripped slash as noted earlier.

Example5

Create a compressed archive of root's home directory on a floppy:

tar cvzf /dev/fd0 -V "root home dir" /root
tar: Removing leading '/' from absolute path names
in the archive
root/
root/lost+found/
root/.Xdefaults
root/.bash_logout
root/.bash_profile
root/.bashrc
root/.cshrc
root/.tcshrc

...
tar (grandchild): Cannot write to /dev/fd0: No space
left on device
tar (grandchild): Error is not recoverable: exiting now

As you can see from reading the error messages, there isn't enough room on the floppy, despite
compression. In this case, try storing the archive to an ATAPI Zip drive:

tar cvzf /dev/hdd -V "root home dir" /root
...

As mentioned earlier, tape drives have more than one device file. A tape drive's nonrewinding device
file allows you to write to the tape without sending a rewind instruction. This allows you to use tar
again on the same tape, writing another archive to the medium. The number of archives written is
limited only by the available space on the tape.

Often multiple archives are written on a single tape to accomplish a backup strategy for multiple
computers, multiple disks, or some other situation in which segmenting the backup makes sense.
One thing to keep in mind when constructing backups to large media such as tape is the reliability of
the medium itself. If an error occurs while tar is reading the tape during a restore operation, it may
become confused and give up. This may prevent a restore of anything located beyond the bad
section of tape. Segmenting the backup into pieces may enable you to position the tape beyond the
bad section to the next archive, where tar would work again. In this way, a segmented backup could
help shield you from possible media errors.

See the tar info or manpage for full details.

Syntax

mt [-h] [-f device_file] operation [count]

Description

Control a tape drive. The tape drive is instructed to perform the specified operation once,
unless count is specified.

Frequently used options

-h

Print usage information, including operation names, and exit.

-f device_file

Specify the device file; if omitted, the default is used, as defined in the header file
/usr/include/sys/mtio.h. The typical default is /dev/tape.

18.5.4. Backup Operations

Using tar or mt interactively for routine system backups can become tedious. It is common practice
to create backup scripts called by cron to execute the backups for you. This leaves the administrator
or operator with the duty of providing correct media and examining logs. This section describes a
basic backup configuration using tar, mt, and cron.

18.5.4.1. What should I back up?

It's impossible to describe exactly what to back up on your system. If you have enough time and
media, complete backups of everything are safest. However, much of the data on a Linux system,
such as commands, libraries, and manpages, don't change routinely and probably won't need to be
saved often. Making a full backup of the entire system makes sense after you have installed and
configured your system. Once you've created a backup of your system, there are some directories
that you should routinely back up:

/etc

Most of the system configuration files for a Linux system are stored in /etc, which should be
backed up regularly.

/home

User files are stored in /home. On multiuser systems, /home can be quite large.

/var/log

If you have security or operational concerns, it may be wise to save log files stored in /var/log.

/var/spool/mail

If you use email hosted locally, the mail files are stored in /var/spool/mail and should be
retained.

/var/spool/at and /var/spool/cron

Users' at and crontab files are stored in /var/spool/at and /var/spool/cron, respectively. These
directories should be retained if these services are available to your users.

Of course, this list is just a start, as each system will have different backup requirements.

18.5.4.2. An example backup script

#!/bin/sh

Options can be passed in either with the TAROPTIONS
environment variable or as options on the command line.
TAROPTIONS=${TAROPTIONS:-""}

Uncomment this block if you want tar to be verbose
when this script is run interactively.
#if [-t]; then
TAROPTIONS="$TAROPTIONS --verbose"
#fi

TAROPTIONS="$TAROPTIONS $*"

The tape device can be passed in the TARGET
environment variable. The default is /dev/st0.
TARGET=${TARGET:-"/dev/st0"}

die () {
 message="$@"
 echo "$message" >&2
 exit 1
}

exitmessage () {
 status=$?

 if [$status -ne 0]; then
 echo "tar returned with exit value $status." >&2
 elif [-t 0 -a -t 2]; then
 echo "tar completed successfully." >&2
 fi

 echo "Finished 'date'."

 exit $status
}

trap exitmessage EXIT

label="'hostname' 'date '+%A %x''"

echo $label

echo "Started 'date'."

cd / || die "Failed to change to root directory"

This is a good time to turn compression on.
Unfortunately, that's somewhat specific to
particular tape drive models.
mt -f $TARGET compression on

mt -f $TARGET rewind || die "Failed to rewind tape"

tar -V "$label" -lcf $TARGET --totals $TAROPTIONS \
 . \
 ./boot \
 ./usr \
 ./var \
 ./opt \
 ./home \
 --exclude=.journal \
 --exclude=lost+found \
 --exclude=./dev/gpmctl \
 --exclude=./dev/log

The last few lines give examples of things you
might not want backed up or cause problems when
they are backed up (like the /dev entries listed).

18.5.4.3. Verifying tar archives

Keeping tape drives clean and using fresh media lay a solid foundation for reliable backups. In
addition to those preventive measures, you'll want to routinely verify your backups to ensure that
everything ran smoothly. Verification is important on many levels. Clearly, it is important to ensure
that the data is correctly recorded. Beyond that, you should also verify that the tape drives and the
backup commands function correctly during restoration. Proper file restoration techniques should be
established and tested during normal operations, before tragedy strikes and places your operation
into an emergency situation.

You can verify the contents of a tar archive by simply listing its contents. For example, suppose a
backup has been made of the /etc directory using the following command:

tar cvzf /dev/st0 /etc

After the backup is complete, the tape drive rewinds. The archive can then be verified immediately
by reviewing the contents with the -t option:

tar tf /dev/st0

This command lists the contents of the archive so that you can verify the contents of the tarfile.
Additionally, any errors that may prevent tar from reading the tape are displayed at this time. If
there are multiple archives on the tape, they can be verified in sequence using the nonrewinding
device file:

tar tf /dev/nst0
mt -f /dev/nst0 fsf 1
tar tf /dev/nst0
mt -f /dev/st0 rewind

While this verification tells you that the tapes are readable, it does not tell you that the data being
read is identical to that in the filesystem. If your backup device supports them, the tar utility
contains two options, verify and compare, that may be useful to you. However, comparisons of files
on the backup media against the live filesystem may yield confusing results if your files are changing
constantly. In this situation, it may be necessary to select for comparison specific files that you are
certain will not change after they are backed up. You would probably restore those files to a
temporary directory and compare them manually, outside of tar. If it is necessary to compare an
entire archive, be aware that doing so doubles the time required to complete the combined backup
and verify operation.

18.5.4.4. File restoration

Restoring files from a tar archive is simple. However, you must exercise caution regarding exactly
where you place the restored files in the filesystem. In some cases, you may be restoring only one or
two files, which may be safely written to their original locations if you're sure the versions on tape
are the ones you need. However, restoring entire directories to their original locations on a running
system can be disastrous, resulting in changes being made to the system without warning as files
are overwritten. For this reason, it is common practice to restore files to a different location and
move those files you need into the directories where you want them.

Reusing a previous example, suppose a backup has been made of the /etc directory:

tar cvzf /dev/st0 /etc

To restore the /etc/hosts file from this archive, the following commands can be used:

cd /tmp
tar xzf /dev/st0 etc/hosts

The first command puts our restore operation out of harm's way by switching to the /tmp directory.
(The directory selected could be anywhere, such as a home directory or scratch partition.) The
second command extracts the specified file from the archive. Note that the file to extract is specified
without the leading slash. This file specification will match the one originally written to the medium
by tar, which strips the slash to prevent overwriting the files upon restore. tar will search the archive
for the specified file, create the etc directory under /tmp, and then create the final file:
/tmp/etc/hosts. This file should then be examined by the system administrator and moved to the
appropriate place in the filesystem only after its contents have been verified.

To restore the entire /etc directory, simply specify that directory:

tar xzf /dev/st0 etc

To restore the .bash_profile file for user jdean from a second archive on the same tape, use mt

before using tar:

cd /tmp
mt -f /dev/nst0 fsf 1
tar xzf /dev/st0 /home/jdean/.bash_profile

In this example, the nonrewinding tape device file is used with mt to skip forward over the first
archive. This leaves the tape positioned before the second archive, where it is ready for tar to
perform its extraction.

On the Exam

This Objective on system backup isn't specific about particular commands or
techniques. However, tar is among the most common methods in use for simple backup
schemes.

You should also know how to use the mt command to position a tape to extract the correct archive.

18.6. Objective 6: Maintain System Time

An accurate system clock is important on a Linux system for a variety of reasons. Timestamps are
used for logs. Programs such as make and anacron require accurate modification times on files. The
time is used in mail and news headers.

Luckily, there are many ways to keep the time on an Internet-connected Linux system correct. The
most popular of these is to use the Network Time Protocol (NTP) and the NTP software package from
http://www.ntp.org .

18.6.1. NTP Concepts

The NTP is used to set and synchronize the internal clocks of network-connected systems. When
properly configured, systems running the NTP daemon can be synchronized within a few
milliseconds (or better), even over relatively slow WAN connections.

The NTP daemon also supports synchronization with an external time source, such as a GPS
receiver. Systems directly connected to an external time source (and properly configured) are the
most accurate, so they are designated stratum 1 servers. Systems synchronizing to stratum 1
servers are designated stratum 2 and so on down to stratum 15.

Tip: The NTP software package has support for cryptographic key-based authentication, although setting this up is outside the scope of the

LPI Level 1 Exams and will not be covered here.

18.6.2. The NTP Software Package Components

The NTP software package consists of several programs, including the NTP daemon and a number of
programs used to configure and query NTP servers. The more commonly used programs from the
package are listed here.

Syntax

ntpd [options]

Description

ntpd is the heart of the NTP software package. It performs the following functions:

Synchronizes the PC clock with remote NTP servers

Allows synchronization from other NTP clients

http://www.ntp.org

Adjusts (slews) the rate of the kernel's clock tick so that it tends to keep the correct time

Reads time synchronization data from hardware time sources such as GPS receivers

Frequently used options

-c file

This option tells ntpd to use file as its configuration file instead of the default

/etc/ntpd.conf .

-g

This option will let ntpd start on a system with a clock that is off by more than the panic
threshold (1,000 seconds by default).

-n

Normally ntpd runs as a daemon, in the background. This option disables that behavior.

-q

This option tells ntpd to exit after setting the time once.

-N

When this option is specified, ntpd attempts to run at the highest priority possible.

-P priority

When this option is specified, ntpd attempts to run with a nice value of priority .

ntpd is configured using the file /etc/ntp.conf . The file is fully documented in a series of files
linked to from the ntpd documentation, found in the software distribution or at
http://www.eecis.udel.edu/~mills/ntp/html/ntpd.html .

The most important configuration options are restrict , which is used to implement access
controls, and server , which is used to direct ntpd to an NTP server. Another often-used
configuration option (not mentioned in the sample ntp.conf in Example 18-5) is peer , which
is used much like server , but implies that the system is both a client and a server. A peer is
usually a system that is nearby on the network, but uses different time sources than the local
system.

Example 18-5. Sample /etc/ntp.conf

Prohibit general access to this service.
restrict default ignore

Permit all access over the loopback interface. This could

http://www.eecis.udel.edu/~mills/ntp/html/ntpd.html

be tightened as well, but to do so would affect some of
the administrative functions.
restrict 127.0.0.1

-- CLIENT NETWORK -------
Permit systems on this network to synchronize with this
time service. Do not permit those systems to modify the
configuration of this service. Also, do not use those
systems as peers for synchronization.
restrict 192.168.1.0 mask 255.255.255.0 notrust nomodify notrap

--- OUR TIMESERVERS -----
Permit time synchronization with our time source, but do not
permit the source to query or modify the service on this system.

time.nist.gov
restrict 192.43.244.18 mask 255.255.255.255 nomodify notrap noquery
server 192.43.244.18

time-b.nist.gov
restrict 129.6.15.29 mask 255.255.255.255 nomodify notrap noquery
server 129.6.15.29

--- GENERAL CONFIGURATION ---
#
Undisciplined Local Clock. This is a fake driver intended for backup
and when no outside source of synchronized time is available.
#
server 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10

#
Drift file. Put this in a directory which the daemon can write to.
No symbolic links allowed, either, since the daemon updates the file
by creating a temporary in the same directory and then renaming
it to the file.
#
driftfile /etc/ntp/drift
broadcastdelay 0.008

Example

Normally ntpd slowly adjusts the time of the system to the correct time. To use it to force the
system time to the right time (for example, when occasionally setting the correct time from
cron), use the following:

ntpd -g -n -q

Syntax

ntpdate [options] server [server [...]]

Description

ntpdate is used to set the time of the local system to match a remote NTP host.

Note that the authors intend to drop ntpdate in the future since ntpd can perform essentially
the same function when used with the -q option.

Frequently used options

-b

Using this option, the system time is set instead of being slowly adjusted, no matter how
far off the local time is.

-d

This option enables debugging mode. ntpdate goes through the motions and prints
debugging information, but does not actually set the local clock.

-p n

Use this option to specify the number of samples (where n is from 1 to 8) to get from

each server. The default is 4.

-q

This option causes ntpdate to query the servers listed on the command line without
actually setting the clock.

-s

This option causes all output from ntpdate to be logged via syslog instead of being
printed to stdout.

-t n

This option sets the timeout for a response from any server to n seconds. n may be

fractional. It will be rounded to the nearest 0.2 second. The default value is 1 second.

-u

Normally ntpdate uses a privileged port (123) as the source port for outgoing packets.
Some firewalls block outgoing packets from privileged ports, so with this option, ntpdate
uses an unprivileged port (1024 or higher).

-v

This option makes ntpdate more verbose.

-B

Using this option, the system time is slowly adjusted to the proper time even if the local
time is off by more than 128 ms. Normally the time is forcibly set if it is off by more than
128 ms.

If the time is off by very much, it can take a very long time to set it with this option.

Example

Quietly sync the local clock with two stratum 1 NTP servers:

ntpdate -s time.nist.gov time-b.nist.gov

Syntax

ntpq [options] [host]

Description

ntpq is the standard NTP query program. It is used to send NTP control messages to host (or
localhost if no host is specified), which can be used to check the status of ntpd on host or change its

configuration.

The commands that can be used with ntpq are documented in the NTP software documentation
included with the distribution and at http://www.eecis.udel.edu/~mills/ntp/html/ntpq.html .

Frequently used options

-c command

Execute command as if it were given interactively.

-i

Enter interactive mode. This is the default.

-n

Suppress reverse DNS lookups. Addresses are printed instead of hostnames.

-p

Query the server for a list of peers. This is equivalent to the peers interactive command or -c
peers on the command line.

Example

Print the list of peers known to the server by IP address:

ntpq -p -n

or

ntpq -c peers -n

or

ntpq -n
ntpq> peers
remote refid st t when poll reach delay offset jitter
= =
127.127.1.0 127.127.1.0 10 l 7 64 377 0.000 0.000 0.004
+10.100.187.194 172.30.191.1 2 u 72 1024 377 0.536 47.092 2.088
*10.100.187.222 172.16.123.163 2 u 35 1024 377 0.736 3.394 8.806
+192.168.0.100 10.100.187.222 3 u 90 1024 377 0.928 31.727 2.412
ntpq>

Syntax

ntpdc [options] [host]

Description

ntpdc is much like ntpq , except that it supports some extended commands. For this reason, it
is likely to work only when talking to ntpd from the same version of the NTP software package.

For the most part, the command-line options it supports are the same as those of ntpq . Full
documentation for ntpdc can be found in the NTP software distribution or at
http://www.eecis.udel.edu/~mills/ntp/html/ntpdc.html .

http://www.eecis.udel.edu/~mills/ntp/html/ntpdc.html

Syntax

ntptrace [options] server [server [...]]

Description

Frequently used options

-n

Turn off reverse DNS lookups.

-r n

This option sets the number of attempts to contact a host to n . The default is 5.

-t n

Set the time between retries to n seconds. The default is 2.

-v

Make ntptrace output much more verbose information about the hosts it contacts.

Examples

To see where the local system is synchronizing its lock to, run ntptrace with no options:

$ /usr/sbin/ntptrace
localhost: stratum 4, offset 0.000109, synch distance 0.16133
ntp1.example.net: stratum 3, offset 0.004605, synch distance 0.06682
ntp-1.example.edu: stratum 2, offset 0.001702, synch distance 0.01241
stratum1.example.edu: *Timeout*

In this example, the stratum 1 server is not directly accessible.

ntptrace can also be used on any arbitrary NTP server, assuming it is accessible. In this example, we
query two publicly accessible stratum 2 NTP servers:

$ /usr/sbin/ntptrace ntp0.cornell.edu
cudns.cit.cornell.edu: stratum 2, offset -0.004214, synch distance 0.03455
dtc-truetime.ntp.aol.com: stratum 1, offset -0.005957, synch distance
0.00000, refid 'ACTS'
$ /usr/sbin/ntptrace ntp-2.mcs.anl.gov
mcs.anl.gov: stratum 2, offset -0.004515, synch distance 0.06354

clepsydra.dec.com: stratum 1, offset 0.002045, synch distance 0.00107, refid 'GPS'

Chapter 19. Networking Fundamentals
(Topic 1.112)
While it is not necessary for you to be a networking expert to pass the LPIC Level 1 Exams, you must
be familiar with networking, network-related vocabulary, and basic Linux networking configuration.
This chapter introduces fundamental networking, troubleshooting, and dial-up concepts specifically
included in the exams. However, it is not a complete introductory treatment, and you are
encouraged to review additional material for more depth. This chapter covers these three
Objectives:

Objective 1: Fundamentals of TCP/IP

Candidates should demonstrate a proper understanding of network fundamentals. This
Objective includes the understanding of IP addresses, network masks, and what they mean
(i.e., determine a network and broadcast address for a host based on its subnet mask in
dotted quad or abbreviated notation or determine the network address, broadcast address,
and netmask when given an IP address and number of bits). It also covers the understanding
of the network classes and classless subnets (CIDR) and the reserved addresses for private
network use. It includes the understanding of the function and application of a default route. It
also includes the understanding of basic Internet protocols (IP, ICMP, TCP, UDP) and the more
common TCP and UDP ports (20, 21, 23, 25, 53, 80, 110, 119, 139, 143, 161). Weight: 4.

Objective 3: TCP/IP Configuration and Troubleshooting

Candidates should be able to view, change, and verify configuration settings and operational
status for various network interfaces. This Objective includes manual and automatic
configuration of interfaces and routing tables. This especially means to add, start, stop,
restart, delete, or reconfigure network interfaces. It also means to change, view, or configure
the routing table and to correct an improperly set default route manually. Candidates should
be able to configure Linux as a DHCP client and a TCP/IP host and to debug problems
associated with the network configuration. Weight: 7.

Objective 4: Configure Linux as a PPP Client

Candidates should understand the basics of the PPP protocol and be able to configure and use
PPP for outbound connections. This Objective includes the definition of the chat sequence to
connect (given a login example) and the setup commands to be run automatically when a PPP
connection is made. It also includes initialization and termination of a PPP connection, with a
modem, ISDN, or ADSL, and setting PPP to automatically reconnect if disconnected. Weight:
3.

What follows is not a complete treatment of TCP/IP , but rather a refresher of its core concepts as
they apply to Exam 102. If you're interested in more in-depth coverage of TCP/IP, check out TCP/IP
Network Administration, Craig Hunt (O'Reilly).

19.1. Objective 1: Fundamentals of TCP/IP

The TCP/IP suite of protocols was adopted as a military standard in 1983 and has since become the
world standard for network communications on the Internet and on many LANs, replacing
proprietary protocols in many cases. This section covers TCP/IP basics cited by the LPI Objectives.

19.1.1. Addressing and Masks

The early specification of the IP recognized that it would be necessary to divide one's given
allotment of IP addresses into manageable subnetworks. Such division allows for distributed
management, added security (fewer hosts can potentially snoop network traffic), and the use of
multiple networking technologies (Ethernet, Token Ring, ATM, etc.). IP also enables convenient
partitioning of the physical portions of a network across physical and geographical boundaries. To
provide the capability to locally define networks, IP addresses are considered as having two distinct
parts: the part that specifies a subnet and the one that specifies a network interface. (Remember
that IP addresses are assigned to network interfaces, not host computers, which can have multiple
interfaces. For this discussion, however, we assume a one-to-one relationship between hosts and
interfaces.) The boundary between the network and host portions of an IP address is delineated by a
subnet mask, required by the TCP/IP configuration of any network interface. Like the IP address, the
subnet mask is simply a 32-bit number specified in four 8-bit segments using dotted quad decimal
notation. The familiar class A, B, and C networks have these subnet masks:

Class A: 255.0.0.0 (binary 11111111.00000000.00000000.00000000)

8-bit network address and 24-bit host address

Class B: 255.255.0.0 (binary 11111111.11111111.00000000.00000000)

16-bit network address and 16-bit host address

Class C: 255.255.255.0 (binary 11111111.11111111.11111111.00000000)

24-bit network address and 8-bit host address

When logically AND'd with an IP address, the bits set to 0 in the subnet mask obscure the host
portion of the address. The remaining bits represent the network address. For example, a host on a
class C network might have an IP address of 192.168.1.127. Applying the class C subnet mask
255.255.255.0, the network address of the subnet would be 192.168.1.0, and the host address
would be 127, as depicted in Figure 19-1.

Figure 19-1. Host interface address calculation

While it is typical to use the predefined classes (A, B, and C), the boundary can be moved left or
right in the IP address, allowing for fewer or more subnets, respectively. For example, if a single
additional bit were added to the class C subnet mask, its IP address would be:

255.255.255.128 (binary 11111111.11111111.11111111.10000000)

25-bit network address and 7-bit host address

With such a subnet defined on an existing class C network such as 192.168.1.0, the 256-bit range is
split into two subnets, each with 7 host bits. The first of the two subnets begins at 192.168.1.0 (the
subnet address) and continues through 192.168.1.127 (the subnet broadcast address). The second
subnet runs from 192.168.1.128 through 192.168.1.255. Each of the two subnets can accommodate
126 hosts. To extend this example, consider two additional bits:

255.255.255.192 (binary 11111111.11111111.11111111.11000000)

26-bit network address and 6-bit host address

When applied to a class C network, four subnets are created, each with 6 host bits. Just as before,
the first subnet begins at 192.168.1.0 but continues only through 192.168.1.63. The next subnet
runs from 192.168.1.64 through 192.168.1.127 and so on. Each of the four subnets can
accommodate 62 hosts. Table 19-1 shows more detail on class C subnets, considering only the host
portion of the address.

Table 19-1. Class C IP subnet detail

Subnet
mask

Number of
subnets

Network
address

Broadcast
address

Minimum
IP address

Maximum
IP address

Number
of hosts

Total
hosts

128 2 0 127 1 126 126

 128 255 129 254 126 252

192 4 0 63 1 62 62

 64 127 65 126 62

 128 191 129 190 62

Subnet
mask

Number of
subnets

Network
address

Broadcast
address

Minimum
IP address

Maximum
IP address

Number
of hosts

Total
hosts

 192 255 193 254 62 248

224 8 0 31 1 30 30

 32 63 33 62 30

 64 95 65 94 30

 96 127 97 126 30

 128 159 129 158 30

 160 191 161 190 30

 192 223 193 222 30

 224 255 225 254 30 240

On the Exam

Be prepared to define network and host addresses when provided an IP address and a
subnet mask. Practice with a few subnet sizes within at least one classification (A, B, or
C). Also, because the use of decimal notation can cloud human interpretation of IP
addresses and masks, be ready to do binary-to-decimal conversion on address
numbers.

As you can see, as the number of subnets increases, the total number of hosts that can be deployed
within the original class C address range reduces. This is due to the loss of both broadcast addresses
and network addresses to the additional subnets.

19.1.2. Protocols

TCP/IP is a suite of protocols , including the TCP, IP, User Datagram Protocol (UDP), and Internet
Control Message Protocol (ICMP), among others. Some protocols use handshaking (the exchange of
control information among communicating systems) to establish and maintain a connection. Such a
protocol is said to be connection-oriented and reliable, because the protocol itself is responsible for
handling transmission errors, lost packets, and packet arrival order. A protocol that does not
exchange control information is said to be connectionless and unreliable. In this context, "unreliable"
simply means that the protocol doesn't handle transmission problems itself; they must be corrected
in the application or system libraries. Connectionless protocols are simpler and have less overhead
than connection-oriented protocols. TCP/IP is a stack of protocols, because protocols are built in a
hierarchy of layers. Low-level protocols are used by higher-level protocols on adjacent layers of the
protocol stack:

TCP

TCP is a connection-oriented transport agent used by applications to establish a network
connection. TCP transports information across networks by handshaking and retransmitting

 192 255 193 254 62 248

224 8 0 31 1 30 30

 32 63 33 62 30

 64 95 65 94 30

 96 127 97 126 30

 128 159 129 158 30

 160 191 161 190 30

 192 223 193 222 30

 224 255 225 254 30 240

On the Exam

Be prepared to define network and host addresses when provided an IP address and a
subnet mask. Practice with a few subnet sizes within at least one classification (A, B, or
C). Also, because the use of decimal notation can cloud human interpretation of IP
addresses and masks, be ready to do binary-to-decimal conversion on address
numbers.

As you can see, as the number of subnets increases, the total number of hosts that can be deployed
within the original class C address range reduces. This is due to the loss of both broadcast addresses
and network addresses to the additional subnets.

19.1.2. Protocols

TCP/IP is a suite of protocols , including the TCP, IP, User Datagram Protocol (UDP), and Internet
Control Message Protocol (ICMP), among others. Some protocols use handshaking (the exchange of
control information among communicating systems) to establish and maintain a connection. Such a
protocol is said to be connection-oriented and reliable, because the protocol itself is responsible for
handling transmission errors, lost packets, and packet arrival order. A protocol that does not
exchange control information is said to be connectionless and unreliable. In this context, "unreliable"
simply means that the protocol doesn't handle transmission problems itself; they must be corrected
in the application or system libraries. Connectionless protocols are simpler and have less overhead
than connection-oriented protocols. TCP/IP is a stack of protocols, because protocols are built in a
hierarchy of layers. Low-level protocols are used by higher-level protocols on adjacent layers of the
protocol stack:

TCP

TCP is a connection-oriented transport agent used by applications to establish a network
connection. TCP transports information across networks by handshaking and retransmitting

information as needed in response to errors on the network. TCP guarantees packet arrival
and provides for the correct ordering of received packets. TCP is used by many network
services, including FTP, Telnet, and SMTP. By using TCP, these applications don't need to
establish their own error-checking mechanisms, thus making their design simpler and easier
to manage.

IP

IP can be thought of as the fundamental building block of the Internet. IP, which is
connectionless, defines datagrams (the basic unit of transmission), establishes the addressing
scheme (the IP address), and provides for the routing of datagrams between networks. IP is
said to provide a datagram delivery service. Other higher-level protocols use IP as an
underlying carrier.

UDP

UDP is a connectionless transport agent. It provides application programs direct access to IP,
allowing them to exchange information with a minimum of protocol overhead. On the other
hand, because UDP offers no assurance that packets arrive at destinations as intended,
software must manage transmission errors and other problems such as missing and
incorrectly ordered packets. UDP is used by applications such as DNS and NFS.

ICMP

ICMP is a connectionless transport agent that is used to exchange control information among
networked systems. It uses IP datagrams for the following control, error-reporting, and
informational functions:

Flow control

Sometimes inbound traffic becomes too heavy for a receiving system to process. In such
cases, the receiving system can send a message via ICMP to the source instructing it to
temporarily stop sending datagrams.

Detecting unreachable destinations

Various parts of network infrastructure are capable of detecting that a network
destination is unreachable. In this case, ICMP messages are sent to the requesting
system.

Redirecting routes

ICMP is used among network components to instruct a sender to use a different
gateway.

Checking remote hosts

Hosts can transmit echo messages via ICMP to verify that a remote system's Internet
Protocol is functioning. If so, the original message is returned. This is implemented in
the ping command.

PPP

PPP is used for TCP/IP dial-up network access via modem. The configuration and use of PPP is
described later in Objective 4.

On the Exam

You will need a general understanding of the control messages sent via ICMP. In
particular, note that ICMP does not transmit data and that it is used by ping.

19.1.3. TCP/IP Services

When an inbound network request is made, such as that from a web browser or FTP client, it is sent
to the IP address of the server. In addition, the request carries inside it a port number (or just port),
which is a 16-bit value placed near the beginning of a network packet. The port number defines the
type of server software that should respond to the request. For example, by default, web browsers
send requests encoded for port 80. Web servers "listen" to port 80 and respond to incoming
requests. The encoded port can be considered part of the address of a request. While the IP address
specifies a particular interface (or host), the port specifies a specific service available on that host.
Many port numbers are predefined, and the list is expanded as needed to accommodate new
technologies. The official list of port number assignments is managed by the Internet Assigned
Numbers Authority (IANA). The ports known by your system are listed in /etc/services .

Port numbers 1 through 1023 are often referred to as privileged ports because the services that use
them often run with superuser authority. Many of these, such as ports used for FTP (21), Telnet
(23), and HTTP (80), are often referred to as well-known ports because they are standards. Port
numbers from 1024 through 65535 (the maximum) are unprivileged ports and can be used by
applications run by ordinary system users.

During the initial contact, the client includes a local (randomly selected) unprivileged port on the
client machine for the server to use when responding to the request. Client-to-server
communications use the well-known port and the server-to-client communications use the randomly
selected port. This Objective requires you to be familiar with the privileged port numbers detailed in
Table 19-2.

Table 19-2. Common privileged port numbers

Port
number Assigned use Description

20 21 FTP data FTP
control

When an FTP session is opened, the binary or ASCII data flows to the
server using port 20, while control information flows on port 21. During
use, both ports are managed by an FTP daemon, such as vftpd.

23 Telnet server Inbound Telnet requests are sent to server port 23 and processed by
telnetd.

25 SMTP server This port is used by mail transfer agents (MTAs), such as Sendmail.

Port
number Assigned use Description

53 DNS server Used by the Domain Name System (DNS) server, named.

67 BOOTP/DHCP
server

Hands out IP addresses to workstations dynamically.

68 BOOTP/DHCP
client

The client side for BOOTP/DHCP.

80 HTTP server Web servers, such as Apache (httpd), usually listen in on this port.

110 POP3 The Post Office Protocol (POP) is used by mail client programs to
transfer mail from a server.

119 NNTP server This port is used by news servers for Usenet news.

139 NetBIOS Reserved for Microsoft's LAN Manager.

143 IMAP An alternate to POP3, Internet Message Access Protocol (IMAP) is
another type of mail protocol.

161 SNMP Agents running on monitored systems use this port for access to the
Simple Network Management Protocol (SNMP).

This list is a tiny fraction of the many well-known ports, but it may be necessary for you to know
those in the list both by name and by number.

On the Exam

You should commit the list of ports in Table 19-2 to memory so you can recognize a
type of network connection solely by its port number. Your exam is likely to have at
least one question on how a specific port is used.

19.1.4. TCP/IP Utilities

The following popular applications, while not strictly a part of TCP/IP, are usually provided along
with a TCP/IP implementation.

Syntax

dig hostname

Description

dig obtains information from DNS servers. Note that additional command-line arguments and
options are available for dig but are beyond the scope of Exam 102.

53 DNS server Used by the Domain Name System (DNS) server, named.

67 BOOTP/DHCP
server

Hands out IP addresses to workstations dynamically.

68 BOOTP/DHCP
client

The client side for BOOTP/DHCP.

80 HTTP server Web servers, such as Apache (httpd), usually listen in on this port.

110 POP3 The Post Office Protocol (POP) is used by mail client programs to
transfer mail from a server.

119 NNTP server This port is used by news servers for Usenet news.

139 NetBIOS Reserved for Microsoft's LAN Manager.

143 IMAP An alternate to POP3, Internet Message Access Protocol (IMAP) is
another type of mail protocol.

161 SNMP Agents running on monitored systems use this port for access to the
Simple Network Management Protocol (SNMP).

This list is a tiny fraction of the many well-known ports, but it may be necessary for you to know
those in the list both by name and by number.

On the Exam

You should commit the list of ports in Table 19-2 to memory so you can recognize a
type of network connection solely by its port number. Your exam is likely to have at
least one question on how a specific port is used.

19.1.4. TCP/IP Utilities

The following popular applications, while not strictly a part of TCP/IP, are usually provided along
with a TCP/IP implementation.

Syntax

dig hostname

Description

dig obtains information from DNS servers. Note that additional command-line arguments and
options are available for dig but are beyond the scope of Exam 102.

Example

$ dig redhat.com
; <<>> DiG 8.2 <<>> redhat.com any
;; res options: init recurs defnam dnsrch
;; got answer:;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 4,
;; ADDITIONAL: 5 QUERY SECTION:
;; redhat.com, type = ANY, class = IN
;; ANSWER SECTION:
redhat.com. 22h36m45s IN NS ns.redhat.com.
redhat.com. 22h36m45s IN NS ns2.redhat.com.
redhat.com. 22h36m45s IN NS ns3.redhat.com.
redhat.com. 22h36m45s IN NS speedy.redhat.com.
redhat.com. 23h48m10s IN MX 10 mail.redhat.com.
redhat.com. 23h48m10s IN A 207.175.42.154
;; AUTHORITY SECTION:
redhat.com. 22h36m45s IN NS ns.redhat.com.
redhat.com. 22h36m45s IN NS ns2.redhat.com.
redhat.com. 22h36m45s IN NS ns3.redhat.com.
redhat.com. 22h36m45s IN NS speedy.redhat.com.
;; ADDITIONAL SECTION:
ns.redhat.com. 1d23h48m10s IN A 207.175.42.153
ns2.redhat.com. 1d23h48m10s IN A 208.178.165.229
ns3.redhat.com. 1d23h48m10s IN A 206.132.41.213
speedy.redhat.com. 23h48m10s IN A 199.183.24.251
mail.redhat.com. 23h48m10s IN A 199.183.24.239
;; Total query time: 81 msec
;; FROM: smp to SERVER: default -- 209.195.201.3
;; WHEN: Wed Apr 5 03:15:03 2000
;; MSG SIZE sent: 28 rcvd: 275

Syntax

ftp [options] host
...interactive commands...

Description

Establish an interactive FTP connection with host to transfer binary or text files. FTP creates an

interactive dialog and allows for two-way file transfer. The dialog includes username/password
authentication, user commands, and server responses.

Frequently used options

-i

Turn off interactive prompting during multiple file transfers (also see the prompt
command in the nest list).

-v

Set verbose mode; display server responses and transfer statistics.

Frequently used commands

ascii, binary

Establish the transfer mode for files. ASCII mode is provided to correctly transfer text
among computer architectures where character encoding differs.

get file

Receive a single file from the server.

mget files

Receive multiple files from the server. files can be specified using normal file glob

patterns.

ls [files]

Obtain a directory listing from the server, optionally listing files.

put file

Send a single file to the server.

mput files

Send multiple files to the server.

prompt

Toggle on and off interactive prompting during mget and mput (also see the -i option in
the previous list).

pwd

Print the working remote directory.

quit, exit

Cleanly terminate the FTP session.

Example 1

Get a file from machine smp:

$ ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): jdean
331 Password required for jdean.
Password:<password here>
230 User jdean logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls myfile
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-r--r-- 1 jdean jdean 29 Jan 24 01:28 myfile
226 Transfer complete.
ftp> binary
200 Type set to I.
ftp> get myfile
local: myfile remote: myfile
200 PORT command successful.
150 Opening BINARY mode data connection for myfile
(29 bytes).
226 Transfer complete.
29 bytes received in 0.000176 secs (1.6e+02 Kbytes/sec)
ftp> quit
221-You have transferred 29 bytes in 1 files.
221-Total traffic for this session was 773 bytes in 3 transfers.
221-Thank you for using the FTP service on smp.
221 Goodbye.

Example 2

Many FTP servers are set up to receive requests from nonauthenticated users. Such public
access is said to be anonymous. Anonymous FTP is established just like any other FTP
connection, except that anonymous is used as the username. An email address is commonly
used as a password to let the system owner know who is transferring files:

ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: me@mydomain.com
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.

Using binary mode to transfer files.
ftp> <commands follow...>

Syntax

ping hostname

Description

The ping command is used to send an ICMP echo request to a host and report on how long it
takes to receive a corresponding ICMP echo reply. Much as sonar systems send a pulse (or
"ping") to a target and measure transit time, ping sends a network packet to test the
availability of a network node. This technique is often used as a basic debugging technique
when network problems arise.

Frequently used options

-c count

Send and receive count packets.

-q

Quiet output. Display only summary lines when ping starts and finishes.

Example

Ping a remote host and terminate using Ctrl-C after five packets are transmitted:

$ ping lpi.org
PING lpi.org (209.167.177.93) from 192.168.1.30 :
 56(84) bytes of data.
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=0 ttl=240 time=51.959 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=1 ttl=240 time=60.967 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=2 ttl=240 time=47.173 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=3 ttl=240 time=46.887 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=4 ttl=240 time=46.836 msec
--- lpi.org ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 46.836/50.764/60.967/5.460 ms

Syntax

telnet [host] [port]

Description

Establish a connection to a host (either a system name or IP address) using port. If a specific
port is omitted, the default port of 23 is assumed. If host is omitted, telnet goes into an

interactive mode similar to FTP.

Syntax

traceroute hostname

Description

Attempt to display the route over which packets must travel to reach a destination hostname. It

is included here because it is mentioned in this Objective, but Objective 3 also requires
traceroute. See Objective 3 for full information.

Syntax

whois target[@server]

fwhois target[@server]

Description

Query the whois database for target. Such a database contains information on domain names,

assigned IP addresses, and people associated with them.

The version of whois provided with Linux is a link to fwhois. target is a domain name or user
handle. server is a valid whois server, which defaults to rs.internic.net. The information

returned includes contact information, domain names, IP addresses, and DNS servers. Note
that many web sites are available for whois searches as well, particularly for checking on
domain name availability.

Example

$ fwhois linuxdoc.org@whois.networksolutions.com
Registrant:
Linux Documentation Project (LINUXDOC-DOM)
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 Domain Name: LINUXDOC.ORG
 Administrative Contact, Technical Contact, Zone Contact:
 Account, Hostmaster (AH243-ORG)
 hostmaster@LINUXPORTS.COM
 Command Prompt Software
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 (503)493-1611
 Billing Contact:
 Account, Hostmaster (AH243-ORG)
 hostmaster@LINUXPORTS.COM
 Command Prompt Software
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 (503)493-1611
 Record last updated on 15-Feb-2000
 Record created on 20-Feb-1999
 Database last updated on 5-Apr-2000 12:51:28 EDT
 Domain servers in listed order:
 NS1.OPENDOCS.ORG 209.102.107.110
 NS1.INETARENA.COM 206.129.216.1
 NS.UNC.EDU 152.2.21.1

19.2. Objective 3: TCP/IP Configuration and
Troubleshooting

Linux distributions offer various automation and startup techniques for networks, but most of the
essential commands and concepts are not distribution-dependent. The exam tests fundamental
concepts and their relationships to one another as well as to system problems. This Objective covers
the configuration of TCP/IP on common network interfaces such as Ethernet.

19.2.1. Network Interfaces

A computer must contain at least one network interface to be considered part of a network. The
network interface provides a communications link between the computer and external network
hardware. This could mean typical network adapters such as Ethernet or Token Ring, PPP dial-up
connections, parallel ports, wireless, or other networking forms.

19.2.1.1. Configuration files

The following files contain important information about your system's network configuration:

/etc/hosts

This file contains simple mappings between IP addresses and names and is used for name
resolution. For very small private networks, /etc/hosts may be sufficient for basic name
resolution. For example, this file associates the local address 192.168.1.30 with the system
smp and also with smp.mydomain.com:

127.0.0.1 localhost localhost.localdomain
192.168.1.1 gate
192.168.1.30 smp smp.mydomain.com

/etc/nsswitch.conf

This file controls the sources used by various system library lookup functions, such as name
resolution. It allows the administrator to configure the use of traditional local files (/etc/hosts,
/etc/passwd), an NIS server, or DNS. nsswitch.conf directly affects network configuration
(among other things) by controlling how hostnames and other network parameters are
resolved. For example, this fragment shows that local files are used for password, shadow
password, group, and hostname resolution; for hostnames, DNS is used if a search of local
files doesn't yield a result:

passwd: files nisplus nis

shadow: files nisplus nis
group: files nisplus nis
hosts: files dns nisplus nis

For more information, view the manpage with man 5 nsswitch. The nsswitch.conf file supersedes
host.conf.

/etc/host.conf

This file controls name resolution sources for pre-glibc2 systems. It should contain:

order hosts,bind
multi on

This configuration has the resolver checking /etc/hosts first for name resolution, then DNS. multi on
enables multiple IP addresses for hosts. Newer Linux system libraries use /etc/nsswitch.conf instead
of /etc/host.conf.

/etc/resolv.conf

This file controls the client-side portions of the DNS system, which is implemented in system
library functions used by all programs to resolve system names. In particular, /etc/resolv.conf
specifies the IP addresses of DNS servers. For example:

nameserver 192.168.1.5
nameserver 192.168.250.2

Additional parameters are also available. For more information, view the manpage with man 5
resolver.

/etc/networks

Like /etc/hosts, this file sets up equivalence between addresses and names, but here the
addresses represent entire networks (and thus must be valid network addresses, ending in 0).
The result is that you can use a symbolic name to refer to a network just as you would a
specific host. This may be convenient (though not required) in NFS or routing configuration,
for example, and will be shown in commands such as netstat. For example:

loopback 127.0.0.0
mylan 192.168.1.0

It's not unusual for /etc/networks to be left blank.

On the Exam

Be familiar with all the files listed in this section; each contains specific information
important for network setup. Watch for questions on /etc/host.conf, which is not used in
newer glibc2 libraries.

19.2.1.2. Configuration commands

The commands listed in this section are used to establish, monitor, and troubleshoot a network
configuration under Linux.

Syntax

host [options] name [server]

Description

Look up the system with IP address or name on the DNS server.

Frequently used options

-l

List the entire domain, dumping all hosts registered on the DNS server (this can be very
long).

-v

Set verbose mode to view output.

Example 1

$ host oreilly.com
oreilly.com has address 208.201.239.37
oreilly.com has address 208.201.239.36

Example 2

$ host -v oreilly.com
Trying null domain
rcode = 0 (Success), ancount=1

The following answer is not authoritative:

The following answer is not verified as authentic by the server:

oreilly.com 17397 IN A 204.148.40.5

For authoritative answers, see:

oreilly.com 168597 IN NS AUTH03.NS.UU.NET
oreilly.com 168597 IN NS NS.oreilly.com

Additional information:

AUTH03.NS.UU.NET 168838 IN A 198.6.1.83
NS.oreilly.com 168597 IN A 204.148.40.4 $

See also the nslookup command in the section "DNS query utilities" in Chapter 20.

Syntax

hostname [localname]

domainname [nisname]
dnsdomainname

Description

Set or display the current host, domain, or node name of the system. This is a single program
with links defining additional names. When called as hostname, the system's hostname is
displayed. If localname is provided, the hostname is set. domainname displays or sets the NIS

domain name. dnsdomainname displays the current DNS domain name but does not set it.
See man 1 hostname for full information.

Syntax

ifconfig interface parameters

Description

Configure network interfaces. ifconfig is used to create and configure network interfaces and
their parameters, usually at boot time. Without parameters, the interface and its configuration
are displayed. If interface is also omitted, a list of all active interfaces and their

configurations is displayed.

Frequently used parameters

address

The interface's IP address.

netmask mask

The interface's subnet mask.

up

Activate an interface (implied if address is specified).

down

Shut down the interface.

Example 1

Display all interfaces:

ifconfig
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1521805 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715468 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:366567 errors:0 dropped:0 overruns:0 frame:0
 TX packets:366567 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Example 2

Shut down eth0:

ifconfig eth0 down
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1521901 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715476 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00

Note in the emphasized line the lack of the UP indicator, which is present in Example 1. The missing
UP indicates that the interface is down.

Example 3

Configure eth0 from scratch:

ifconfig eth0 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255

Syntax

netstat [options]

Description

Depending on options, netstat displays network connections, routing tables, interface
statistics, masquerade connections, netlink messages, and multicast memberships. Much of
this is beyond the scope of the LPIC Level 1 Exams, but you must be aware of the command
and its basic use.

Frequently used options

-c

Continuous operation. This option yields a netstat display every second until interrupted
with Ctrl-C.

-i

Display a list of interfaces.

-n

Numeric mode. Display addresses instead of host, port, and usernames.

-p

Programs mode. Display the PID and process name.

-r

Routing mode. Display the routing table in the format of the route command.

-v

Verbose mode.

Example

Display the interfaces table and statistics (the example output is truncated):

netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK
eth0 1500 0 1518801 37 0 0 713297
lo 3924 0 365816 0 0 0 365816

Syntax

ping [options] destination

Description

Send an ICMP ECHO_REQUEST datagram to destination, expecting an ICMP ECHO_RESPONSE. ping

is frequently used to test basic network connectivity. See "Objective 1: Fundamentals of
TCP/IP" for a more complete description.

Syntax

route [options]

route add [options and keywords] target

route del [options and keywords] target

Description

In the first form, display the IP routing table. In the second and third forms, respectively, add
or delete routes to target from the table. target can be a numeric IP address, a resolvable

name, or the keyword default. The route program is typically used to establish static routes
to specific networks or hosts (such as the default gateway) after an interface is configured. On
systems acting as routers, a potentially complex routing scheme can be established initially,
but this is beyond the scope of the LPIC Level 1 Exams.

Frequently used options and keywords

-h

Display a usage message.

-n

Numeric mode; don't resolve hostnames.

-v

Verbose output.

-C

Display the kernel routing cache.

-F

Display the kernel routing table (the default behavior without add or delete keywords).

-host

Specify that target is a single host. Mutually exclusive with -net.

-net

Specify that target is a network. Mutually exclusive with -host.

gw gateway

IP packets for target are routed through the gateway, which must be reachable.

netmask mask

Specify the mask of the route to be added. Often, the netmask is not required because it

can be determined to be class A, B, or C, depending on the target address.

When used to display routes, the following routing table columns are printed:

Destination

The destination network or host.

Gateway

The gateway address. If no gateway is set for the route, an asterisk (*) is displayed by
default.

Genmask

The netmask for the destination. 255.255.255.255 is used for a host and 0.0.0.0 is used
for the default route.

Route status flags

! Reject route.
D Dynamically installed by daemon or redirect.
G Use gateway.
H Target is a host.
M Modified from routing daemon or redirect.
R Reinstate route for dynamic routing.
U Route is up.

Metric

The distance in hops to the target.

Ref

Number of references to this route. This is displayed for compatibility with other route
commands but is not used in the Linux kernel.

Use

A count of lookups for the route. Depending on the use of -F and -C, the Use is either
route cache misses (-F) or hits (-C).

Iface

The interface to which packets for this route are sent.

Example 1

Display the current routing table for a workstation:

route
Kernel IP routing table
Destination Gateway Genmask Flags Met Ref Use Iface
192.168.1.30 * 255.255.255.255 UH 0 0 0 eth0
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 - 255.0.0.0 ! 0 - 0 -
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default gate 0.0.0.0 UG 0 0 0 eth0

In this example, the route to the local host 192.168.1.30 uses interface eth0. Note the mask
255.255.255.255 is used for host routes. The route to the local subnet 192.168.1.0 (with
corresponding class C mask 255.255.255.0) is also through eth0. The route to 10.0.0.0 is rejected
as indicated by the ! flag. The class A loopback network route uses device lo. The last route shows
the default gateway route, which is used when no others match. This default uses eth0 to send data
to router gate. The mask 0.0.0.0 is used for the default route.

Example 2

Display the current routing cache; the Metric (M) and Reference (R) columns are abbreviated
here:

route -C
Kernel IP routing cache
Source Destination Gateway Flg M R Use Iface
smp 192.168.1.255 192.168.1.255 bl 0 0 1 eth0
192.168.1.102 192.168.1.255 192.168.1.255 ibl 0 0 0 lo
192.168.1.102 smp smp il 0 0 1 lo
192.168.1.50 smp smp il 0 0 224 lo
smp 192.168.1.102 192.168.1.102 0 1 0 eth0
smp ns1.mynet.com gate 0 0 2 eth0
smp 192.168.1.50 192.168.1.50 0 1 0 eth0
localhost localhost localhost l 0 0 15 lo
ns1.mynet.com smp smp l 0 0 6 lo
smp ns1.mynet.com gate 0 0 6 eth0

Example 3

Add the default gateway 192.168.1.1 via eth0:

route add default gw 192.168.1.1 eth0

Syntax

traceroute [options] destination

Description

Display the route that packets take to reach destination, showing intermediate gateways

(routers). There isn't a direct method to use to make this determination, so traceroute uses a
trick to obtain as much information as it can. By using the time-to-live field in the IP header,
traceroute stimulates error responses from gateways. The time-to-live field specifies the
maximum number of gateway hops until the packet should expire. That number is
decremented at each gateway hop, with the result that all packets will die at some point and
not roam the Internet. To get the first gateway in the route, traceroute sets the time-to-live
parameter to 1. The first gateway in the route to destination decrements the counter, and

finding a result, reports an ICMP TIME_EXCEEDED message back to the sending host. The second
gateway is identified by setting the initial time-to-live value to 2 and so on. This continues
until a PORT_UNREACHABLE message is returned, indicating that the host has been contacted. To
account for the potential for multiple gateways at any one hop count, each probe is sent three
times.

The display consists of lines showing each gateway, numbered for the initial time-to-live
value. If no response is seen from a particular gateway, an asterisk is printed. This happens
for gateways that don't return "time exceeded" messages, or do return them but set a very
low time-to-live on the response. Transit times for each probe are also printed.

Frequently used options

-f ttl

Set the initial probe's time-to-live value to ttl, instead of 1.

-n

Display numeric addresses instead of names.

-v

Use verbose mode.

-w secs

Set the timeout on returned ICMP packets to secs, instead of 5.

Example

traceroute www.lpi.org
traceroute to www.lpi.org (209.167.177.93),
 30 hops max, 40 byte packets
 1 gate (192.168.1.1)

 3.181 ms 1.200 ms 1.104 ms
 2 209.125.145.1 (209.125.135.1)
 16.041 ms 15.149 ms 14.747 ms
 3 a1-9-1-0-1.a01.phl1.us.io.net (137.94.47.1)
 84.132 ms 133.937 ms 77.865 ms
 4 ge-6-0.r01.phlapa01.us.io.net (126.250.29.17)
 22.450 ms 16.114 ms 16.051 ms
 5 p4-6-0-0.r01.nycmny01.us.bb.verio.net (129.250.3.126)
 18.043 ms 18.485 ms 18.175 ms
 6 nyc1.uunet.verio.net (129.250.9.62)
 19.735 ms 21.135 ms 19.212 ms
 7 105.ATM3-0.XR1.NYC1.ALTER.NET (146.188.177.154)
 20.237 ms 18.515 ms 18.712 ms
 8 295.ATM6-0.XR1.NYC4.ALTER.NET (146.188.178.90)
 26.855 ms 29.540 ms 35.908 ms
 9 189.ATM8-0-0.GW5.NYC4.ALTER.NET (146.188.179.225)
 36.541 ms 36.127 ms 30.849 ms
10 224.ATM1-0-0.BB1.TOR2.UUNET.CA.ALTER.NET (137.39.75.26)
 58.823 ms 68.675 ms 62.522 ms
11 f0-0-0.bb2.tor2.uunet.ca (205.150.242.110)
 336.310 ms 174.557 ms 394.909 ms
12 209.167.167.118 (209.167.167.118)
 56.027 ms 58.555 ms 56.289 ms
13 209.167.177.90 (209.167.177.90)
 59.349 ms 57.409 ms 57.993 ms
14 new.lpi.org (209.167.177.93)
 57.021 ms 56.162 ms 58.809 ms

In this example, there are 13 hops to www.lpi.org, reached with a time-to-live value of 14. All three
probes of all time-to-live counts are successful.

On the Exam

While the creation of complete network management scripts from scratch is beyond the
scope of the LPIC Level 1 Exams, you must be familiar with these commands
individually, their functions, how they are used, as well as why they are used. For
example, you must be familiar with route and its use in establishing routes to the
loopback device, the localhost, the gateway machine, and the creation of the default
gateway route. A general understanding of the routing table display is also required.
Questions may ask you to determine the cause of a network problem based on the
routing configuration (such as a missing default route).

19.2.1.3. Common manual network interface tasks

Network interfaces are established in the kernel at boot time through the probing of Ethernet
hardware. As a result, these interfaces always exist unless the hardware or kernel module is
removed. Other types of interfaces, such as PPP, are created by user programs. These interfaces are
transient and exist only when they are in use.

To list interface parameters, use ifconfig with the interface name:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1857128 errors:46 dropped:0 overruns:0 frame:46
 TX packets:871709 errors:0 dropped:0 overruns:0 carrier:0
 collisions:2557 txqueuelen:100
 Interrupt:10 Base address:0xef00

If you run ifconfig without any parameters, it displays all active interfaces, including the loopback
interface lo and perhaps a PPP interface if a modem is dialed into a service provider.

To shut down a network interface that is currently running, simply use ifconfig with the down
keyword:

ifconfig eth0 down

When the interface goes down, any routes associated with it are removed from the routing table. For
a typical system with a single Ethernet interface, this means that the routes to both the interface
and the default gateway will be lost. Therefore, to start a previously configured network interface,
ifconfig is used with up followed by the necessary route commands. For example:

ifconfig eth0 up
route add -host 192.168.1.30 eth0
route add default gw 192.168.1.1 eth0

To reconfigure interface parameters, follow those same procedures and include the changes. For
example, to change to a different IP address, the address is specified when bringing up the interface
and adding the interface route:

ifconfig eth0 down
ifconfig eth0 192.168.1.60 up
route add -host 192.168.1.60 eth0
route add default gw 192.168.1.1 eth0

Your distribution probably supplies scripts to handle some of these chores. For example, Red Hat
systems come with scripts such as ifup, which handle all the details necessary to get an interface
and its routes up and running.

On the Exam

Be prepared to answer questions on the use of ifconfig and route for basic interface
manipulation. Also remember that scripts that use these commands, both manually and
automatically, are usually available at boot time.

19.2.2. DHCP

The Dynamic Host Configuration Protocol (DHCP) is a protocol extension of the BOOTP protocol,
which provides automated IP address assignment (among other things) to client systems on a
network. It handles IP address allocation in one of three ways:

Dynamic allocation

In this scheme, a DHCP server maintains a preset list of IP addresses designated by the
system administrator. IP addresses are assigned as clients request an address from the
available addresses in the pool. The address can be used, or leased, for a limited period of
time. The client must continually renegotiate the lease with the server to maintain use of the
address beyond the allotted period. When the lease expires, the IP address is placed back into
the pool for use by other requesting clients and a new IP address is assigned.

Manual allocation

The system administrator may wish to designate specific IP addresses to specific network
interfaces (for example, to an Ethernet MAC address) while still using DHCP to deliver the
address to the client. This allows the convenience of automated address setup and assures the
same address each time.

Automatic allocation

This method assigns a permanent address to a client. Typically DHCP is used to assign a
temporary address (either dynamically or statically assigned) to a client, but a DHCP server
can allow an infinite lease time.

DHCP can be configured to assign not only the IP address to the client but also such things as name
servers, gateways, and architecture-specific parameters. Here's an overview of how it works:

A DHCP client sends a broadcast message to the network to discover a DHCP server.1.

One or more DHCP servers respond to the request via their own broadcast messages, offering
an IP address to the client.

2.

The client chooses one of the servers and broadcasts an acknowledgment, requesting the
chosen server's identity.

3.

The selected server logs the connection with the client and responds with an acknowledgment
and possibly additional information. All of the other servers do nothing because the client

4.

declined their offer.

4.

19.2.2.1. Subnets and relays

Because DHCP communications are initiated using broadcasts, they are normally confined to a single
subnet. To accommodate DHCP clients and servers separated by one or more routers, a DHCP relay
system can be established on subnets without DHCP servers. A relay system listens for DHCP client
broadcasts, forwards them to a DHCP server on another subnet, and returns DHCP traffic back to the
client. This configuration can centralize DHCP management in a large routed environment.

19.2.2.2. Leases

As already mentioned, when a client receives a dynamically assigned IP address from a DHCP
server, the address is said to be leased for a finite duration. The length of a DHCP lease is
configurable by the system administrator and typically lasts for one or more days. Shorter leases
allow for faster turnover of addresses and are useful when the number of available addresses is
small or when many transient systems (such as laptops) are being served. Longer leases reduce
DHCP activity, thus reducing broadcast traffic on the network.

When a lease expires without being renegotiated by the client, it as assumed that the client system
is unavailable, and the address is put back into the free pool of addresses. A lease may also be
terminated by a client that no longer needs the IP address, in which case it is released. When this
occurs, the DHCP server immediately places the IP address back in the free pool.

19.2.2.3. dhcpd

The DHCP server process is called dhcpd. It is typically started at boot time and listens for incoming
DHCP request broadcasts. dhcpd can serve multiple subnets via multiple interfaces, serving a
different pool of IP addresses to each.

dhcpd is configured using the text configuration file /etc/dhcpd.conf, which contains one or more
subnet declarations. These are text lines of the following form:

subnet network-address netmask subnet-mask {

 parameter...

 parameter...
 ...
}

Each subnet declaration encloses parameters for each subnet between curly braces. Parameters
include one or more ranges of IP addresses to serve, lease times, and optional items such as
gateways (routers), DNS servers, and so forth. Each parameter line is terminated with a semicolon.
For example:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.204;

 default-lease-time 600;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.25;
}

In this example, the private class C network 192.168.1.0 is served five IP addresses, 200 through
204. The default DHCP lease is 600 seconds (10 minutes). Options are also set for the subnet mask,
broadcast address, router (or gateway), and DNS server. For full information on dhcpd.conf, see its
manpage.

The preceding option lines are not required to create a minimal DHCP setup that simply serves IP
addresses. Details on the daemon follow.

Syntax

dhcpd [options] [interface [...]]

Description

Launch the DHCP server daemon . dhcpd requires that both its configuration file
/etc/dhcpd.conf and its lease log file (which by default is /var/state/dhcp/dhcpd.leases,
although many distributions use /var/lib/dhcp/dhcpd.leases) exist. The daemon puts itself in
the background and returns control to the calling shell.

Frequently used options

-cf config-file

Use config-file instead of the default /etc/dhcpd.conf.

-lf lease-file

Use lease-file instead of the default to store lease information.

-q

Use quiet mode. This option suppresses the default copyright message, keeping log files
a little cleaner.

interface

By default, dhcpd will attempt to listen for requests on every network interface that is
configured up. It can be limited to specific network interfaces by including one or more

interface names on the command line.

A full and detailed description of the configuration file syntax can be found in the dhcpd.conf
manpage. When dhcpd runs, it sends output, including information on each transaction, to syslogd.
For example, this series of four log entries in /var/log/messages shows a successful exchange
between dhcpd and a requesting DHCP client:

Apr 24 02:27:00 rh62 dhcpd: DHCPDISCOVER
 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:00 rh62 dhcpd: DHCPOFFER
 on 192.168.1.200 to 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPREQUEST
 for 192.168.1.200 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPACK
on 192.168.1.200 to 00:60:97:93:f6:8a via eth0

19.3. Objective 4: Configure Linux as a PPP Client

The Point-to-Point Protocol (PPP) is a method of constructing a network connection between two
systems using a serial interface. Usually, this interface is a pair of modems connected by a
telephone call over a switched voice network. However, PPP isn't specifically tied to the use of
modems and can also work with a direct serial connection using a null modem cable (sometimes
known as a crossover cable. When PPP is implemented on a Linux system, it creates a new network
interface, usually ppp0, which is configured for use with TCP/IP and an IP address.

To use PPP, your kernel must be compiled with PPP support . Most distributions include PPP support
in the kernels they install, but if yours doesn't or if you build your own kernels, you must select PPP
Support under Network Device Support in your kernel configuration (see Chapter 13 for information
on compiling kernels).

19.3.1. Clients and Servers

PPP is a peer-to-peer protocol, in which there is no technical difference between the two systems
sharing a PPP link. When used for dial-up communications, however, it is convenient to think of the
system making the call as a PPP client and the system being called as a PPP server. Linux can do
both jobs simultaneously if multiple serial interfaces are available, but this section covers only the
client-side configuration as required by Exam 102.

19.3.1.1. Serial ports and modems

The only hardware required to create a PPP dial-up connection is a serial interface and a modem.
These may be separate devices, including an external modem device cabled to an internal serial
interface. Internal modems implement both the port and the modem hardware on a single board,
reducing costs. Serial ports are a standard item on most small computers and communicate using
RS-232, an old standard for serial communications with terminals, modems, and other devices. On
Linux, serial ports are accessed via device files, usually /dev/ttyS0, /dev/ttyS1, and so on. (The
standard serial devices are referred to as COM1: and COM2: in MS-DOS and Windows. On older
Linux systems, you may see devices named /dev/cuan. These older names were deprecated several
years ago.) In addition, a link for a default modem device, /dev/modem, is often made to point to
the serial port where a modem is attached. For example:

crw------- 1 root tty Apr 25 18:28 /dev/ttyS0
crw------- 1 root tty May 5 1998 /dev/ttyS1
lrwxrwxrwx 1 root root Dec 7 23:04 /dev/modem -> ttyS0

Each byte of information to be sent through a serial interface is sent bit by bit at a periodic rate
known as the baud rate. In the early days of modems, data was transmitted over the phone at the
same baud rate as it was encoded by the serial port. However, modern modems compress data
before transmitting it and can accommodate higher data rates from host systems. As a result, the
serial port typically runs at its fastest speed, allowing the modem to independently set a line speed

after negotiating with the server's modem. By keeping the data rate between computer and modem
high, the modem has a constant stream of data ready for transmission, maximizing throughput.

Built into each serial interface is a data buffer capable of holding a finite amount of information.
When serial data enters the buffer faster than it can be removed, a data overrun occurs unless the
data flow is stopped through the use of a flow control signal. For example, when a system is sending
data into a modem through a serial interface, the modem must send a stop signal when it has no
more room in its buffer and later send a start signal when the buffer again has free space. The result
is that, while the modem sends a constant stream to the other modem, the serial interface is
running bursts of data managed by flow controls. In simple cases such as terminals, two flow control
characters named XON and XOFF are transmitted in the serial data stream and are interpreted as
controls to hardware. However, PPP uses the entire serial byte and is less efficient if control
characters are allowed, so another means known as ready-to-send (RTS) and clear-to-send (CTS) is
used for flow control. These signals are included in standard serial cables and allow hardware flow
control between devices.

19.3.1.2. PPP overview

PPP connections are established through these general steps:

A serial connection is created with a remote PPP server. This involves setting local serial port
parameters, setting local modem parameters, and instructing the modem to dial the telephone
number of the PPP server. After the modem on the other end answers, the two modems
negotiate the best possible link speed, depending on their capabilities and the quality of the
telephone line.

1.

User account authentication information is supplied to the PPP server. More than one method
exists for this task, but in many cases, the PPP server simply provides clear text login and
password prompts, and the client responds in the same way.

2.

PPP is started on the client. Many servers automatically initiate PPP upon successful
authentication, while others offer a sort of command-line interface where PPP can be started
with a command.

3.

The PPP server selects an IP address from a pool of addresses reserved for PPP connections and
provides it to the client in plain text. The server then initiates a binary data stream to link the
PPP client and server software.

4.

The PPP client software uses the temporarily assigned IP address to configure the new interface
and its required routes. (Additional information beyond the IP address can be provided to
clients using DHCP. Examples include the default gateway and DNS servers.) It then joins the
server in establishing the PPP binary data stream.

5.

19.3.1.3. Chat scripts

Most of this process requires a dialog between the calling computer and its modem and
subsequently the PPP server, including the interpretation of responses. For example, it's common to
begin the entire process by instructing the modem to reset itself, ensuring that settings from
previous communications sessions don't affect the current session. After the reset instruction is
completed, the modem responds with OK on a line by itself. It would be impractical to proceed if the
reset command fails, so the modem's response must be tested, and further modem commands

presented only if the appropriate responses are received. This command/response dialog function is
implemented using the chat utility, intended specifically for use with modems. chat executes a script
that contains lines of text to send to the modem as well as fragments of what to expect from the
modem itself. The chat scripts also allow for default actions to typical modem responses, such as the
ability to abort a call attempt if the modem reports a busy signal. Here is a typical chat script for a
simple dial-up configuration:

ABORT BUSY
ABORT ERROR
ABORT 'NO CARRIER'
ABORT 'NO DIALTONE'
ABORT 'Invalid Login'
ABORT 'Login incorrect'
'' ATZ
OK ATDT8005551212
CONNECT ''
ogin: jdoe
ssword: jdoepasswd
TIMEOUT 5
> ppp

In this chat script, the first six lines use the ABORT keyword to provide strings that chat should
consider to be fatal errors, terminating the call attempt. Any of the modem or server responses
BUSY, ERROR, NO CARRIER, NO DIALTONE, Invalid Login, and Login incorrect will cause the script
to terminate.

Each subsequent line of this example is constructed using two items: an expected response, followed
by a send string. Here, the first response is simply no response at all, indicated by the empty
quotes, "". This causes chat to issue a send string consisting of the modem reset sequence ATZ
without expecting any input. chat then waits for the next expected response, which should be an OK
from the modem indicating a successful reset. After verifying that, the modem dials as a result of
the ATDT command, and chat waits to receive a CONNECT response from the modem. If the modem
returns BUSY instead of CONNECT, chat terminates as a result of the ABORT string at the top of the file.
When CONNECT is received, chat simply sends a carriage return, indicated in the script by another set
of empty quotes, to stimulate the PPP server to prompt for authentication (some PPP servers require
this stimulation, others don't). Because this will be the first text from the server, it's possible that
the first character could be garbled, so only the fragment ogin: is used to look for the login:
prompt. In response, a username (jdoe) is sent, and then the user is prompted for a password. After
successful authentication, this particular PPP server requires PPP to be started using the ppp
command at the > prompt.

Note that strings with spaces or no characters are delimited with quotes and that a depiction of
carriage returns isn't required. Neither must separate lines be used for each expect/send pair. This
example could also look like this:

ABORT BUSY ABORT ERROR ABORT 'NO CARRIER'
ABORT 'NO DIALTONE' ABORT 'Invalid Login'
ABORT 'Login incorrect'
'' ATZ OK ATDT8005551212 CONNECT ''
ogin: jdoe ssword: jdoepasswd
TIMEOUT 5
> ppp

It's important that chat is given send/expect commands in pairs. Creating the file with separate lines
for each pair makes for easy comprehension, but it isn't really necessary. Regardless of the chat
script format, here's what the conversation looks like from chat's point of view:

ATZ
OK
ATDT8005551212
CONNECT 31200/ARQ/V34/LAPM/V42BIS
User Access Verification
login:jdoe
Password:<jdoepasswd>
mxusw5>ppp
Entering PPP mode.
Async interface address is unnumbered (Loopback0)
Your IP address is 192.168.50.211. MTU is 1500 bytes

19.3.1.4. The PPP daemon

In addition to the kernel support mentioned at the beginning of this Objective, the PPP daemon
(pppd) is required to run PPP on Linux. When used by a client computer to establish a dial-up
connection, pppd does not start at boot time and remain active as do many other daemons. Instead,
it runs as directed by users or automatically when a network connection is required. pppd has a
large number of available options, but only a general understanding is necessary for Exam 102.

On the Exam

You should be able to create a basic chat script from scratch, providing basic login and
PPP server information.

Syntax

pppd [device] [speed] [options]

Description

Start the PPP daemon on device with serial interface rate speed. The speed parameter is

almost always set to the maximum speed of the serial interface (115,200 bits per second) to
allow the modem to keep data compression running at full capacity.

Frequently used options

asyncap map

This option can be used to eliminate bits of the serial byte from use by pppd, preserving
control characters. Each bit in map is excluded. If map is set to 0, all 8 bits will be used.

Any other setting will cause performance degradation to some degree. The default is to
escape all control characters, so this option should be used if possible.

connect script-command

This option calls the script that handles the modem setup and authentication, usually
chat. script-command is a complete command string that initiates the modem dialup

sequence, including chat, its parameters, and the chat script. Since it includes the chat
command, options, and a script, the entire script-command should be quoted so that

pppd does not attempt to interpret it as options.

crtscts

This option instructs pppd to set the serial port to use hardware flow control (CTS/RTS).

debug

This option turns on debugging. Information is logged to syslogd and also to the calling
terminal, unless pppd detached (see the nodetach option).

defaultroute

By setting this option, pppd creates a default route in the routing table for the new PPP
device. This is a typical need for a dial-up system without network access. Note,
however, that a networked system that already has a default route to its network
interface would then have two default routes, which doesn't make sense. In this case,
the administrator must determine how best to configure the routing for PPP connections.

ipparam name

If this option is included, name is included as the sixth argument to /etc/ppp/ip-up, a

script that handles a few logging and network details after the PPP link is established.

lock

This instructs pppd to establish a lock file to claim exclusive access to the device.

nodetach

This option prevents pppd from putting itself in the background, instead remaining
attached to the calling terminal. This is helpful for interactive use and debugging.

persist

In situations in which you want PPP to be constantly available (such as with dedicated
modem links or direct system-to-system cable links), use the persist option. pppd

attempts to reestablish a terminated PPP connection. This can protect your PPP link from
modem power failure, line degradation, or line interruption. Note that this capability is
specifically mentioned in Objective 4 and is likely to appear on Exam 102. (It is likely
that your distribution's automated PPP scripts are capable of reestablishing terminated
PPP links without the persist option. This can be achieved with the use of a while loop.)

On the Exam

You should have a firm understanding of pppd and the nature and form of its options.
In particular, be familiar with the persist option.

19.3.1.5. Manual PPP connection

Here's a simple one-command example of a manual PPP connection, using the chat script presented
earlier. In the pppd command, each option appears on a separate line for clarity, though this is not
required in practice:

/usr/sbin/pppd /dev/ttyS0 115200 \
 nodetach \
 lock \
 debug \
 crtscts \
 asyncmap 00000000
 connect "/usr/sbin/chat -vf \
 /etc/sysconfig/network-scripts/chat-ppp0"

pppd first calls the chat script, the results of which can be found in /var/log/messages (chat logs
output as a result of the -v option, as passed to pppd in the quoted chat command.):

kernel: PPP: version 2.3.3 (demand dialing)
kernel: PPP line discipline registered.
kernel: registered device ppp0
pppd[1291]: pppd 2.3.7 started by root, uid 0
chat[1295]: abort on (BUSY)
chat[1295]: abort on (ERROR)
chat[1295]: abort on (NO CARRIER)
chat[1295]: abort on (NO DIALTONE)
chat[1295]: abort on (Invalid Login)
chat[1295]: abort on (Login incorrect)
chat[1295]: send (ATZ^M)
chat[1295]: expect (OK)
chat[1295]: ATZ^M^M
chat[1295]: OK
chat[1295]: -- got it
chat[1295]: send (ATDT8005551212^M)
chat[1295]: expect (CONNECT)
chat[1295]: ^M

chat[1295]: ATDT8005551212^M^M
chat[1295]: CONNECT
chat[1295]: -- got it
chat[1295]: send (^M)
chat[1295]: expect (ogin:)
chat[1295]: 31200/ARQ/V34/LAPM/V42BIS^M
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: User Access Verification^M
chat[1295]: ^M
chat[1295]: login:
chat[1295]: -- got it
chat[1295]: send (jdow^M)
chat[1295]: expect (ssword:)
chat[1295]: jdoe^M
chat[1295]: Password:
chat[1295]: -- got it
chat[1295]: send (<jdoepasswd>^M)
chat[1295]: timeout set to 5 seconds
chat[1295]: expect (>)
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: mxusw5>
chat[1295]: -- got it
chat[1295]: send (ppp^M)
pppd[1291]: Serial connection established.
pppd[1291]: Using interface ppp0
pppd[1291]: Connect: ppp0 <--> /dev/modem
pppd[1291]: local IP address 192.168.100.202
pppd[1291]: remote IP address 192.168.100.1

The calling terminal, remaining attached to pppd due to the nodetach option, shows debugging
information:

Serial connection established.
Using interface ppp0
Connect: ppp0 <--> /dev/ttyS0
sent [LCP ConfReq id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]
rcvd [LCP ConfReq id=0x46 <asyncmap 0xa0000>
 <magic 0x77161be5> <pcomp> <accomp>]
sent [LCP ConfAck id=0x46 <asyncmap 0xa0000>
 <magic 0x77161be5> <pcomp> <accomp>]
rcvd [IPCP ConfReq id=0x3e <addr 192.168.100.1>]
sent [LCP ConfReq id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]
rcvd [LCP ConfReq id=0x47 <asyncmap 0xa0000>
 <magic 0x7716279c> <pcomp> <accomp>]
sent [LCP ConfAck id=0x47 <asyncmap 0xa0000>
 <magic 0x7716279c> <pcomp> <accomp>]
rcvd [LCP ConfAck id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]

sent [IPCP ConfReq id=0x1 <addr 192.168.1.30>
rcvd [IPCP ConfReq id=0x3f <addr 192.168.100.1>]
sent [IPCP ConfAck id=0x3f <addr 192.168.100.1>]
rcvd [IPCP ConfRej id=0x1 <compress VJ 0f 01>]
sent [IPCP ConfReq id=0x2 <addr 192.168.1.30>]
rcvd [IPCP ConfNak id=0x2 <addr 192.168.100.96>]
sent [IPCP ConfReq id=0x3 <addr 192.168.100.96>]
rcvd [IPCP ConfAck id=0x3 <addr 192.168.100.96>]
local IP address 192.168.1.220
remote IP address 192.168.1.1
Script /etc/ppp/ip-up started; pid = 3759
Script /etc/ppp/ip-up finished (pid 3759), status = 0x0

At this point, the PPP connection is up and these two new routes should appear in the routing table:

A route to the new ppp0 interface

A default route through the new ppp0 interface

For example (here, the Met and Ref columns, mentioned earlier, are deleted for clarity):

route
Kernel IP routing table
Destination Gateway Genmask Flags Use Iface
192.168.100.1 * 255.255.255.255 UH 0 ppp0
192.168.1.30 * 255.255.255.255 UH 0 eth0
192.168.1.0 * 255.255.255.0 U 0 eth0
127.0.0.0 * 255.0.0.0 U 0 lo
default 192.168.100.1 0.0.0.0 UG 0 ppp0

When your dial-up session is complete, you can terminate pppd easily by entering Ctrl-C on the
calling terminal:

^C
pppd[1291]: Terminating on signal 2.
pppd[1291]: Connection terminated.
pppd[1291]: Connect time 5.9 minutes.
pppd[1291]: Sent 22350 bytes, received 34553266 bytes.
pppd[1291]: Exit.

When pppd is running in the background, terminate a PPP link by sending a SIGINT or SIGTERM signal
to the running pppd.

19.3.1.6. Authentication protocols

In the examples presented in this Objective, authentication with the PPP server is handled by means
of a clear text username/password dialog and implemented using chat. This is a common setup, but
three additional authentication techniques also exist. All of them embed the authentication
information into the PPP data stream instead of using a clear text dialog prior to initiating PPP.
These methods maintain authentication information, or secrets, in a file.

PAP

The Password Authentication Protocol (PAP) is initiated by the connecting client, which sends a
username/password pair. Secret information is stored in /etc/ppp/pap-secrets.

CHAP

The Challenge Handshake Authentication Protocol (CHAP) is initiated by the server, which
sends a challenge. The challenge data contains the server's name, and the client must respond
with its name plus a new value derived from the challenge information and the stored
authentication information. For CHAP, this information is stored in /etc/ppp/chap-secrets.
CHAP may also include additional challenges over the life of the PPP connection.

MSCHAP

This is a Microsoft-specific variant of CHAP implemented on Windows NT systems using RAS. It
is supported by pppd, although special provisions are required. See the Linux PPP HOWTO for
more information if you're dialing into a Windows NT RAS server using MSCHAP.

The authentication information stored in the secrets files for PAP and CHAP has a common format
but is beyond the scope of Exam 102.

On the Exam

Be aware that PAP, CHAP, and MSCHAP exist and may be required for some dial-up
situations.

19.3.1.7. PPP over ISDN

Objective 4 makes casual mention of initiating ISDN connections using PPP over ISDN technology,
but ISDN devices are beyond the scope of both LPIC Level 1 Exams. That said, getting PPP running
on an existing ISDN setup using supported hardware is very similar to a modem connection. Most
ISDN terminal adapters supported by Linux behave much like modems, so the same connection
methods may be employed. A chat script sets up the terminal adapter and instructs it to dial
(probably with a special dial string that implies the ISDN BRI phone numbers), and pppd continues
as usual. However, ISDN connections will likely require the use of one of the authentication protocols
already mentioned. If PAP is used, the corresponding pap-secrets file is necessary.

19.3.1.8. Too many variables

Unfortunately, many of the elements involved in a dial-up PPP connection lack specific standards:

Modems from various manufacturers may require unique settings to be made prior to dialing
the PPP server. This means that setup strings included in chat scripts may be hardware-
specific. The Linux Modem HOWTO contains information on modem requirements.

Authentication and PPP startup schemes vary among ISPs and other PPP servers. Therefore,
the configuration of a dial-up interface depends on the server's requirements. Specific
information from the PPP server provider is necessary.

PPP automation techniques vary among Linux distributions. While pppd comes with a default
configuration style, there's no guarantee that your distribution will fully utilize it. This is
particularly true for systems that include custom configuration tools that may use special
configuration files and scripts.

On the Exam

PPP setup can be confusing, particularly when your Linux distribution adds additional
complexity to make dial-up carefree. Be sure that you've been able to establish a PPP
session with a server through both automated configuration and manual methods.
You'll also need to understand how and why chat is used, how expect/send strings are
constructed, how to get debugging information from pppd, and the routing implications
of PPP (the default route). You don't need to memorize all of pppd's many options or
understand each script associated with automated startup of pppd, as these are beyond
the scope of Exam 102. Non-chat authentication schemes and the setup of PPP servers
are also beyond the scope of this exam.

Chapter 20. Networking Services (Topic
1.113)
Much of the success of Linux can be attributed to bundled networking services , such as the Apache
web server, Sendmail, NFS and Windows file sharing, and others. This chapter covers these six
Objectives on networking services:

Objective 1: Configure and Manage inetd, xinetd, and Related Services

Candidates should be able to configure which services are available through inetd or xinetd,
use tcpwrappers to allow or deny services on a host-by-host basis; manually start, stop, and
restart Internet services; configure basic network services including telnet and ftp. Candidates
should also be able to set a service to run as another user instead of the default in inetd.conf.
Weight: 4.

Objective 2: Operate and Perform Basic Configuration of Mail Transfer Agent (MTA)

Candidates should be able to modify simple parameters in Sendmail configuration files
(including the "smart host" parameter, if necessary), create mail aliases, manage the mail
queue, start and stop Sendmail, configure mail forwarding and perform basic troubleshooting
of Sendmail. This Objective includes checking for and closing open relays on the mail server. It
does not include advanced custom configuration of Sendmail. Weight: 4.

Objective 3: Operate and Perform Basic Configuration of Apache

Candidates should be able to modify simple parameters in Apache configuration files; start,
stop, and restart httpd; and arrange for automatic restarting of httpd upon boot. This
objectives does not include advanced custom configuration of Apache. Weight: 4.

Objective 4: Properly Manage the NFS and Samba Daemons

A candidate should know how to mount remote filesystems using NFS; configure NFS for
exporting local filesystems; start, stop, and restart the NFS server; install and configure
Samba using the included GUI tools or direct edit of the /etc/smb.conf file. (This deliberately
excludes advanced NT domain issues but includes simple sharing of home directories and
printers, as well as correctly setting the nmbd as a WINS client.) Weight: 4.

Objective 5: Set Up and Configure Basic DNS Services

Candidates should be able to configure hostname lookups and troubleshoot problems with
local caching-only name servers. This requires an understanding of the domain registration
and DNS translation process and an understanding of the key differences in configuration files
for Bind 4 and Bind 8. Weight: 4.

Objective 7: Set Up Secure Shell (OpenSSH)

The candidate should be able to obtain and configure OpenSSH. This Objective includes basic
OpenSSH installation and troubleshooting, as well as configuring sshd to start at system boot.
Weight: 4.

For systems deployed as servers, even in a small department, these Objectives cover some of most
important system administration concepts to be performed for Linux.

20.1. Objective 1: Configure and Manage inetd, xinetd, and
Related Services

To reduce the number of daemons necessary to service requests, the Internet superdaemon, or
inetd, was created. Instead of running individual daemons for each service, inetd runs as a single
service listening to all of the desired port numbers. When an inbound request is received, it is
handed off to the actual daemon for processing. With this scheme, the real daemons are still used as
before, but they run only when needed and are started by inetd, freeing resources for other tasks. In
addition, using inetd greatly simplifies the code of the various daemons. Instead of listening for
connections and everything else required to be a proper network daemon, daemons run by inetd
need to read only from stdin and write only to stdout.

Many Linux distributions have started shipping xinetd as a replacement for inetd. The following
information applies to only the original inetd. xinetd configuration is significantly different. Both are
discussed in this chapter. For more information on xinetd, see http://www.xinetd.org.

20.1.1. The inetd Configuration File

inetd is usually started during system initialization and continues to run indefinitely (or until the
process is stopped). When started (and later in response to signal SIGHUP), inetd reads its
configuration file from /etc/inetd.conf, which is nothing more than a plain text file that defines the
services managed by inetd. (Commented lines begin with #.) Example 20-1 shows portions of an
inetd.conf, with lines wrapped to fit the page (your inetd.conf will be different and should be
configured with your security requirements in mind; more on this later).

Example 20-1. Sample inetd.conf file

http://www.xinetd.org

/etc/inetd.conf
Internet server configuration database
See inetd(8) for further information.
<service_name> <socket_type> <proto> <flags> <user> <server_path> <args>
#
ftp stream tcp nowait root /user/sbin/tcpd /user/sbin/in.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
#
pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd
#
finger stream tcp nowait nobody /usr/sbin/tcpd /usr/sbin/in-fingerd
ident stream tcp nowait nobody /usr/sbin/identd identd -I
#
tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /boot
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120

Each noncommented line in inetd.conf must contain each of the following fields:

service_name

This is the name of a service as defined in /etc/services.

socket_type

This entry specifies one of a few types of communications the service will use. It's usually
stream or dgram.

proto

This field specifies the service's protocol from among those in /etc/protocols. For most
services, it will be either tcp or udp, which correspond to the stream and dgram socket types.

flags

The wait/nowait (.max) flag is used only for datagram services, where it helps to control the
handling of inbound requests and is typically set to wait. It should be set to nowait for others.
You can limit the number of server instances spawned by inetd within any 60-second interval
by appending a dot and the maximum number (.max). For example, to limit the service to 20

instances, use .20 after the nowait flag:

nowait.20

The default maximum is 40 instances (.40).

user[.group]

This entry specifies the username (and optionally the group name) under which the service
should execute, allowing them to be run with fewer permissions than root. A typical entry is
the user nobody.

server_path

This field is the full path to the executable daemon of the server program. When TCP wrappers
is used, this entry specifies tcpd, as shown in Example 20-1.

args

This last entry on the line may consist of multiple fields. It contains the name of the server
daemon and all arguments that are to be passed to it. The daemon name is actually the first
argument, or argv[0] from a programming point of view.

In many Linux installations, a majority of the lines in inetd.conf are commented out to increase
security. The fewer services a system offers, the more likely it is to stand up to an attack. You should
review your file to be certain that only necessary services are offered.

20.1.2. TCP Wrappers with inetd

Running services from inetd offers another convenience. Instead of launching the target daemons
directly, inetd is usually configured to use the TCP wrappers access control facility. TCP wrappers, or
tcpd, allows the administrator to define restrictions on the origin of inbound requests.

tcpd can be used to control access to inetd-managed services by IP address or by domain name. For
each inbound connection to a service protected by TCP wrappers, tcpd consults two files that define
access:

/etc/hosts.allow

If a rule in this file is met, access to the service is allowed.

/etc/hosts.deny

If a rule in this file is met, access to the service is denied.

Rules in these files can be constructed to match all services or alternatively to match specific
services. If no match occurs in the two files, access to the service (or services) is allowed. It is
common to specify particular rules in the hosts.allow file and provide a blanket denial in the
hosts.deny file, thereby limiting access to clients you specifically allow.

The language in the control files consists of a service list, followed by a colon, followed by a
list of hosts. Hosts may be specified by name or by IP address. For example, to deny access to
all services except inbound ftp from the local domain, these two simple files could be used:

hosts.allow

This entry allows FTP access to clients in the local domain:

ftp: LOCAL

hosts.deny

This entry denies access to all services from all clients:

ALL: ALL

The hosts.deny file is consulted after hosts.allow, enabling the administrator to define specific allow
rules that will be matched prior to deny rules or a blanket denial.

20.1.3. Starting and Stopping inetd Services

If inetd is not running, all of the services it manages are disabled. Likewise, if inetd is reconfigured,
any changes to individual managed services take effect at the same time. To cause inetd to reread
its configuration file, simply send it SIGHUP:

$ killall -HUP inetd

All inetd services that are commented out or missing from /etc/inetd.conf will be disabled. However,
a number of other services on Linux systems are managed through other meanstypically through the
runlevel system and the series of scripts and links in /etc/rc.d. See Chapter 5 for details on starting
and stopping services such as Apache (httpd).

On the Exam

You must be generally familiar with the content and function of inetd.conf, hosts.allow,
and hosts.deny. Memorizing configuration details is not necessary, but be prepared for
questions on available services and the effect of TCP wrappers rules in the hosts.allow
and hosts.deny files. Be sure you understand what happens to services that are
commented out of inetd.conf and that inetd must be signaled to reread the control file
after any changes.

20.1.4. xinetd Configuration

The format of inetd.conf allows for only a specific number of options. Since xinetd offers many more
options for services than inetd, it requires a different configuration file. Fortunately, the format of

xinetd.conf (as shown in Example 20-2) is much more flexible, allowing you to mix and match a
large number of options.

Example 20-2. Sample /etc/xinetd.conf

service discard
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 type = INTERNAL
 id = discard-stream
}

service discard
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 type = INTERNAL
 id = discard-dgram
}

service telnet
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/in.telnetd
 log_on_failure += USERID
 disable = yes
}

This example turns on the discard service (both TCP and UDP varieties). It also includes an entry for

a telnet daemon, although that service is disabled.

20.1.4.1. Frequently used xinetd.conf options

These options can all be used in a service definition in xinetd.conf:

bind

interface

This option can be used to listen on a specific IP address. For example, to allow connections to
localhost only, use the following:

bind = 127.0.0.1

disable

enabled

These options can be used to disable a service. Either of the following will disable a service:

disable = yes
enabled = no

Setting disable = no or enabled = yes is not required to enable a service.

id

This option can be used to set a unique ID for a service. By default, the ID is set to the service
name, but in cases in which there is more than one entry for a service (for example, when
there are entries for TCP and UDP versions of a service), unique IDs must be set for each
service.

instances

This option can be used to limit the number of simultaneous connections to a service.

By default, the number of connections is not limited. This can also be forced by specifying
instances = UNLIMITED.

log_on_failure

log_on_success

These options can be used to control the information that is logged for failed or successful
connections, respectively. For example, to specify that the result of an ident query be logged

for a failed connection (due to whatever access controls are in place for a service) in addition
to whatever information is logged by default, you could add the following to a service
definition:

log_on_failure += USERID

For both options, HOST and USERID can be specified. For log_on_failure, ATTEMPT can also be
specified, but that is implied by either of the other items. For log_on_success, DURATION (the amount

of time the service was connected), EXIT (notes the exit value and any signals received), PID
(process ID of the program run for this connection), and trAFFIC (the amount of data transferred in
redirected connections) can be specified. You can specify a list of these items, separated by spaces.

no_access

only_from

These two options can be used to limit access to a service. IP addresses can be specified in
CIDR notation (such as 192.168.1.0/24). Trailing zeros are considered wildcards, so the
following are equivalent:

only_from = 192.168.1.0
only_from = 192.168.1.0/24

Hostnames, domain names (in the form .example.com), and network names (as specified in

/etc/networks) can also be specified.

If both of these options are specified, the rule that matches an address most closely applies. For
example, the following would limit connections to any address in 192.168.1.0/24 except
192.168.1.42:

only_from = 192.168.1.0/24
no_access = 192.168.1.42

By default, connections are allowed from anywhere.

per_source

This option limits the number of connections for any one source address. This keeps one user
from using all available connections when using the instances option.

port

This option allows you to provide a port number when you configure a service not listed in
/etc/services. Normally it is not necessary.

protocol

This option is used to specify the protocol for a given service. This could be any of the
protocols listed in /etc/protocols, but it will usually be either tcp or udp. The default is the
default protocol for the service (as specified in /etc/services).

redirect

This option tells xinetd to redirect connections to this port to another host and port. This can
be used only for TCP services.

The following example would redirect connections to the local system's port 443 (https) to port
22 on 10.0.0.2:

service https
{
 protocol = tcp
 redirect = 10.0.0.2 22
 user = root
 wait = no
}

server

This option is used to specify the program to run for a service. For example, the imap service

might run imapd as follows:

server = /usr/sbin/imapd

server_args

This option is used to pass options to the server (previously specified with the server option).
For example, using rsync as a daemon requires passing the --daemon option.

server = /usr/bin/rsync
server_args = --daemon

user

This option is used to specify the user that the server program runs as. The username must be
valid (listed in /etc/passwd).

wait

This option is used to specify whether xinetd should wait for a connection to end before
accepting another. Generally, this will be set to yes for udp services and no for tcp services.

There are many more options. For a full list, see the xinetd.conf manpage.

20.1.4.2. Modular configuration

xinetd can be configured to scan a directory for configuration files. Some distributions use this
feature to break xinetd.conf into separate files for each service. Here's an example xinetd.conf

implementing this:

#
Simple configuration file for xinetd
#
Some defaults, and include /etc/xinetd.d

defaults
{
 instances = 60
 log_type = SYSLOG authpriv
 log_on_success = HOST PID
 log_on_failure = HOST
 cps = 25 30
}

includedir /etc/xinetd.d

The includedir /etc/xinetd.d directive tells xinetd to look at every file in /etc/xinetd.d for
configuration . xinetd skips filenames containing a dot (.) or ending with a tilde (~) as a crude but
effective way of avoiding backup files.

Each of these configuration files could include a service definition for a single service, which greatly
simplifies packaging. For example, a distribution might include the following /etc/xinetd.d/rsync
with its rsync package to make it simple to turn on the rsync daemon:

service rsync
{
 disable = yes
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/rsync
 server_args = --daemon
 log_on_failure += USERID
}

The system administrator could then enable the rsync daemon by deleting (or commenting out) the
disable = yes line in that file. (On distributions that include the chkconfig command, chkconfig
rsync on would have the same effect.)

20.2. Objective 2: Operate and Perform Basic
Configuration of Mail Transfer Agent (MTA)

The Sendmail MTA is responsible for handling a large portion of email sent on the Internet and
inside enterprises. It has broad capabilities to handle mail routing and can perform complex
rewriting of email addresses. Unfortunately, sendmail's configuration file can also appear to be
somewhat cryptic to administrators, and detailed configuration of sendmail has become known as
somewhat of an art.

Configuration details of sendmail are nontrivial and beyond the scope of the LPIC Level 1 Exams but
is covered in depth at Level 2. However, a basic sendmail configuration for a system in an
established domain is relatively simple to implement and is covered in Exam 102.

20.2.1. Configuring sendmail

The sendmail configuration file is /etc/sendmail.cf. (Be aware that on some systems some or all of
sendmail's configuration files could be in an alternate location, such as /etc/mail.) This text file
contains information to control the processing of mail on your system, and it is read at every
invocation of sendmail. Each line in the file defines a configuration command, which begins with a
short one- or two-letter command definition. The file can also contain comments beginning with #.
To simplify a basic setup, example sendmail.cf files exist in most installations.

20.2.1.1. The smart host parameter

To enable mail transfer inside an established organization, you may need to configure sendmail to
transfer messages to a smart host, most likely the main mail-processing system in your domain. For
example, if your enterprise's mail is handled by mail.example.com, you can configure your Linux

systems to transfer all mail to that computer for further processing. To make this change, simply use
the DS directive in sendmail.cf:

DSmail.example.com

20.2.2. Mail Aliases

Even on simple sendmail installations, it is useful to configure some of your system users to have
their mail redirected to another user. For example, artificial users such as nobody shouldn't receive

mail, so forwarding any mail received for that username to an administrator may help with problem
solving. This forwarding is accomplished using mail aliases . A mail alias is simply mapping from a
username to one or more recipients in this form:

sysadmin: jdean, bsmith

Aliases are defined in /etc/aliases. Local mail intended for sysadmin is received by both jdean and
bsmith on the local system, as shown in Example 20-3.

Example 20-3. A typical /etc/aliases file

Basic system aliases -- these MUST be present.
MAILER-DAEMON: postmaster
postmaster: root
General redirections for pseudo accounts.
bin: root
daemon: root
games: root
ingres: root
nobody: root
system: root
toor: root
uucp: root
Well-known aliases.
manager: root
dumper: root
operator: root
webmaster: root
abuse: root
spam: root
Trap decode to catch security attacks
decode: root
Person who should get root's mail
root: jdean
Departmental accounts
sales: bsmith
support: jdoe

sendmail doesn't actually read the text aliases file, since it's not uncommon to find many aliases
defined there. Instead, it reads a compiled database file, /etc/aliases.db, built from /etc/aliases.
Therefore, the database must be updated after any change is made to aliases, using the newaliases
command. newaliases has no options and must be run as root.

20.2.2.1. Forwarding mail from your account to another account

In addition to permanently established mail aliases, individual users have the capability to create
their own mail aliases on an as-needed basis by using a .forward file in the home directory. Mail is
sent to the alias by simply putting an email address on a line by itself in .forward.

On the Exam

Remember, the /etc/aliases and .forward files define mail aliases, and the newaliases
command must be executed after changing the /etc/aliases file to re-create the alias
database.

20.2.3. Queued Mail

If sendmail cannot deliver mail immediately, such as on a system using an intermittent dial-up
connection, mail is queued for later processing. To see the mail queue, use the mailq command, like
this:

$ mailq
Mail Queue (2 requests)
--Q-ID-- --Size-- -Priority- ---Q-Time--- -Sender/Recipient
WAA12372 3427 30043 Jul 4 2:19 bsmith
 (host map: lookup (mydom.com): deferred)
 jdean@mydom.com
WAA12384 313 30055 Jul 8 22:40 jdoe
 (host map: lookup (yourdom.com): deferred)
 you@yourdom.com

The first line printed for each message shows the internal identifier used on the local host for the
message, the size of the message in bytes, the date and time the message was accepted into the
queue, and the sender of the message. The second line shows the error message that caused this
mail to be retained in the queue. Subsequent lines show message recipients. In this example, two
outbound messages are queued because the DNS host lookups did not succeed.

On the Exam

Be aware that mail could be queued by sendmail and that mailq displays a list of those
messages.

20.2.4. Starting and Stopping sendmail

sendmail is typically managed through the runlevel system. See "Objective 2: Change Runlevels and
Shut Down or Reboot System" in Chapter 14 for details on starting and stopping services.

20.3. Objective 3: Operate and Perform Basic
Configuration of Apache

Apache is a phenomenal open source success story. Despite the availability of commercial web
servers, Apache continues to be the most popular web server on the Internet. It is also widely
deployed inside corporate networks for managing internal communications.

Because it is so popular and likely to be found on just about every Linux server, understanding the
basics of Apache administration is required for Exam 102.

20.3.1. Configuring Apache

Apache is configured with the file httpd.conf located in /etc/httpd/conf, /etc/apache, or possibly
another location, depending on your distribution or how Apache is installed.

Configuration is managed through configuration directives , one per line, in httpd.conf. The file can
also contain comments, which begin with a #. Directives are in the form:

DirectiveName [argument-list]

For example, the DocumentRoot directive, which tells Apache where the top of the HTML tree is
located, might look like this:

DocumentRoot /home/httpd/html

Here are some basic Apache configuration directives:

ServerType

Tip: This option was removed in Apache 2.0.

This directive can be either standalone or inetd. If you prefer to have inetd listen for inbound HTTP
requests, set this to inetd and configure inetd.conf as needed. Running httpd from inetd has a major
negative impact on performance, so it is almost never a good idea.

Port

Tip: This option was removed in Apache 2.0.

This parameter defines the port to which Apache listens. The default HTTP port is 80.

User and Group

These two parameters determine the name and group, respectively, that Apache executes
under. Typical examples are nobody, www, and httpd.

ServerAdmin

This directive specifies the email address of the administrator, such as root@localhost.

DocumentRoot

This directive tells Apache where to find the top of the HTML tree, such as /home/httpd/html.

UserDir

System users may use a standard personal subdirectory for their own HTML documents. This
directive determines the name of that directory. It is often set to public_html. Files for user
jdean in the directory /home/jdean/public_html would be accessed using a URL of

http://localhost/~jdean.

Of course, there are many more, and additional syntax is used when necessary. In httpd.conf,
groups can be delineated by keywords that look like HTML. Directives in such a group affect only a
subset of the content served by Apache. For example, the following group of directives controls CGI
execution in /home/httpd/cgi-bin:

<Directory /home/httpd/cgi-bin>
AllowOverride None
Options ExecCGI
</Directory>

On the Exam

The LPI exam Objectives don't specify particular Apache configuration directives, but
you should be prepared to interpret various configuration examples and have
knowledge of the three configuration files and their likely locations.

20.3.2. Starting and Stopping Apache

http://localhost/~jdean

Typically, Apache is managed through the runlevel system and the series of scripts and links in
/etc/init.d and /etc/rcn.d. See Chapter 5 for information on starting and stopping services such as
Apache.

20.4. Objective 4: Properly Manage the NFS and Samba
Daemons

Networked file and printer sharing is among the fundamental services offered by Linux and other
operating systems. For years, the standard file sharing protocol for Unix has been the NFS.
Originally developed by Sun Microsystems, NFS has been implemented on many operating systems
and is available in both commercial and free software implementations.

20.4.1. NFS

Any Linux system may act as both an NFS server and an NFS client. Clients use mount to attach
remote filesystems from NFS servers to their local filesystem. Once mounted, the directory hierarchy
mounted on the client appears to users as a local filesystem.

20.4.1.1. Exporting (sharing) local filesystems using NFS

To share a part of your system's filesystem, you must add a specification to /etc/exports. Each line
in this file describes a shared filesystem resource. The format of the file is:

directory system(options) system(options) ...

Tip: The syntax of /etc/exports on Linux differs significantly from the same file on systems using a Sun-derived NFS implementation.

directory is a local filesystem directory, such as /home. Each of the space-separated systems
describes clients by name or address, and the associated options control access. If the system name

is omitted, no restriction is placed on which clients can connect. Typical options are:

ro

Export with read-only attribute.

rw

Export with read/write attribute, the default.

no_root_squash

Allow access by user ID 0, root. Normally root on the client is mapped to the unprivileged

user ID 65534 on the server. This option turns off that feature.

Example 20-4 shows three shared directories from an /etc/exports file.

Example 20-4. Sample /etc/exports file

/ orion(rw,no_root_squash)
/usr *.example.com(ro) orion(rw)
/pub (ro,insecure,all_squash)
/pub/private factory*.example.com(noaccess)

In this example, the entire filesystem (/) is shared with the system orion in read/write mode, and
root access is accepted. The /usr directory is shared as read-only (ro) to all systems in example.com
and read/write (rw) to orion. The /pub directory is shared as read-only (ro) to any system, but
factory*.example.com systems cannot look into /pub/private because the noaccess option is used.

For new or revised entries to be incorporated in the NFS configuration, NFS daemons must be
reconfigured or restarted.

On the Exam

Detailed configuration of NFS exports is beyond the scope LPIC Level 1 Exams, but you
must understand the contents of /etc/exports and how to incorporate them into a
running system.

20.4.1.2. Mounting remote NFS filesystems

Mounting an NFS volume requires the use of a local mount point, a directory in the filesystem over
which the remote directory hierarchy will be placed. Once the directory exists, mount is used to
create the NFS connection from the local client to the remote server. The syntax is similar to that
used for local filesystems, with the addition of the NFS server name or address. For example, if
server1 is offering its /home directory via NFS, it could be mounted locally as follows:

mkdir /mnt/server1
mount -t nfs server1:/home /mnt/server1

In this example, the mount command uses the -t option to specify mount type nfs. The second
argument specifies the data source by concatenating the name of the NFS server (server1) with its

exported directory (/home). The final argument is the directory name that will serve as the local
mount point (/mnt/server1). After successfully mounting, /mnt/server1 appears to be a local
filesystem.

This configuration could be incorporated into /etc/fstab for automated mounting at boot time with a
line like this:

server1:/home /mnt/server1 nfs defaults 0 0

In this example, defaults indicates that the filesystem should be mounted using the default options
(see the manpage for mount for defaults). The two zeros indicate that the filesystem should not be
backed up using dump and that it should not have a filesystem check at boot time.

20.4.1.3. Starting and stopping NFS

NFS consists of multiple daemons, which are typically managed through the runlevel system and the
series of scripts and links in /etc/init.d and /etc/rcn.d. See Chapter 14, "Objective 2: Change

Runlevels and Shut Down or Reboot System," for details on starting and stopping services such as
the NFS family.

20.4.2. Samba and the SMB and NMB Daemons

Another extremely popular sharing mechanism is that used on Microsoft and IBM systems, called
Server Message Block (SMB). It is implemented as free software as a suite of programs collectively
known as Samba, which runs on a variety of operating systems including Linux. Samba consists of
two daemons:

smbd

This daemon handles file and printer sharing, as well as authentication.

nmbd

This daemon implements the Windows Internet Name Service (WINS), which maps Windows
system names to IP addresses.

On the Exam

It is the goal of the Samba team to eventually implement all of the services found on
Windows servers, including Windows NT/2000 Domain Controller functionality. The LPI
Exam deliberately avoids specifics in this area, leaving only basic Samba configuration
for the test.

20.4.2.1. Getting started

Your Linux distribution probably came with a recent version of Samba. If you already have Samba
installed, setting up a basic configuration is easy. To check whether Samba is already installed on
your system, issue the following command on the command line:

smbd -h

If Samba is installed on your system, you should see a message similar to:

Usage: smbd [-D] [-p port] [-d debuglevel] [-l log basename]
 [-s services file]
Version 2.0.3
 -D become a daemon
 -p port listen on the specified port
 -d debuglevel set the debuglevel
 -l log basename. Basename for log/debug files
 -s services file. Filename of services file
 -P passive only
 -a append to log file (default)
 -o overwrite log file, don't append
 -i scope NetBIOS scope to use (default none)

If not, you can get source or binary distributions for Samba at http://www.samba.org.

To begin using Samba, you must create its configuration file, smb.conf. Depending on how you
acquired Samba, the default location for this file may be /etc or /usr/local/samba. A basic smb.conf
set up is shown in Example 20-5.

Example 20-5. Sample /etc/smb.conf file

[global]
workgroup = HOME
server string = LINUX
encrypt passwords = Yes
log file = /var/log/samba/log.%m
max log size = 50
socket options = TCP_NODELAY
printcap name = /etc/printcap
dns proxy = No
socket address = 192.168.1.30
wins support = no
wins server = 192.168.1.202
hosts allow = 192.168.1. 127.
[myshare]
path = /home/myshare
guest ok = yes
comment = My Shared Data
writeable = yes
[homes]
 comment = Home Directories
 browseable = no
 writable = yes

http://www.samba.org

[printers]
 comment = All Printers
 printing = BSD
 print command = /usr/bin/lpr -r %s
 path = /var/spool/samba
 guest ok = yes
 printable = yes

This example configuration allows Samba to participate in an SMB workgroup called HOME with a
system name of LINUX. Hosts on the private network 192.168.1 as well as the loopback network
(127.) are allowed to access shared resources. The default sections of Samba's /etc/smb.conf file are
as follows:

[global]

The global section defines items applying to the entire system, such as the workgroup and
system names.

[homes]

A section that defines users' home directories to be shared.

[printers]

This section shares all of the printers located in /etc/printcap (provided that a BSD-style
printer setup is in use).

Samba also has the following custom share section :

[myshare]

This defines a shared directory myshare. The name myshare will appear as shared resources to
clients. Users' home directories do not need to be explicitly shared if [homes] is used.

To use Samba, only the workgroup, server string, and a shared service such as [myshare] need to
be configured.

See Samba's manpage for more detailed information on the smb.conf file.

20.4.2.2. WINS and browsing

Windows networks allow users to view available shared resources through browsing, a process by
which one machine acts as a browser and is updated with information from other machines on the
network. Client machines can then obtain lists of resources on the entire network from that single
browser machine. Samba's nmbd daemon implements WINS. To use Samba as a WINS client, you
can specify the address of the WINS server on your network using the wins server directive, as
shown in Example 20-5. Samba can also act as a WINS server itself, although this is beyond the
scope of the LPIC Level 1 Exams.

On the Exam

You should be generally familiar with the smb.conf file and with the concepts of shared
directories, shared printers, WINS, and SWAT. You don't need to worry about creating
custom Samba configurations for Exam 102.

20.4.2.3. Using SWAT

Samba v2.0 and later comes with a web-based configuration tool called the Samba Web
Administration Tool (SWAT). To use SWAT with inetd, use a line similar to this in /etc/inetd.conf:

swat stream tcp nowait.400 root /usr/sbin/swat swat

You can also run the swat daemon manually. In either case, you must list its port, 901, in
/etc/services. Once swat is configured, you can point your browser to http://localhost:901 and log in
using the root password; swat offers a convenient series of forms that you can fill in using the
browser to configure Samba. When you commit changes, the smb.conf file is updated for your
system.

http://localhost:901

20.5. Objective 5: Set Up and Configure Basic DNS
Services

The DNS is the distributed database of name-to-IP-address translations. Technically, it isn't
necessary to use host and domain names such as www.lpi.org, because it's the actual IP address
that the computer requires to establish communications. DNS was created to allow the use of more
convenient global domain names instead. For example, when a user enters a DNS name as part of a
URL in a browser, the name portion is sent to a DNS server to be resolved into an IP address. Once
the address is found, it is used to rewrite the URL and directly fetch the web page.

On the Exam

You must be familiar with the concept of name resolution on the Internet using DNS.

The server daemon that implements DNS is named, the name daemon, which is part of the Berkeley
Internet Name Daemon package (BIND). It is named's job to respond to requests from the resolver
and return an IP address.

20.5.1. The Resolver

The code that resolves names to IP addresses using DNS for client programs is implemented in
system libraries collectively called the resolver. The resolver uses one of several means to determine
an IP address from a hostname or domain name:

Static local files

The local file /etc/hosts can contain name-to-address mapping for a few systems on a
network. However, for large enterprises, using static local files to manage IP address
resolution is problematic due to the frequent changes required in the data. Updating all of the
client systems would be impractical. This resolution method is sometimes referred to as the
files method.

Network Information Service (NIS)

Some private networks use a shared information service that can include address resolution.
This is NIS, or a later version of it called NIS+, and is referred to as the nis method of
resolution. Both services are beyond the scope of the LPIC Level 1 Exams.

Domain Name Service (DNS)

Because addresses and domains on the public Internet change frequently and are so
numerous, static local files can't handle resolution far outside the enterprise. As already
mentioned, DNS is a distributed database. That is, small portions of the DNS are managed by
local authorities that are responsible only for their particular slice of the system. As you'd
expect, using DNS for name resolution is called the dns method.

In most cases, /etc/hosts will be used for name resolution of the local host and perhaps a few
other nearby systems. DNS, perhaps together with NIS in enterprise environments, will handle
everything else.

/etc/hosts and the other files used to configure the resolver are described in the
"Configuration files" section of Chapter 19, but here's a quick recap:

/etc/hosts

This file lists statically defined name-to-address translations.

/etc/nsswitch.conf (or /etc/host.conf on older Linux systems)

The "name service switch" file (nsswitch.conf) defines the order of name server methods to be
used in succession by the resolver (it can also control other things such as passwords, but
those don't apply here). Typically, this single entry is used to control name resolution:

hosts: files dns

This entry instructs the resolver to resolve names using /etc/hosts first and, if a match isn't found, to
make a DNS query.

/etc/resolv.conf

This file lists the IP addresses of name servers:

nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2

On the Exam

Be sure that you understand how /etc/nsswitch controls the resolution order, that
/etc/resolv.conf identifies DNS servers by address, and that /etc/hosts is for local,
statically resolved addresses. Also remember that older versions of Linux used
/etc/host.conf to configure the resolution order instead of /etc/nsswitch.conf.

When the resolver determines that a DNS query is required, it sends a request containing a domain
name to one of the DNS servers listed in /etc/resolv.conf. The DNS server uses its own records to
find the domain or may resort to escalating to other DNS servers if the information isn't readily
available. When a result is found by the DNS servers, the IP address corresponding to the requested

name is returned to the originating client.

20.5.1.1. Domain registration

Domain names are assigned through a registration process with one of the domain name registrars
available on the Internet (http://www.internic.net/regist.html). Originally, a single authority
managed domain names. As commercial uses for domain names spread, additional entities sought
the ability to charge for the service of domain registration, and today there are a number of qualified
registrars (a search for domain registrar on one of the popular search engines will yield a daunting
list). Once a domain name is registered, it is listed in a worldwide database along with contact
information for the owners or their agents. The name servers that contain DNS information for the
domain can go along with this record.

Most registrants offer a domain name search service, so you can test desired domain names for
availability. If the domain name you're seeking is available, you can provide payment information to
a registrant and purchase rights to use the name, usually for one or two years.

20.5.1.2. Using named as a local caching-only name server

named is often configured to serve DNS requests even when it does not have local information for a
domain. Instead, it is used for its caching ability. When a client program requests an address
resolution from the local named, the daemon first checks its local cache. If it doesn't find the domain
there, it goes to other DNS servers as usual. If the cache does contain the domain, it is returned
immediately to the client from the cache, which speeds the resolution process.

Some Linux distributions come with a caching-only named configuration pre-installed. If this isn't
the case for you, simply follow the brief instructions in Section 3 of the DNS HOWTO available from
http://www.tldp.org. Part of the configuration includes setting your local system as the default DNS
server in /etc/resolv.conf:

nameserver 127.0.0.1

You can test the configuration using the nslookup utility:

nslookup
Default Server: localhost
Address: 127.0.0.1
> lpi.org
Server: localhost
Address: 127.0.0.1
Name: lpi.org
Address: 209.167.177.93
> lpi.org
Server: localhost
Address: 127.0.0.1
Non-authoritative answer:
Name: lpi.org
Address: 209.167.177.93

http://www.internic.net/regist.html
http://www.tldp.org

> exit

In this example, nslookup attaches to the default server localhost (127.0.0.1). In the first query for
lpi.org, the local named must find the address from external DNS servers. However, the result is

found in the cache on the second try, as indicated by the Non-authoritative answer response. If this
behavior isn't seen, there may be a problem with the named configuration in /etc/named.conf.

Some debugging information can be found in /var/log/messages. For example, the bold line in this
short excerpt shows an error in the configuration file:

smp named[216]: starting. named
smp named[216]: cache zone "" (IN) loaded (serial 0)
smp named[216]: Zone "0.0.127.in-addr.arpa"
 (file named.local): No default TTL
 set using SOA minimum instead
smp named[216]: master zone "0.0.127.in-addr.arpa"
 (IN) loaded (serial 1997022700)
smp named[216]: /etc/named.conf:18: can't redefine
channel 'default_syslog'
smp named[216]: listening on [127.0.0.1].53 (lo)
smp named[216]: listening on [192.168.1.30].53 (eth0)
smp named[216]: Forwarding source address is [0.0.0.0].1855
smp named[216]: Ready to answer queries.

Note that configuration of a caching-only name server is beyond the scope of the LPIC Level 1
Exams but is a useful exercise in understanding the configuration of named.

20.5.1.3. DNS query utilities

A few tools exist to verify the operation of DNS name resolution. Here's a brief synopsis of nslookup
and host, both specifically mentioned in this Objective. The host utility does not offer interactive
mode but uses a syntax similar to nslookup.

Syntax

nslookup [host [dnsserver]]

Description

Look up host, optionally specifying a particular dnsserver. nslookup can be used in either
interactive or noninteractive modes. If host is provided on the command line, noninteractive

mode is used. In interactive mode, a number of commands are available to control nslookup
(the ls command to nslookup is used in the example). See the manpage for more details.

Noninteractive example

In this example, nslookup provides immediate results because host, in this case
oreillynet.com, is provided on the command line:

nslookup oreillynet.com 192.168.1.2
Server: ns1.mydomain.com
Address: 192.168.1.2
Non-authoritative answer:
Name: oreillynet.com
Address: 208.201.239.36

Interactive example

Here, nslookup is used interactively with DNS server 192.168.1.2 to find records from
yourdomain.com:

nslookup
Default Server: localhost
Address: 127.0.0.1
> server 192.168.1.2
Default Server: ns1.mydomain.com
Address: 192.168.1.2
> ls -a yourdomain.com
[ns1.mydomain.com]
$ORIGIN yourdomain.com.
ipass 2D IN CNAME snoopy
smtp 2D IN CNAME charlie
mail 2D IN CNAME charlie
pop 2D IN CNAME lucy
yourdomain 2D IN CNAME charlie
ww2 2D IN CNAME linus
www 2D IN CNAME sally
> exit

Syntax

host [options] host [dnsserver]

Description

Look up host, optionally specifying a particular dnsserver.

Frequently used options

-d

Enable debugging, showing network transactions in detail.

-v

Use verbose mode. Results are displayed in the official domain master file format.

Example

host -v oreillynet.com
Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
oreillynet.com 1991 IN A 208.201.239.36

For authoritative answers, see:

oreillynet.com 167591 IN NS NS1.SONIC.NET
oreillynet.com 167591 IN NS NS.SONGLINE.COM

Additional information:

NS1.SONIC.NET 167591 IN A 208.201.224.11
NS.SONGLINE.COM 167591 IN A 208.201.239.31

20.5.1.4. BIND Version 4 versus Version 8 configuration files

It's likely that a Linux administrator will maintain or install systems running BIND v4.x as well as the
newer v8.x. This LPI Objective requires an understanding of the differences between the
configuration files for these two BIND versions. Under BIND v4, the configuration file was called
/etc/named.boot. Example 20-6 shows a trivial BIND v4 configuration file.

Example 20-6. BIND v4 named.boot file

directory /var/named
cache . root.hints
primary 0.0.127.IN-ADDR.ARPA 127.0.0.zone
primary localhost localhost.zone

In BIND v8, the configuration file was renamed /etc/named.conf. Example 20-7 shows the
equivalent configuration in the BIND v8 format.

Example 20-7. BIND v8 named.conf file

options {
 directory "/var/named";
};
zone "." {
 type hint;
 file "root.hints";
};
zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "127.0.0.zone";
};
zone "localhost" {
 type master;
 file "localhost.zone";
};

As you can see, the information contained in the files is largely the same, but the v8 format contains
a more formal structure. For those upgrading to Version 8, the Perl script named-bootconf.pl is
included in the v8 package to upgrade named.boot to named.conf.

On the Exam

You should be generally familiar with the structural differences between the
configuration files for BIND v4 and v8. However, detailed named configuration is
beyond the scope of the LPIC Level 1 Exams.

20.6. Objective 7: Set Up Secure Shell (OpenSSH)

This section explains how to acquire, compile, install, and configure OpenSSH for Linux, so that you
can use it in place of telnet, rsh, and rlogin. For more information about using ssh, see Chapter 40,
Objective 4: Secure Shell and SSH, The Secure Shell: The Definitive Guide (O'Reilly).

In the unlikely event that your Linux distribution does not include OpenSSH, it is available at
http://www.openssh.com/portable.html and at many mirror sites around the world. It is a simple
matter to compile and install OpenSSH if you have gcc, make, and the necessary libraries and
header files installed. The OpenSSH build uses autoconf (the usual configure, make, and so on) like
most other open source projects. See Chapter 4 for more information on building software in
general, and see the INSTALL file in the top level of the source tree, or
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/INSTALL for more information on building
OpenSSH specifically (such as what libraries are required and what options can be passed to
configure).

To enable login from remote systems using OpenSSH, you must start sshd, which may be done
simply by issuing the following command:

sshd

Note that you do not need to put this command in the background, as it handles this detail itself.
Once the sshd daemon is running, you may connect from another SSH-equipped system:

ssh mysecurehost

The default configuration should be adequate for basic use of SSH.

On the Exam

SSH is an involved and highly configurable piece of software, and detailed knowledge of
its setup is not required. However, SSH is an important part of the security landscape.
Be aware that all communications using SSH are encrypted using public/private key
encryption, which means that plain text passwords are unlikely to be compromised.

http://www.openssh.com/portable.html

Chapter 21. Security (Topic 1.114)
As with any multiuser-networked operating system, a secure environment is essential to system
stability. This Topic covers basic Linux security administration. The following three Objectives are
included:

Objective 1: Perform Security Administration Tasks

Candidates should know how to review system configuration to ensure host security in
accordance with local security policies. This Objective includes how to configure TCP wrappers,
find files with SUID/SGID bits set, verify packages, set or change user passwords and
password aging information, and update binaries as recommended by CERT, BUGTRAQ,
and/or the distribution's security alerts. Includes basic knowledge of ipchains and iptables.
Weight: 4.

Objective 2: Set Up Host Security

Candidates should know how to set up a basic level of host security. Tasks include syslog
configuration, shadowed passwords, setup of a mail alias for root's mail, and turning of all
network services not in use. Weight: 3.

Objective 3: Set Up User-level Security

An LPIC candidate should be able to configure user-level security. Tasks include limits on user
logins, processes, and memory usage. Weight: 1.

21.1. Objective 1: Perform Security Administration Tasks

A good security policy includes such things as securing inbound network requests, verifying the
authenticity of software packages to assure they are not hostile, and managing local security
resources. This Objective details some of the most common of these activities that a system
administrator performs.

21.1.1. TCP Wrappers

As a Linux system operates in a networked environment, it is constantly "listening" for inbound
requests from the network. Many requests come into Linux on the same network interface, but they
are differentiated from one another by their port address, a unique numeric designator used by
network protocols. Each type of service listens on a different port. Established port numbers and
their corresponding services are listed in /etc/services. Here are some lines from that file:

ftp 21/tcp
ssh 22/tcp
telnet 23/tcp
smtp 25/tcp mail
domain 53/tcp
domain 53/udp
http 80/tcp www www-http

The first column lists the names of various services. The second column lists the port numbers
assigned to the services and the protocol (TCP or UDP) used by the service. The optional third
column and any other columns list alternative names for this service. For example, http might be
referred to as www. Both refer to port 80.

21.1.1.1. On the attack

As the Internet has grown, the frequency of computer break-in attempts has kept pace. To gain
entry to an unsuspecting host system, some intruders configure their systems to appear to target
servers (that is, your servers) as trusted hosts. This could include a forged IP address or hostname,
or the exploitation of aspects of the TCP protocol. Such attacks are carried out against multiple
ports, sometimes in a port scan in which multiple ports at a single IP address are attacked in
succession.

In response to these threats, the TCP wrapper concept was created. The "wrappers" name comes
from the idea that the services are "wrapped" in a protective layer. TCP wrappers consist of a single
program, tcpd , which is run by inetd in place of actual services like ftpd or telnetd, among others.

Tip: While inetd is not used on many modern Linux systems, the functionality of tcpd has been incorporated into many programs through the

use of libwrap, the library version of tcpd.

tcpd performs the following functions:

Responds to network requests and does security tests on the information provided in the
connection message

Consults local configuration files (/etc/host.allow and /etc/host.deny) to restrict access

Provides detailed logging via the authpriv facility of syslogd for connection requests

If a connection is approved, tcpd steps aside and allows the connection to be received by the true
service. You could consider tcpd to be a gatekeeper of sorts, asking for identification at the door,
and once satisfied, getting out of the way and allowing entry. By doing so, tcpd does not impact
subsequent performance of the network connection. However, this aspect of tcpd prevents its use for
services that handle multiple clients at one time, such has NFS and httpd. Instead, services
protected by tcpd include single-client programs such as telnet and ftp.

21.1.1.2. Configuring inetd and tcpd

Chapter 20, "Objective 1: Perform Security Administration Tasks," examines inetd and its
configuration file, /etc/inetd.conf. Without tcpd, a typical service configuration looks like this:

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

In this example, /usr/sbin/in.telnetd is the executable program that is called when a Telnet client
tries to attach to the system on the Telnet port (23). With this configuration, in.telnetd responds
directly and immediately to inbound requests. To enable the use of TCP wrappers for in.telnetd, it is
specified that tcpd be called instead. Making this change yields this revised inetd.conf line:

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Now, /usr/sbin/tcpd is called in response to an inbound Telnet connection.

tcpd interacts with only the initial network connection. It does not interact with the client process
(remote Telnet), the client user (the remote person initiating the Telnet session), or the server
process (the local in.telnetd). Since it is autonomous, tcpd has these properties:

Application independence

The same small tcpd program can be used on many different network services. This simplicity
makes tcpd easy to install, configure, and upgrade.

Invisible from outside

Anyone trying to gain access has no direct evidence that tcpd is in use.

21.1.1.3. tcpd access control

tcpd provides a method of limiting access from external sources both by name and by address. After
receiving a network request, tcpd first does its IP address and hostname checks. If those pass, tcpd
then consults two control files, named hosts.allow and hosts.deny, for access control information.
These are text files that contain rules (one per line) against which incoming network connections are
tested:

/etc/hosts.allow

tcpd consults this file first. When an incoming network request matches one of these rules,
tcpd immediately grants access by passing the network connection over to the server daemon.
If none of the rules are matched, the next file is consulted.

/etc/hosts.deny

This file is consulted second. If a network request matches one of these rules, tcpd denies
access to the service.

If no matches are made in either of the files, then the connection is allowed. This implies that
missing hosts.allow and hosts.deny files means that no access control is implemented.

The form of the rules in these two files is simple:

service_list : foreign_host_list

The service list is made up of space-separated program names, such as in.telnetd and in.ftpd. The
foreign host list can contain special codes, which can be used on both sides of the colon:

ALL

This is the universal wildcard, which always matches all requests. When used on the left side
of a rule, ALL indicates every service protected by tcpd. On the right side, it means all possible
hosts.

EXCEPT

In the context of:

list1 EXCEPT list2

This operator matches anything that matches list1 unless it also matches list2.

KNOWN

This matches any host whose name and address are known, such as after a successful DNS
lookup. Dependent on DNS servers.

LOCAL

This wildcard matches any host whose name does not contain a dot character.

PARANOID

This wildcard matches a host whose name and address do not match (when forward and
reverse DNS lookups don't match). If tcpd is compiled with the -DPARANOID option,
connections in this category are dropped prior to testing against the rules in the control files.

UNKNOWN

Opposite of KNOWN. When a DNS lookup for a host fails, this wildcard matches. This could
happen for valid reasons, such as a DNS server failure, so use this one with caution.

To enable access from systems in domain otherdom.com, except its web server, and to allow access

from systems in network 192.168.100.0, you could put the following rules in /etc/hosts.allow:

ALL: .otherdom.com EXCEPT www.otherdom.com
ALL: 192.168.100.

Note that the leading and trailing dots are significant. .otherdom.com matches any system in that
domain, such as ftp.otherdom.com and lab1.otherdom.com. The address rule with 192.168.100.

matches all of the addresses on that network, including 192.168.100.1, 192.168.100.2,
192.168.100.100, and so on.

Tip: DNS is not completely reliable, so relying on it for access control should be avoided if at all possible. Use IP addresses whenever you can.

To reject everything else, put the following in /etc/hosts.deny:

ALL: ALL

This rule denies ALL services from ALL machines anywhere. Remember that matches found in
hosts.allow cause the search to stop.

On the Exam

Remember that hosts.allow is evaluated prior to hosts.deny. This means that if a match
occurs in hosts.allow, the connection succeeds and any potential matches from
hosts.deny are ignored. Also remember that, in the absence of control, access is
permitted.

Keep in mind that services that are not in use may have control settings. A
configuration in /etc/hosts.allow or /etc/hosts.deny does not imply that listed services
are actually running on the system. Evaluate the complete setup of inetd.conf,
hosts.allow, and hosts.deny when answering questions about tcpd .

21.1.1.4. tcpd logging

When tcpd is enabled, it logs to the authpriv facility in syslogd. (syslog and its configuration are
described in Chapter 18, "Objective 3: Configure and Use System Log Files to Meet Administrative
and Security Needs.") Check your /etc/syslog.conf file to confirm where this facility will be logged on
your system. For example, this /etc/syslog.conf configuration line puts all authpriv messages in
/var/log/secure:

authpriv.* /var/log/secure

Most system service daemons will do some logging on their own. For example, in.telnetd writes the
following line to authpriv as the result of a Telnet connection:

Feb 8 17:50:04 smp login: LOGIN ON 0 BY jdean FROM 192.168.1.50

When tcpd is listening to the Telnet port in place of in.telnetd, it logs the request first, does its
verifications, and then passes the connection on to in.telnetd, which then starts a login process as
before. In this case, /var/log/secure looks like this:

Feb 8 17:53:03 smp in.telnetd[1400]: connect from 192.168.1.50
Feb 8 17:53:07 smp login: LOGIN ON 0 BY jdean FROM 192.168.1.50

The first line was logged by tcpd. It indicates that a connection was received from 192.168.1.50
bound for the in.telnetd daemon. The smp on these example lines is the name of the host making the
log entries. As you can see, the tcpd report precedes the login report.

21.1.2. Finding Executable SUID Files

The SUID capability of the Linux ext2 filesystem was covered in Chapter 6, "Objective 5: Use File

Permissions to Control Access to Files." In that section, the SUID property was described as both a
security enhancement and a security risk. It can be considered an enhancement because it allows
administrators to grant superuser privileges to specific, trusted programs that may be executed by
anyone on the system. The example given is passwd, which needs special access to manipulate the
shadow password file (/etc/shadow). Without using the SUID property, everyone on the system
would need administrative rights to change his own password, which is clearly undesirable. It is also
mentioned that an SUID capability that is granted unwisely can be a security risk, and all
applications of SUID must be considered carefully. The reason for this concern is that the potential
exists for an attacker to exploit the superuser privilege on an SUID file. For example, if the attacker
is able to somehow overwrite the contents of passwd, she could effectively gain superuser access to
the system by running a passwd of her own design that changes passwords, adds new accounts, or
something else shady.

For systems on corporate networks and on the Internet, it is common to minimize the number of
SUID files on the system and to regularly monitor the known list of programs for changes. In the
event that a new SUID program is found that was not legitimately created or if an attribute of a
known file changes, it could be a warning that system security has been compromised.

The find command can perform the searches for attributes such as SUID (see the "Applying
commands recursively through a directory tree" section in Chapter 5 for details on find). In this
example, a find command that searches the entire filesystem for files that have the SUID bit set is
constructed; it avoids the /proc filesystem (kernel information) to prevent permission problems. The
example generates verbose output similar to ls -l to log detailed information about the SUID files
found:

find / \
> -path '/proc' -prune \
> -or \
> -perm -u+s \
> -ls

The first line calls the find program and indicates that the search should begin at the root directory
/. The second line specifies a -path directive to match /proc utilizing the -prune modifier. This
eliminates (or prunes) the /proc directory from the search. The next line joins the -path directive to
the -perm (permissions) directive with a logical -or, skipping execution of the -perm directive when
-path matches /proc. The -perm directive uses a permission mode of -u+s, which indicates "match
SUID." The next line with the -ls prints each match with a format similar to ls -l.

The result of this command is a listing of files on your system with the SUID property; the following
is just a snippet of what that output would look like:

32773 72 -rwsr-xr-x 1 root root 68508 Feb 24 2003 /bin/mount
32823 28 -rwsr-xr-x 1 root root 28628 Jan 24 2003 /bin/ping
32866 100 -rwsr-xr-x 1 root root 95564 Feb 18 2003 /bin/su
33199 32 -rwsr-xr-x 1 root root 30816 Feb 24 2003 /bin/umount

As you can see, the s bit is set on the user of the file, indicating SUID. Keeping this complete list in a
file can be useful, because you'll want to check your system periodically for changes.

21.1.3. Verifying Packages

Package management systems provide a convenient method of managing software on Linux
systems. The RPM not only can install package files but also can provide for the verification of
package files and software installed on your system.

21.1.3.1. Checking installed packages

If an intruder were able to penetrate your system, it is likely that he would attempt to modify or
replace executable files to grant himself special abilities. To check for such files, the verification
option of the package manager can be used to check installed files. With RPM, it is possible to verify
the installed files contained in a specific package like this:

rpm -V apache
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/srm.conf
missing /home/httpd/html/index.html
missing /home/httpd/html/poweredby.gif

In this example, rpm is reporting that four files do not match the original installed configuration.
None is an executable file, and all are easy to explain, so no intruder is suspected here. If an
executable file does turn up in the list, you may wish to investigate. For example:

rpm -V XFree86-I128
S.5....T /usr/X11R6/bin/XF86_I128

This shows that the file XF86_I128 is not the same as the one originally installed. Unless you know
why the file has changed, corrective action may be necessary to maintain security. In this case, the
file in question is an X Server binary that was intentionally upgraded to a newer version than that
supplied in the original package. Again, this is an expected result.

The output from rpm -V consists of an eight-character string, an optional c (indicating that the file is
a configuration file), and the filename. Each column in the result string contains a dot when an
attribute has not changed. The output codes listed in Table 21-1 can replace dots to indicate
discrepancies.

Table 21-1. RPM verification codes

Dot Code Description

5 The MD5 checksum, a sort of "fingerprint" for the file, is different.

S The file size has changed.

L Symlink attributes have changed.

Dot Code Description

T The file's modification time (or mtime) has changed.

D Device file has changed.

U The file's user/owner has changed.

G The file's group has changed.

M The file's mode (permissions and file type) has changed.

? Unknown or unexpected result.

It can be helpful to monitor all of the packages on your system and track changes to the resulting
list on a regular basis. To check all installed packages, use the a verification option as follows:

rpm -Va
S.5....T c /etc/exports
S.5....T c /etc/hosts.deny
S.5....T c /etc/printcap
S.5....T c /etc/services
.M...... /root
S.5....T c /usr/share/applnk/Multimedia/aktion.kdelnk
S.5....T c /etc/info-dir
..5....T c /etc/mime.types
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/srm.conf
missing /home/httpd/html/index.html
missing /home/httpd/html/poweredby.gif
S.5....T c /etc/named.conf
S.5....T c /var/named/named.local
.M...... /dev/hdc
.M...... /dev/log
.M?....T /dev/printer
.M...... /dev/pts
......G. /dev/tty0
(... list continues ...)

This list will be large. As your system is configured, upgraded, and modified, you're likely to change
many of the files from their original configurations. The important part is being able to explain
changes that occur, particularly on executable files.

21.1.3.2. Checking packages prior to installation

From time to time, you may obtain precompiled software from various sources to add to your
system. This may include updated versions of software you already have or new software you don't
yet have. It's always best to obtain package files from a trusted source, such as the manufacturer or
a well-known distributor. However, as an added safeguard. you may wish to verify that the
packages you obtain have not been tampered with or otherwise corrupted. To check an RPM file, use
the --checksig option:

T The file's modification time (or mtime) has changed.

D Device file has changed.

U The file's user/owner has changed.

G The file's group has changed.

M The file's mode (permissions and file type) has changed.

? Unknown or unexpected result.

It can be helpful to monitor all of the packages on your system and track changes to the resulting
list on a regular basis. To check all installed packages, use the a verification option as follows:

rpm -Va
S.5....T c /etc/exports
S.5....T c /etc/hosts.deny
S.5....T c /etc/printcap
S.5....T c /etc/services
.M...... /root
S.5....T c /usr/share/applnk/Multimedia/aktion.kdelnk
S.5....T c /etc/info-dir
..5....T c /etc/mime.types
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/srm.conf
missing /home/httpd/html/index.html
missing /home/httpd/html/poweredby.gif
S.5....T c /etc/named.conf
S.5....T c /var/named/named.local
.M...... /dev/hdc
.M...... /dev/log
.M?....T /dev/printer
.M...... /dev/pts
......G. /dev/tty0
(... list continues ...)

This list will be large. As your system is configured, upgraded, and modified, you're likely to change
many of the files from their original configurations. The important part is being able to explain
changes that occur, particularly on executable files.

21.1.3.2. Checking packages prior to installation

From time to time, you may obtain precompiled software from various sources to add to your
system. This may include updated versions of software you already have or new software you don't
yet have. It's always best to obtain package files from a trusted source, such as the manufacturer or
a well-known distributor. However, as an added safeguard. you may wish to verify that the
packages you obtain have not been tampered with or otherwise corrupted. To check an RPM file, use
the --checksig option:

rpm --checksig
 --nopgp fileutils-4.0-1.i386.rpm
fileutils-4.0-1.i386.rpm: size md5 OK

The size md5 OK status indicates that size and md5 checksum tests passed for the .rpm file. This
means that the size of the file and its checksum matched expected values. (A checksum is a
calculated value based on the contents of a file (or other piece of information) used as a sort of
"fingerprint.") A NOT OK status could indicate a problem. In this example, the --nopgp option is also
used to ignore PGP signatures, which may be necessary for you unless you have PGP installed and
configured on your system.

21.1.4. SGID Workgroups

This Objective requires an understanding of the SGID mode bit and its application to a directory.
When SGID is set on a directory, new files created within that directory are assigned the same group
ownership as the directory itself. This is explored in detail in Chapter 6, "Objective 5: Use File
Permissions to Control Access to Files." If you're currently preparing for Exam 102, be sure to refer
back to Part I for a refresher on SGID.

21.1.5. Password Management

When a user calls saying she's forgotten her password, you need to use the superuser account to
create a new one for her:

passwd bsmith
Changing password for user bsmith
New UNIX password:(new password)
Retype new UNIX password:(new password again)
passwd: all authentication tokens updated successfully

Resist the temptation to use an easily guessed password, even if you expect the user to change it
immediately.

Linux offers you the ability to set expiration dates on passwords. This is done to limit their lifetime,
which presumably enhances security by forcing password changes. If a password has been
discovered or broken, the password change will eventually correct the security lapse. The chage
command configures password aging parameters on a per-user basis when using password aging.
The following parameters are defined:

Minimum password age

The minimum number of days between password changes.

Maximum password age

The maximum number of days between password changes. The user is forced to change his
password before using the account after this number of days has elapsed without a password
change.

Last password change

The date on which the password was last changed.

Password expiration warning

The number of days' warning that are issued in advance of a password expiration.

Password inactive

The number of days of inactivity the system allows before locking a password. This is an
automated way of avoiding stale but valid user accounts.

Account expiration date

The date on which an account expires.

Syntax

chage user

chage [options] user

Description

In the first form without options, chage is interactive. In the second form, chage may be used
with parameters specified via options on the command line.

Options

-d lastday

lastday is the number of days between the last password change and January 1, 1970.
As an administrator, you may need to modify this value. lastday may also be specified
as a date in /MM/DD/YY format.

-m mindays

mindays is the minimum number of days between password changes. This prevents a

user from making multiple password changes at one time.

-l

List a user's password settings.

-Eexpiredate

expiredate is a date on which an account will no longer be accessible. Like lastday, it is

stored as the number of days since January 1, 1970, and may be specified as a date in
/MM/DD/YY format.

-Iinactive

inactive is the number of days of inactivity allowed after a password expires before an
account is locked. A value of disables the inactive feature.

-Mmaxdays

maxdays is the maximum number of days that a password remains valid. This forces

users to change their passwords periodically.

-W warndays

warndays is the number of days before a password expires that the user is warned of the

upcoming expiration.

Examples

User bsmith is to be provided with a password that cannot be changed more than once every 2
days, that must be changed at least every six months (180 days), that retains its default 7-
day warning interval, that is set to lock after three weeks' of inactivity, and that expires
altogether at the end of 2007. The following interactive session with chage makes these
settings:

chage bsmith
Changing the aging information for bsmith
Enter the new value, or press return for the default
 Minimum Password Age [0]: 2
 Maximum Password Age [99999]: 180
 Last Password Change (MM/DD/YY) [02/10/07]:<return>
 Password Expiration Warning [7]: <return>
 Password Inactive [0]: 21
 Account Expiration Date (MM/DD/YY)
 [12/31/69]: 12/31/2007

This creates the same settings using the command line:

chage -m 2 -M 180 -I 21 -E 12/31/2007 bsmith

If you wish to set these parameters for groups of users or everyone on the system, you could create
a simple shell script to loop over all users in /etc/passwd and run the chage command with options.

The information on password aging is stored in either the /etc/passwd file or, if shadow passwords
are enabled, in the /etc/shadow file.

21.2. Objective 2: Set Up Host Security

Once a Linux system is installed and working, you may need to do nothing more to it. However, if
you have specific security needs or just want to be cautious, you'll want to implement additional
security measures on your system.

21.2.1. Shadow Passwords

The shadow password system enhances system security by removing encrypted passwords from the
publicly available /etc/passwd file and moving them to the secured /etc/shadow file. This prevents
users from running password-cracking programs against all of the encrypted passwords on your
system.

Shadow passwords are covered in the section "The Shadow Password and Shadow Group Systems"
in Chapter 18, which describes user management. In order to secure a system, it is a good idea to
implement shadow passwords if they aren't already. You can check this by looking for /etc/shadow
and verifying that the user list matches the one in /etc/passwd. If shadow passwords are not
enabled, you may enable them by entering the pwconv command with no arguments. In the unlikely
event that you use group passwords, you should also enable group shadowing with grpconv.

21.2.2. inetd Minimalism

As mentioned in the "Objective 1: Configure and Manage inetd, xinetd, and Related Services" section
in Chapter 20, inetd and /etc/inetd.conf (its configuration file) handle access to many system
services. Despite the use of TCP wrappers on these services, the best security can be achieved by
simply not offering services that aren't explicitly needed. Do this by removing or commenting out
lines in inetd.conf for services that are unnecessary. For example, to eliminate the talk and finger
servers from your system, comment their configuration lines:

#talk dgram udp wait root /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait root /usr/sbin/tcpd in.ntalkd
#finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

After making this change, you must instruct inetd to reconfigure itself. For example:

finger root@localhost
[localhost]
Login: root Name: root
Directory: /root Shell: /bin/bash
On since Sat Feb 12 00:11 (EST) on tty1
 2 hours 48 minutes idle (messages off)
On since Sat Feb 12 01:11 (EST) on ttyp1 (messages off)

No mail.
No Plan.
vi /etc/inetd.conf
killall -HUP inetd
finger root@localhost
[localhost]
finger: connect: Connection refused

In this example, finger is first demonstrated to work. Then inetd is edited to disable fingerd, inetd is
reconfigured, and finger stops working.

21.2.3. Logging and Superuser Mail

The syslog system is a constant companion to the security-conscious system administrator. Its logs
are necessary to review security breaches and to trace possible perpetrators. The configuration of
syslogd is described in Chapter 18, "Objective 3: Configure and Use System Log Files to Meet
Administrative and Security Needs."

Some system responses to security problems can come in the form of email to the root user. You
may wish to log in as root regularly to check its mail, but you can make such checking passive by
instructing Sendmail to forward root's mail to administrators. To do so, add a line like this to
/etc/aliases:

root: jdoe, bsmith

Then execute the newaliases command to recompile the aliases database:

newaliases

Now all email for root goes to both jdoe and bsmith (but not root), who will presumably act on
important messages.

21.2.4. Watching for Security Announcements

Another important function of system administration is to keep on top of any new bugs and exploits
in the software on your system. There are countless sites on the Web you can watch to find
announcements about such things, but two stand out and could be mentioned on Exam 102:

CERT

In 1988, a small Computer Emergency Response Team formed at the Software Engineering
Institute (SEI), a research and development center operated by Carnegie Mellon University.

The Defense Advanced Research Projects Agency (DARPA) originally funded its work. It is now
known as the CERT Coordination Center (CERT/CC) , and CERT no longer officially stands for
anything. Funding comes from a mix of federal, civil, and private sources.

CERT/CC is made up of network security experts who provide 24-hour technical assistance for
responding to computer security incidents. It also analyzes product vulnerabilities, publishes
technical documents, and presents security-related training courses. CERT/CC may be found
at http://www.cert.org. Specifically, security advisories may be found at
http://www.cert.org/advisories.

A periodic visit to the CERT/CC site can keep you informed of developments in computer
security and on problems found with various software packages.

BUGTRAQ

In 1993, a mailing list was created to publicly disclose demonstrated bugs in popular software,
with the intent of forcing responsible parties to fix the problems quickly. The list has grown
into a respected resource on security topics and has thousands of subscribers. To subscribe to
the BUGTRAQ list, follow the instructions in the BUGTRAQ section of
http://www.securityfocus.com. Archives of BUGTRAQ are also available there.

Attention to these and other resources can help you keep your system up-to-date. You'll be aware of
problems found in software you're using, and since updates are almost always produced quickly in
response to these notifications, you can upgrade, patch, or replace software as needed to keep your
systems secure.

http://www.cert.org
http://www.cert.org/advisories
http://www.securityfocus.com

21.3. Objective 3: Set Up User-level Security

Even after you've taken the precautions listed earlier, the potential for valid users of your system to
cause problems by consuming resources still exists. Such a problem could be accidental, but if it
happens intentionally, it is called a denial of service (DoS) attack. For example, a user could create
processes that replicate themselves and never exit. Eventually your system would grind to a halt
because of thousands of processes, each trying to create more clones. You could also have a user
begin allocating memory until the system cannot cope with the requests. In either case, you'd
probably need to restart the system, if it responds at all. Clearly, prevention is more desirable for
everyone.

You can prevent these scenarios without undue restrictions on users by using ulimit . This is a bash
built-in command that sets maximums on various system resources for users. To enforce limits on
users, include ulimit commands in /etc/profile.

Syntax

ulimit [options] [limit]

Description

The bash built-in ulimit provides control over resources available to the shell and its child
processes. For each resource, two limits may be set: a hard limit and a soft limit. Hard limits
can be changed only by the superuser; soft limits may be increased by users up to the value of
the hard limit. Hard and soft limits are specified with the special -H and -S options,
respectively. Other options specify specific limits. If an option is provided with a limit value,
the corresponding limit is set. If limit is not provided, the current limit is displayed. limit is
either the special word unlimited or a numeric value.

Options

-a

Display all current limits. This option does not accept a limit value.

-f

The maximum size of files created by the shell. This is the default resource if options are
not specified.

-u

The maximum number of processes available to a single user.

-v

The maximum amount of virtual memory available to the shell.

-H

Specify the hard limit. Unless -H is specified, the soft limit is assumed.

-S

Explicitly specify the soft limit. This is the default.

Example 1

Display all limits for an account:

$ ulimit -a
core file size (blocks) 1000000
data seg size (kbytes) unlimited
file size (blocks) unlimited
max memory size (kbytes) unlimited
stack size (kbytes) 8192
cpu time (seconds) unlimited
max user processes 256
pipe size (512 bytes) 8
open files 1024
virtual memory (kbytes) 2105343

Example 2

Set the maximum number of processes to 128:

$ ulimit -Hu 128

Example 3

Set the maximum working number of processes to 128 but allow the user to raise her limit as
high as 150:

$ ulimit -Su 128
$ ulimit -Hu 150

Chapter 22. Exam 102 Review Questions
and Exercises
This section presents review questions to highlight important concepts and hands-on exercises that
you can use to gain experience with the Topics covered on the LPI's Exam 102. The exercises can be
particularly useful if you're not accustomed to routine Linux administration and should help you
better prepare for the exam. To complete the exercises, you need a working Linux system that is not
in production use. You might also find it useful to have a pen and paper handy to write down your
responses as you work your way through the review questions and exercises.

22.1. Kernel (Topic 1.105)

22.1.1. Review Questions

What is the procedure for removing and installing modules in the running kernel? Why is this
procedure necessary?

1.

Describe the differences between the insmod and modprobe commands.2.

Which file stores optional parameters used by kernel modules?3.

Describe the nature of a monolithic kernel and the consequences and/or advantages of using
one.

4.

Name the major steps required to configure, build, and install a custom kernel and its modules.5.

22.1.2. Exercises

Using the procedures found in Chapter 13, as well as the kernel HOWTO, configure, build, and
install a custom kernel and modules. Boot the new kernel. Does your system behave normally?
Are you able to boot both your original kernel and the new one?

1.

Using lsmod, examine the modules loaded in your running kernel.

Try removing a noncritical module, for example, rmmod sound. Did the command fail
because the module was in use?

a.

Try inserting a module, for example, modprobe fat, followed by lsmod. Did the module get
inserted correctly? Remove it with rmmod fat. Was the removal successful?

b.

What is logged in /var/log/messages during these changes?c.

2.

22.2. Boot, Initialization, Shutdown, and Runlevels (Topic
1.106)

22.2.1. Review Questions

Name and briefly describe the two parts of LILO. Which part has a configuration file and what
is that file called?

1.

What are the ramifications relating to new hardware when running a monolithic kernel?2.

Which three runlevels are well-defined across Linux distributions, and what actions do they
perform?

3.

Describe a situation that would imply the need to switch to single-user mode.4.

How can you shut down and halt a Linux system immediately using shutdown?5.

22.2.2. Exercises

22.2.2.1. Exercise 1.106-1. Boot

Examine the contents of /etc/lilo.conf. How many kernel images or operating systems are
configured for load by LILO? Explain the options you find in the file.

1.

Install the boot loader by executing lilo. What happened?2.

Boot your system and manually specify the root filesystem using the root= keyword at the LILO
prompt. What happens if you specify the wrong partition?

3.

Use dmesg and less to examine boot-time messages. Compare what you find to the latest boot
messages found in /var/log/messages.

4.

Boot your system and use the single or 1 option to boot directly into single-user mode.5.

22.2.2.2. Exercise 1.106-2. Runlevels

After booting to single-user mode, switch to your normal runlevel using init n.

a.

b.

1.

Does the system come up as expected?a.

Enter init 1 to go back to single-user mode. What daemons are still running?b.

1.

Familiarize yourself with the contents of a few of the scripts in /etc/init.d (your system
directories may vary).

2.

Look in rc0.d through rc6.d for links to the scripts you examined. How are the scripts used? In
which runlevels is the corresponding service active?

3.

Shut down your system with init 0.4.

Shut down your system with shutdown -h now.5.

22.3. Printing (Topic 1.107)

22.3.1. Review Questions

What does lpd do to handle incoming print jobs destined for empty print queues?1.

Describe the kinds of information included in /etc/printcap.2.

What is the function of a print filter?3.

What does the -P option specify to the print commands?4.

When is it useful to pipe into the standard input of lpr instead of simply using a filename as an
argument?

5.

How is the Ghostscript program used in printing to a non-PostScript printer?6.

What filter is used on a Linux system to print to remote printers on Windows clients?7.

22.3.2. Exercises

On a system with an existing printer, examine /etc/printcap. Which print filter is used for the
printer? Which queue or queues are directed at the printer?

1.

Check the printer status with lpq -P printer and lpc status. Print to the queue using lpr -P
printer file.

2.

Examine /var/spool/lpd for the spool directory of your print queue. Examine the files you find
there.

3.

22.4. Documentation (Topic 1.108)

22.4.1. Review Questions

Describe the PAGER environment variable.

How does it affect the man facility?a.

If PAGER is not set, how does man display output?b.

Does this environment variable affect the info facility?c.

1.

In response to your query on a library function, man returns a page on an identically named
user command. Why does this happen?

How do you display the page for the function and not the command?a.

How do you display both?b.

2.

Name the program that displays GNU texinfo pages.3.

22.4.2. Exercises

22.4.2.1. Exercise 1.108-1. man and /usr/doc

Run a man inquiry as follows:

$ man -a -Pless mkfifo

There are both an mkfifo command and an mkfifo function. You'll be looking at the mkfifo
command from section 1 of the manual. Note MKFIFO(1) at the top of the page.

Press q to terminate the pager program. The pager is then invoked again and displays the
mkfifo function from section 3 of the manual. Note MKFIFO(3) at the top of the page.

Run the man command again, using the -Pmore option as follows:

1.

$ man -a -Pmore mkfifo

What differences do you see in the output?a.

What does the -P option do?b.

Run another man inquiry as follows:

$ man -d ln

What output do you get from man?a.

What is the -d option?b.

Did you see information on the ln command?c.

2.

Now examine the man configuration file:

$ less /etc/man.config

3.

Notice how the contents of this file coincide with the result you received from the -d option.4.

22.4.2.2. Exercise 1.108-4. Acting as a Linux helpdesk

Suppose you are a help desk technician in a mixed-systems office, and you are relatively new to
Linux. A user calls your help desk with a general question about Linux system shutdown. He
indicates that he's heard from Unix gurus that using the halt command could be unsafe. He also
reports getting frustrated with Windows NT users who use the Ctrl-Alt-Delete key combination on his
system console, which causes his Linux server to reboot. He asks for specific information on:

How to safely shut down Linux

How to allow nonsuperusers the ability to shut down cleanly

How to disable the Ctrl-Alt-Delete shutdown

Let's further assume you don't know how to answer these questions and that you have access to
system documentation. Complete the following steps:

Use the man facility to investigate the halt command. Based on what you find there, answer the
following:

a.

b.

1.

In what section of the manual is halt located? Why?a.

Determine if it is "safe" to use halt to shut down Linux. What caused the Unix gurus to
instruct the caller that using halt was not safe?

b.

Determine if it would still be safe if the user uses the -n option to halt.c.

Is it appropriate to use halt on a multiuser system to which others are logged in?d.

Use man on the other commands referred to by the halt manpage in the SEE ALSO
section.

e.

Evaluate the other commands:

Which commands can be used to shut down the system in place of halt?a.

Which commands would be the most appropriate for shutting down a multiuser system?b.

2.

From what you see in the manpages:

Where is the Ctrl-Alt-Delete system shutdown configured?a.

Explain how to disable it.b.

Do you need to reboot to enable the change? If so, why?c.

How can you configure the system to allow specified nonsuperusers to shut down cleanly?d.

If you use the info command, are you provided with additional information?e.

3.

After successfully following your instructions, the user calls again. This time he is puzzled by
error messages that are produced when his users attempt a clean shutdown from multiuser
mode using the shutdown command without arguments.

Reevaluate the manpages in question. Are there any clues to common problems? (Hint:
see BUGS.)

a.

State the typical shutdown command to issue from multiuser mode.b.

4.

22.5. Shells, Scripting, Programming, and Compiling
(Topic 1.109)

22.5.1. Review Questions

What characteristic of a bash variable changes when the variable is exported?1.

Describe the concept of shell aliases.2.

When is a shell function more suitable than a shell alias?3.

Describe the function of /etc/profile.4.

What must the author of a new script file do to the file's mode?5.

How does the shell determine what interpreter to execute when starting a script?6.

How can a shell script use return values of the commands it executes?7.

22.5.2. Exercises

Using bash, enter the export command and the set command. Which set of variables is a
subset of the other? What is the difference between the variables reported by export and those
reported by set? Finally, enter which export. Where is the export command located?

1.

Examine /etc/profile. How is the default umask set? What customizations are done in the file
for system users?

2.

Create a simple bash script using the #!/bin/bash syntax, set the executable mode bits, and
execute the shell. If it runs correctly, add errors to see the diagnostic messages. Have the
script report both exported and nonexported variables. Verify that the nonexported variables
do not survive the startup of the new shell.

3.

22.6. Administrative Tasks (Topic 1.111)

22.6.1. Review questions

Why is it considered insecure to store encrypted passwords in /etc/passwd?

What is the alternative?a.

When the alternative is implemented, what happens to the password field in /etc/passwd?b.

1.

What would happen to a user account if the default shell were changed to /bin/false?2.

When a new account is created with useradd -m, what files are used to populate the new home
directory?

3.

Compare and contrast the execution of /etc/profile and /etc/bashrc.4.

What is the complete filename for the file where most syslog messages are sent?5.

Describe the three syslog parameters: facility, level, and action.6.

Compare and contrast cron and at.7.

Is there a cron command?8.

State the format of a crontab file, describing each of the six fields.9.

What does an asterisk mean in crontab fields 1 through 5?10.

Compare and contrast the differential and incremental backup methods.11.

Why is mt usually used along with tar to implement simple backup schemes?

What special measures must be taken with regard to device names when using mt for
multiple-volume tar backups?

a.

12.

22.6.2. Exercises

22.6.2.1. Exercise 1.111-1. User accounts

1.

Examine the /etc/passwd file on your system.

Is this the only means of user authentication on your system?a.

Are shadow passwords in use?b.

1.

Repeat the first exercise for groups.2.

If you have an expendable system available, experiment with implementing shadow
passwords.

3.

Add a user with useradd, including a new home directory populated with files from /etc/skel.4.

Add a group with groupadd.5.

Use usermod to add your new user to the new group.6.

Set the new user's password using passwd.7.

Log into the new account, and use newgrp to change to the new group.8.

Delete the new group and user (including home directory) using groupdel and userdel.9.

22.6.2.2. Exercise 1.111-2. User environment and variables

Examine the contents of /etc/skel. How similar are they to your own home directory?1.

Review the contents of /etc/profile and /etc/bashrc.2.

22.6.2.3. Exercise 1.111-3. Syslog and log files

Add the local5 facility to your configuration as described in Chapter 18. Use logger to write to
your new log file, and verify its contents. Compare your log entries with those in
/var/log/messages.

1.

Examine /etc/logrotate.conf. What happens after /var/log/messages is rotated?2.

22.6.2.4. Exercise 1.111-4. cron and at

Add an entry in your personal crontab file to perform a task, such as sending you an email
message. Confirm that the action occurs as expected. Experiment with the five time specifiers.

1.

Schedule a command in the future with at. How is at different from cron?2.

22.6.2.5. Exercise 1.111-5. Backup

Imagine that you have recently been made responsible for an important production system. No
formalized backup procedures are in place. Backup operations that are run are not cataloged
and media are scattered. Now imagine that after a holiday weekend the system has crashed
due to a power failure. Upon restart, the system has severe disk errors requiring manual fsck.
After repairs are complete, the system is again usable, but users complain about missing,
truncated, or corrupt files. If a formalized backup procedure had been in place, would the
outcome have been different?

1.

If you have a tape drive available, experiment with tar, creating small tarfiles on a tape.

Using the nonrewinding tape device, create multiple archives on the tape, and use mt to
position among them.

a.

Verify that the various archives you create are accessible to tar.b.

2.

22.7. Networking Fundamentals (Topic 1.112)

22.7.1. Review Questions

Describe how the subnet mask affects the maximum number of hosts that can be put on a
TCP/IP network.

1.

Name the three default address classes and the subnet masks associated with them.2.

The UDP protocol is said to be connectionless. Describe this concept and its consequences on
applications that use UDP.

3.

What user command is frequently used to send ICMP messages to remote hosts to verify those
hosts' functionality?

4.

Describe the contents and use of /etc/hosts.5.

In what configuration file are DNS servers listed? What is intended if the local loopback address
is included there on a workstation?

6.

Name two modes of the netstat command and the program's output in each case.7.

Describe why the route command is needed for a single interface on a nonrouting workstation.8.

How does traceroute determine the identities of intermediate gateways?9.

Describe the advantages and consequences of implementing DHCP.10.

What utility is used to configure and dial a modem prior to the creation of a PPP connection?11.

What are the four authentication modes commonly used during PPP negotiations?12.

22.7.2. Exercises

Examine your system's TCP/IP configuration using ifconfig eth0 or a similar command for your
network interface. Are you using DHCP? What type of subnet are you running with? Is it a class
A, B, or C address? Are you using a private address? Experiment with taking the interface
offline using ifconfig eth0 down and ifconfig eth0 up.

1.

Examine the contents of /etc/services.2.

Use the dig command to locate information from DNS servers about a domain name.3.

Examine your /etc/hosts file. How much name resolution is accomplished in this file manually?4.

Examine your /etc/resolv.conf file. How many DNS servers do you have available?5.

6.

4.

5.

Execute netstat -r. How many routes are reported? What are the routes to the local network
and interface for?

6.

Use traceroute to examine the route to a favorite web site.7.

Using a standard modem (not a Winmodem), use minicom to connect to the modem and verify
that it responds to the AT command.

8.

Execute a manual PPP connection as described in Chapter 19. Does your modem successfully
connect to your ISP? Examine /var/log/messages for information on the PPP session.

9.

22.8. Networking Services (Topic 1.113)

22.8.1. Review Questions

Describe the function of inetd and how it is configured.1.

Describe the TCP wrappers security tool and how it can enhance security on a networked
system.

2.

Describe the use of mail aliases and how to enable new aliases.3.

What files are used to configure the Apache web server?4.

How does the administrator share a directory using NFS?5.

How does the administrator mount a directory shared by a remote NFS server?6.

What is the function of nmbd?7.

Which file is used to configure smbd?8.

Describe the function and location of the resolver.9.

Name two programs that can be used to do queries against an NFS server.10.

Describe in general terms the main difference between BIND v4 and BIND v8 configuration
files.

11.

22.8.2. Exercises

Examine your xinetd.d directory. Are telnetd and ftpd enabled? If so, is TCP wrappers (tcpd)
configured for them?

1.

Enable TCP wrappers and place ALL:ALL in /etc/hosts.deny, then attempt a Telnet session. Is
the inbound request ignored as expected?

2.

Familiarize yourself with /etc/sendmail.cf and /etc/aliases. Run newaliases.3.

Familiarize yourself with Apache configuration files in /etc/httpd/html/*.conf (or your directory
location).

4.

Examine your /etc/exports file, if it exists. Are you sharing NFS volumes?5.

Examine your /etc/smb.conf file. Are you sharing Samba printers or volumes?6.

Examine your resolver configuration in /etc/resolv.conf, /etc/hosts.conf, and /etc/nsswitch.conf.7.

8.

6.

Is the local /etc/hosts file consulted prior to DNS servers?
7.

By examining /etc/named.conf and noting format details, determine what general release of
BIND you are using.

8.

22.9. Security (Topic 1.114)

22.9.1. Review Questions

What daemon is associated with the control files /etc/hosts.allow and /etc/hosts.deny.1.

In general terms, describe a method to locate setuid programs in the local filesystem. Why
might an administrator do this routinely?

2.

What is the function of the md5sum utility?3.

Why might a user run ssh instead of telnet?4.

Describe shadow passwords and the file where the passwords are stored.5.

22.9.2. Exercises

Use find as described in Chapter 21 to locate setuid files. Is the list larger than you expected?
Are the entries on your list justifiably setuid programs?

1.

Use the md5sum utility on a binary program file and examine its output.2.

Chapter 23. Exam 102 Practice Test
Exam 102 consists of approximately 72 questions. Most are multiple-choice single-answer, a few are
multiple-choice multiple-answer, and the remainder are fill-in questions. No notes or other materials
are permitted, and you have 90 minutes to complete the exam. The answers are provided at the end
of this chapter.

23.1. Questions

What section of the online user's manual and command reference holds administrative (not
user) commands? Select one.

Section 1a.

Section 2b.

Section 8c.

Section nd.

Section se.

1.

In the bash shell, entering the !! command has the same effect as which one of the following?

Ctrl-P and Entera.

Ctrl-N and Enterb.

Ctrl-U and Enterc.

!-2d.

!2e.

2.

Name the command that displays pages from the online user's manual and command
reference.

3.

Which of the following commands displays the comments from a bash script? Select all that
apply.

find "^#" /etc/rc.d/rc.locala.

sed '/^#/ !d' /etc/rc.d/init.d/httpdb.

grep ^# /etc/rc.d/init.d/httpdc.

grep ^# /etc/passwdd.

locate "^#" /etc/skel/.bashrce.

4.

Which one of the following answers creates an environment variable VAR1, present in the
environment of a bash child process?

a.

5.

VAR1="fail" ; export VAR1a.

VAR1="fail" \ export VAR1b.

VAR1="fail"c.

set VAR1="fail" ; enable VAR1d.

export VAR1 \ VAR1="fail"e.

5.

Name the full path and name of the file that holds most of the information on system user
groups.

6.

Which one of the following outcomes results from the following command?

chmod g+s /home/software

The SUID bit will be set for /home/software.a.

The SGID bit will be set for /home/software, preventing access by those not a member of
the software group.

b.

The SGID bit will be set for /home/software, to keep group membership of the directory
consistent for all files created.

c.

The sticky bit will be set for /home/software.d.

The sticky bit will be applied to all files in /home/software.e.

7.

Consider the following script, stored in a file with proper modes for execution:

#!/bin/bash
for $v1 in a1 a2
do
echo $v1
done

Which one of the following best represents the output produced on a terminal by this script?

in

a1

a2

a.

a1

a2

b.

c.

8.

b.

$v1

$v1

$v1

c.

No output is produced, but the script executes correctly.d.

No output is produced, because the script has an error.e.

Which one of the following commands verbosely extracts files from a tar archive on a magnetic
tape device?

tar cvf /dev/st0a.

tar cvf /dev/ttyS0b.

tar xvf /dev/st0c.

tar xvf /dev/ttyS0d.

tar rvf /dev/st0e.

9.

Alex wants to protect himself from inadvertently overwriting files when copying them, so he
wants to alias cp to prevent overwrite. How should he go about this? Select one.

Put alias cp='cp -i' in ~/.bashrc.a.

Put alias cp='cp -i' in ~/.bash_profile.b.

Put alias cp='cp -p' in ~/.bashrc.c.

Put alias cp='cp -p' in ~/.bash_profile.d.

Put alias cp = 'cp -I' in ~/.bashrc.e.

10.

Monica consults the /etc/passwd file expecting to find encrypted passwords for all of the users
on her system. She sees the following:

jdoe:x:500:500::/home/jdoe:/bin/bash
bsmith:x:501:501::/home/bsmith:/bin/tcsh

Which of the following is true? Select one.

Accounts jdoe and bsmith have no passwords.a.

Accounts jdoe and bsmith are disabled.b.

The passwords are in /etc/passwd-.c.

The passwords are in /etc/shadow.d.

e.

11.

c.

d.

The passwords are in /etc/shadow-.e.

What variable holds the list of directories searched by the shell to find executable programs?12.

Where does The Linux System Administrators' Guide originate? Select one.

Red Hat Software, Inc.a.

O'Reilly Media, Inc.b.

The Free Software Foundationc.

The Linux Documentation Projectd.

Usenet newsgroup comp.os.linuxe.

13.

Which one of these files determines how messages are stored using syslogd?

/etc/sysconfig/logger.confa.

/etc/syslog.confb.

/etc/syslogd.confc.

/etc/conf.syslogd.

/etc/conf.syslogde.

14.

How many hosts can exist on a subnet with mask 255.255.255.128? Select one.

512a.

256b.

128c.

127d.

126e.

15.

When running a text-mode FTP client, which command retrieves multiple files? Select one.

get *.txta.

retrieve *.txtb.

mget *.txtc.

mretrieve *.txtd.

get -m *.txte.

16.

17.

d.

e.

For an Internet workstation with a single network interface, what routes must be added to
interface eth0 after it is initialized? Select one.

Nonea.

Interfaceb.

Interface and default gatewayc.

Interface, local network, and default gatewayd.

17.

On a Linux server, what service is most likely "listening" on port 25? Select one.

Apachea.

Newsb.

Sendmailc.

Sambad.

FTPe.

18.

Which one of these protocols is used as a datagram delivery service by the remaining three?
Select one.

TCPa.

IPb.

UDPc.

ICMPd.

19.

Which command will display information about Ethernet interface eth0? Select one.

cat /proc/eth/0a.

ifconfig eth0b.

ipconfig eth0c.

ipconfig /dev/eth0d.

cat /etc/eth0.confe.

20.

When is the PPP interface ppp0 created? Select one.

At boot time by the kernela.

b.

c.

21.

a.

At installation time by mknodb.

At dial-up time by the chatscriptc.

At dial-up time by pppdd.

When the modem powers upe.

What program is run on a client machine to request an IP address from a DHCP server? Select
one.

dhcpda.

inetdb.

pumpc.

dhcp_clientd.

bootpe.

22.

What does the printcap entry sd indicate? Select one.

The system default printera.

A printer's spool directoryb.

A device file for the printerc.

A location where errors are storedd.

The printer drivere.

23.

Where is TCP wrappers configured and where is it enabled?

Configured in tcpd.conf, enabled in tcpd.confa.

Configured in inetd.conf, enabled in inetd.confb.

Configured in hosts.deny and hosts.allow, enabled in inetd.confc.

Configured in inetd.conf, enabled in hosts.deny and hosts.allowd.

24.

Which of the following is a valid entry in /etc/fstab for a remote NFS mount from server fs1?
Select one.

fs1:/proc /mnt/fs1 nfs defaults 9 9a.

/mnt/fs1 fs1:/proc nfs defaults 0 0b.

fs1:/home /mnt/fs1 nfs defaults 0 0c.

d.

e.

25.

b.

c.

/mnt/fs1 fs1:/home nfs defaults 0 0d.

/home:fs1 /mnt/fs1 nfs defaults 0 0e.

Which network protocol is used by Telnet and FTP? Select one.

ICMPa.

UDPb.

TCPc.

DHCPd.

PPPe.

26.

Which of the following programs will display DNS information for a host? Choose all that apply.

hosta.

nslookupb.

nsstatc.

digd.

pinge.

27.

Consider the following entry in /etc/exports:

/home pickle(rw,no_root_squash)

How is this entry handled by the NFS daemon? Select one.

Directory /home is shared to everyone, without requiring passwords.a.

Directory /home is shared to everyone, requiring passwords.b.

Directory pickle is mounted on /home.c.

Root is not allowed access to the shared directory.d.

The mount attempt will fail.e.

28.

From the user's point of view, which answer describes the appearance of an NFS mounted
directory? Select one.

A new device in /dev.a.

b.

c.

29.

a.

A new local volume accessed using a volume letter, such as D:.b.

A new local volume accessed using the NFS server's name.c.

Part of the local filesystem, accessed using ordinary pathnames.d.

Part of the NFS server's filesystem, accessed using the NFS server's name.e.

Which of the following statements regarding the ICMP protocol is not true? Select one.

ICMP is connectionless.a.

ICMP provides network flow control.b.

ICMP is also known as UDP.c.

ICMP is used by ping.d.

30.

What is CHAP? Select one.

The PPP chat script.a.

An authentication protocol using clear text.b.

An authentication protocol embedded in the PPP data stream.c.

The pppd configuration utility.d.

A modem communications protocol.e.

31.

What server daemon resolves domain names to IP addresses for requesting hosts?32.

During the two-way communication that takes place during a chat script used to start PPP,
what is chat communicating with? Select one.

The pppd daemona.

The PPP serverb.

The kernelc.

The modemd.

The syslogd daemone.

33.

What function does a print filter serve? Select one.

It collates output from multiple users.a.

It translates various data formats into a page description language.b.

It rejects print requests from unauthorized users.c.

d.

e.

34.

b.

c.

It rejects print requests from unauthorized hosts.d.

It analyzes print data and directs print requests to the appropriate lpd.e.

Consider the following excerpt from file /etc/resolv.conf of a Linux workstation:

nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2

What can be said about this configuration? Select one.

Two DNS servers on the public network are being used for resolution.a.

One DNS server on the local network is being used for resolution.b.

The configuration contains errors that will prevent the resolver from functioning.c.

A caching-only name server is running.d.

The resolver library will consult nameserver 192.168.250.2 first.e.

35.

Which of the following is true regarding BIND v4 and BIND v8 configuration files? Select one.

The information is largely the same, but the syntax is different.a.

The syntax is largely the same, but the information is different.b.

The two BIND versions use the same configuration file.c.

BIND v4 uses a binary configuration file instead of text.d.

BIND v8 uses a binary configuration file instead of text.e.

36.

What file is used to configure Sendmail? Include the entire path.37.

Name the file that contains simple mappings between IP addresses and system names.38.

What is the meaning and location of the following kernel configuration file excerpt? Select one.

options opl3 io=0x388

Kernel option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.a.

Kernel module option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.b.

Kernel module opl3 is set to use I/O port 0x388; /usr/src/linux/.config.c.

d.

e.

39.

b.

c.

Kernel option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.d.

Kernel module opl3 is set to use I/O port 0x388; /etc/conf.modules or /etc/modules.conf.e.

What program can be used to interactively change the behavior of a print queue? Select one.

lpda.

lprb.

lpqc.

lprmd.

lpce.

40.

Which of the following represents a valid sequence of commands to compile and install a new
kernel? Select one.

make modules_install; make modules; make bzImage; make clean; make depa.

make dep; make clean; make bzImage; make config; make modules; make
modules_install

b.

make config; make dep; make clean; make bzImage; make modules; make
modules_install

c.

make config; make bzImage; make dep; make clean; make modules; make
modules_install

d.

make dep; make clean; make bzImage; make modules; make modules_install; make
config

e.

41.

What program will display a list of each hop across the network to a specified destination?
Select one.

tracerta.

rttraceb.

traceroutec.

routetraced.

inite.

42.

Which file holds configuration information used during the process of kernel compilation? Select
one.

/usr/src/linux/configa.

/usr/src/linux/.configb.

c.

43.

a.

b.

/usr/src/linux/kernel.confc.

/etc/kernel.confd.

/etc/sysconfig/kernel.confe.

After a PPP connection is established and authenticated, what needs to be done before the
interface can be used? Select one.

Add a route to ppp0.a.

Enable ppp0.b.

ifup ppp0.c.

Run pppd.d.

Turn on the modem.e.

44.

Which of the following is not the name of an Apache configuration file? Select one.

httpd.confa.

html.confb.

srm.confc.

access.confd.

45.

Which statement is true regarding the configuration of a printer on a remote Windows
machine? Select one.

It can be configured like a TCP/IP network-attached printer.a.

The input filter must be set to smbprint.b.

The Windows printer must contain PostScript capability.c.

The rp directive must be used in the printcap file.d.

Linux can't print to Windows printers.e.

46.

What types of files are located in the directory tree specified by the Apache DocumentRoot
configuration directive? Select one.

Apache documentation files.a.

Apache configuration files.b.

Web site HTML files.c.

d.

e.

47.

b.

c.

Web site configuration files.d.

Apache startup and shutdown commands.e.

Which of the following commands will display a listing of files contained in a tar archive tape in
/dev/st0? Select one.

tar cf /dev/st0a.

tar xf /dev/st0b.

tar tf /dev/st0c.

tar -zf /dev/st0d.

tar -zcvf /dev/st0e.

48.

What is the systemwide bash configuration file called? Include the entire path.49.

How can a nonprivileged user configure sendmail to forward mail to another account? Select
one.

She can add a new entry in /etc/aliases.a.

She can create a .forward file containing the new address.b.

She can create an .alias file containing the new address.c.

She can create a sendmail.cf file containing the new address.d.

She cannot forward mail without assistance from the administrator.e.

50.

How does a process indicate to the controlling shell that it has exited with an error condition?
Select one.

It prints an error message to stderr.a.

It prints an error message to stdout.b.

It sets an exit code with a zero value.c.

It sets an exit code with a nonzero value.d.

It causes a segmentation fault.e.

51.

Consider the following trivial script called myscript:

#!/bin/bash
echo "Hello"
echo $myvar

52.

Also consider this command sequence and result:

set myvar='World'
./myscript
Hello

The script ran without error but didn't echo World. Why not? Select one.

The syntax of the set command is incorrect.a.

The script executes in a new shell, and myvar wasn't exported.b.

The #!/bin/bash syntax is incorrect.c.

The $myvar syntax is incorrect.d.

The script is sourced by the current shell, and myvar is available only to new shells.e.

What does this short configuration file excerpt tell the Samba daemon? Select one.

[home]
 path = /home
 guest ok = yes
 writable = yes

The location of the Samba software is rooted at /home.a.

A printer called home uses /home as a spool directory.b.

A share called home is located on /home and is writable by authenticated users.c.

A share called home is located on /home and is writable by anyone.d.

A share called home on remote system guest will be mounted at /home.e.

53.

How can the finger daemon be enabled? Select one.

Uncomment the in.fingerd line in /etc/inetd.conf.a.

Use cron to run fingerd once per minute.b.

Include fingerd in the TCP wrappers configuration.c.

Remove fingerd from hosts.deny.d.

Add fingerd to hosts.allow.e.

54.

23.2. Answers

c. Section 8 holds administrative commands such as fsck and mkfs.1.

a. The !! command history expansion executes the previous command. Entering the Ctrl-P
keystroke uses the Emacs key-binding bash to move up one line in the history; pressing Enter
executes that command.

2.

The man command displays manpages.3.

b and c. find and locate do not search the contents of files. /etc/passwd is not a script.4.

a. The variable must be set and exported. The semicolon separates the two commands.5.

/etc/group.6.

c. The g indicates that we're operating on the group privilege, and the +s indicates that we
should add the "set id" bit, which means that the SGID property will be applied.

7.

e. The script has an error and will not produce the expected output. In a for statement, the
loop variable does not have the dollar sign. Changing line 2 to for v1 in a1 a2 will correct the
error and produce the output in answer B.

8.

c. tar should be used with the extraction option x and a tape device, such as SCSI tape
/dev/st0.

9.

a. cp should be aliased to the interactive mode with the -i option in .bashrc. .bash_profile
normally doesn't include aliases.

10.

d. The shadow password system has been implemented, placing all passwords in /etc/shadow
as denoted by the x following the username.

11.

PATH.12.

d. The Linux System Administrators' Guide is a free publication of the Linux Documentation
Project (LDP) and is available online at http://www.tldp.org.

13.

b. /etc/syslog.conf is the configuration file for the syslog daemon syslogd.14.

e. With the top bit of the last byte set in the subnet mask (.128), there are 7 bits left. 27 is 128,
less the network address and broadcast address, leaving 126 addresses for hosts.

15.

c. FTP clients use mget with wildcards.16.

d. Routes to the interface and the network are required to exchange information on the local
LAN. To act as an Internet workstation (i.e., using Netscape), a default gateway is also
necessary.

17.

c. As defined in /etc/services, port 25 is the SMTP port, often monitored by sendmail.18.

b. IP is the underlying datagram protocol.19.

20.

http://www.tldp.org

18.

19.

b. The ifconfig command is used to configure and display interface information. ipconfig is a
Windows utility.

20.

d. PPP interfaces are not persistent. Instead, they are initialized when needed.21.

c. The DHCP client is called pump, after the lady's shoe of the same name. That's an extension
from a boot because DHCP is a descendant from bootp.

22.

b. The spool directory directive looks like this:

sd=/var/spool/lpd/lp

23.

c. The hosts.deny and hosts.allow files contain configuration information for TCP wrappers. The
files won't be used, however, unless tcpd is included in inetd.conf.

24.

c. Answer a attempts to mount the /proc filesystem. Answers b, d, and e have incorrect syntax.25.

c. Both Telnet and FTP are connection-oriented and use TCP for reliable connections.26.

a, b, and d.27.

b. Read/write access is available to everyone, including root.28.

d. NFS-mounted directories seamlessly blend into the local filesystem, requiring no special
syntax for access.

29.

c. While both ICMP and UDP are connectionless, they are different protocols.30.

c. CHAP is one of the PPP authentication techniques that embeds its information inside the PPP
stream. It is an alternative to clear text passwords.

31.

The DNS daemon is named. It is included in a package called BIND.32.

d. The intent of the chat script is to prepare the modem with appropriate settings to establish a
PPP connection.

33.

b. A print server translates formats, such as PostScript to PCL.34.

d. The presence of the localhost address 127.0.0.1 indicates that named is running. Since the
system is a workstation, it's safe to assume that it is not serving DNS to a wider community.

35.

a. BIND v8 has a newer, more modular format, but the information is about the same.36.

/etc/sendmail.cf.37.

/etc/hosts.38.

e. options lines in /etc/modules.conf or /etc/conf.modules configure kernel modules.39.

e. lpc is the line printer control program.40.

c. Answer a is wrong because it installs modules before compiling them. Answers b and e are
wrong because they build the kernel after configuring. Answer d is backward.

41.

c. tracert is a Windows utility with the same function as traceroute.42.

43.

44.

42.

b.43.

a. Just as with any interface, routes must be added before communications can occur.44.

b. Apache uses httpd.conf, srm.conf, and access.conf. Some implementations may roll all of
these files into a single httpd.conf.

45.

b. The smbprint filter is provided by the Samba package for printing to Windows printers.46.

c.47.

c. t is the option to list the contents of an archive.48.

The file is /etc/profile.49.

b. The .forward file is placed in the home directory containing a single line with the target
email address.

50.

d. Zero exit values usually indicate success.51.

b. Instead of using set, the command should have been:

export myvar='World'

This gives the myvar variable to the new shell.

52.

d.53.

a. For security purposes, fingerd is usually disabled using a comment in /etc/inetd.conf.54.

Chapter 24. Exam 102 Highlighter's Index

Section 24.1. Kernel (Topic 1.105)

Section 24.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)

Section 24.3. Printing (Topic 1.107)

Section 24.4. Documentation (Topic 1.108)

Section 24.5. Shells, Scripting, Programming, and Compiling

Section 24.6. Administrative Tasks (Topic 1.111)

Section 24.7. Networking Fundamentals (Topic 1.112)

Section 24.8. Networking Services (Topic 1.113)

Section 24.9. Security (Topic 1.114)

24.1. Kernel (Topic 1.105)

24.1.1. Objective 1: Manage/Query Kernel and Kernel Modules at Runtime

The Linux kernel is modular, and device driver software is inserted into the running kernel as
needed.

Module files are objects, stored under /lib/modules.

Kernel modules can be managed using:

insmod

Insert a module into the kernel.

lsmod

List modules.

modinfo

Get information about a module.

modprobe

Insert modules along with their prerequisites.

rmmod

Remove a module from the kernel.

Modules are configured in /etc/conf.modules or /etc/modules.conf.

modprobe determines module dependencies using a filecalled modules.dep. This file is usually
created at boot time usingdepmod.

24.1.2. Objective 2: Reconfigure, Build, and Install a Custom Kernel and
Kernel Modules

To build a kernel, you need the compiler, assembler, linker, make, kernel source, and kernel

headers.

These are typical kernel compilation steps, done in /usr/src/linux:

Make a configuration using make oldconfig (existing setup), make config (basic interactive
text program), make menuconfig (interactive text menu program), or make xconfig
(graphical program). Each method creates the .config file containing kernel options.

a.

Modify EXTRAVERSION in Makefile, if desired.b.

Build dependencies using make dep.c.

Clean old results with make clean.d.

Create the kernel with make bzImage.e.

Create modules with make modules.f.

Install the modules with make modules_install.g.

Copy the new image to /boot.h.

Update /etc/lilo.conf for the new image.i.

Update the boot loader by running the lilo command.j.

24.2. Boot, Initialization, Shutdown, and Runlevels (Topic
1.106)

24.2.1. Objective 1: Boot the System

24.2.1.1. LILO, the Linux loader

LILO is a utility designed to load a Linux kernel (or another operating system) into memory
and launch it. It has two parts:

The boot loader

A two-stage program intended to find and load a kernel. The first stage resides in the
disk boot sector and is started by the system BIOS. It locates and launches a second,
larger stage residing elsewhere on disk.

The lilo command

The map installer, used to install and configure the LILO boot loader. It reads
/etc/lilo.conf and writes a corresponding map file.

The /etc/lilo.conf file contains options and kernel image information. Popular directives are:

boot

The name of the hard disk partition that contains the boot sector.

image

Refers to a specific kernel file.

install

The file installed as the new boot sector.

label

Provides a label, or name, for each image.

map

Directory where the map file is located.

prompt

Prompts the user for input (such as kernel parameters or runlevels) before booting and
without a keystroke from the user.

read-only

The root filesystem should initially be mounted read-only.

root

Used following each image, this specifies the device that should be mounted as root.

timeout

The amount of time, in tenths of a second, the system waits for user input.

24.2.1.2. Kernel parameters and module configuration

LILO can pass kernel parameters using name=value pairs.

Linux kernels are modular, with portions of kernel functionality compiled as modules to be used
as needed.

Parameters to modules can be specified in /etc/conf.modules.

24.2.1.3. Boot-time messages

The kernel gives detailed status information as it boots. This information can also be found in
system logs such as /var/log/messages and from the dmesg command.

24.2.2. Objective 2: Change Runlevels and Shut Down or Reboot System

Runlevels specify how a system is used by controlling which services are running.

Runlevels are numbered through 6, as well as with a few single characters.

Runlevel 0 implies system shutdown.

Runlevel 6 implies system reboot.

The intermediate runlevels differ in meaning among distributions.

Runlevel 1 (also s or S) is usually single-user (maintenance) mode.

Runlevels 2 through 5 usually define some kind of multiuser state, including an X login screen.

24.2.2.1. Single-user mode

Runlevel 1 is a bare-bones operating environment intended for maintenance. Remote logins
are disabled, networking is disabled, and most daemons are shut down.

Single-user mode can be entered with the single, or simply 1, parameter at the LILO prompt.

Switching to single-user mode is done using init 1.

24.2.2.2. The /etc/rc.d directory

The /etc/rc.d file contains initialization scripts and links controlling the boot process for many
Linux distributions:

rc.sysinit

The startup script launched by init at boot time

rc.local

A script for local startup customizations, started automatically after the system is running

rc

A script used to change runlevels

init.d

The directory containing scripts to start and stop system services

rc0.d through rc6.d

Links to scripts in init.d

Names of the links are [K|S][nn][init.d_name]:

K and S prefixes mean kill and start, respectively.

nn is a sequence number controlling startup or shutdown order.

init.d_name is the name of the script being linked.

24.2.2.3. Default runlevel, determining runlevel, changing runlevels

The default runlevel is located in /etc/inittab on the line containing initdefault:

id:n:initdefault:

n is a valid runlevel number such as 3.

Runlevel is determined by the runlevel command, which displays the previous and current
runlevels. An N for previous runlevel indicates that the runlevel has not changed since startup.

Runlevels can be changed using init:

init n

Change to runlevel n.

System shutdown can also be initiated using shutdown:

shutdown time

Bring the system down in a secure, organized fashion. time is mandatory, in the form of
hh:mm, now, or +n for n minutes.

24.3. Printing (Topic 1.107)

24.3.1. Objective 2: Manage Printers and Print Queues

Printers are assigned to queues, which are managed by lpd, the print daemon. lpd listens for
inbound print requests, forking a copy of itself for each active print queue.

lpr submits jobs to print queues.

lpq queries and displays queue status.

lprm allows jobs to be removed from print queues.

lpc allows root to administer queues; it has both interactive and command-line forms.

Filters translate data formats into a printer definition language.

Spool directories hold spooled job data.

24.3.2. Objective 3: Print Files

Files are printed with the lpr command:

lpr /etc/lilo.conf
man -t 5 myfile.txt | lpr -Pqueue2

24.3.3. Objective 4: Install and Configure Local and Remote Printers

24.3.3.1. /etc/printcap

New printer definitions are added to /etc/printcap:

lp|ljet:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:

The lines in this example are defined as follows:

lp|ljet:\

This parameter defines two alternate names for the printer, lp or ljet.

sd=spool_directory

This parameter specifies the spool directory, under /var/spool/lpd.

mx=max_size

The maximum size of a print job in blocks. Setting this to #0 indicates no limit.

sh

Suppress header pages. Placing this attribute in printcap sets it, eliminating the headers.

lp=printer_device

The local printer device, such as a parallel port.

if=input_filter

The input filter to be used. See "Filters" in Chapter 15 for additional information.

lf=log_file

The file where error messages are logged.

24.3.3.2. Filters

APSfilter is implemented as executable scripts. Installation configures /etc/printcap
automatically. Multiple queues may be defined to give the user access to specific printer
capabilities.

Magicfilter is a binary program; installation does not automatically create print queues.

24.3.3.3. Remote queues and Samba printers

Printing on a remote system or network printer is done through a local queue. /etc/printcap for
the local queue looks something like this:

rlp:\
 :sd=/var/spool/lpd/rlp:\
 :rm=lphost:\
 :rp=rlp:\
 :mx#0:\
 :sh:\
 :if=/usr/local/bin/magicfilter

:

Printing to Windows printers is similar and uses the smbprint filter:

winpr:\
 :sd=/var/spool/lpd/winpr:\
 :mx#0:\
 :sh:\
 :if=/usr/bin/smbprint:

24.4. Documentation (Topic 1.108)

24.4.1. Objective 1: Use and Manage Local System Documentation

24.4.1.1. Text and paging

In the context of Linux systems, plain text means files or streams of both printable characters
and control characters, using a standard encoding scheme such as ASCII.

Differentiating text from nontext isn't obvious, but the file command examines a file given as
its argument and offers a response that indicates the file type.

A pager is a program intended to offer a quick and simple interface for viewing text files, one
screen at a time.

more is a popular pager available on most Unix systems.

less is a full-featured text pager, which emulates more and offers significant advantages.
Common less commands are listed in Table 24-1.

Table 24-1. Common less commands

less
command Description

Space Scroll forward one screen.

D Scroll forward one-half screen.

Return Scroll forward one line.

B Scroll backward one screen.

U Scroll backward one-half screen.

Y Scroll backward one line.

g Go to the beginning of the text (could be slow with large amounts of
text).

G Go to the end of the text (could be slow with large amounts of text).

/pattern Search forward for pattern, which can be a regular expression.

?pattern Search backward for pattern, which can be a regular expression.

H Display a help screen.

:n Display next file from command line (two-character command).

:p Display previous file from command line (two-character command).

A pager such as less is used by the man facility.

24.4.1.2. The man facility

A manpage exists for most commands and is viewed using man:

man [section] command

Format and display manpages from the manual section based on the topic of command

using a pager.

Manpages are usually found in the /usr/man directory, but they can also be found elsewhere in
the filesystem. The manpage location can be found in /etc/man.config, along with the paging
program to use and other information about the manpages.

24.4.1.3. /usr/doc

Many documents for Linux systems are available in /usr/doc. Included here are package-
related documents, FAQs, HOWTOs, and so on.

24.4.1.4. The info facility

The Free Software Foundation provides the info documentation format.

GNU software comes with info documentation.

The documentation is viewed with the info command, which displays a full-screen editor-like
paging system. Common info commands are listed in Table 16-3.

24.4.2. Objective 2: Find Linux Documentation on the Internet

24.4.2.1. Linux Documentation Project

A loosely knit team of writers, proofreaders, and editors who work together to create the
definitive set of documentation for Linux. The Linux Documentation Project can be found online
at http://www.tldp.org.

The LDP has a wide range of documents, from complete books to personal accounts of
problem-solving techniques.

http://www.tldp.org

24.4.2.2. Other sources

Many Usenet newsgroups , such as comp.os.linux, comp.os.linux.advocacy,
comp.os.linux.development, and others, are dedicated to Linux.

Mailing lists offered by many Linux groups serve to keep members informed through email
distribution of information.

24.4.3. Objective 5: Notify Users on System-related Issues

24.4.3.1. /etc/issue

The /etc/issue file is responsible for the text that appears after a login at the system console.

24.4.3.2. /etc/issue.net

The /etc/issue.net contains the text that appears when you log in remotely with Telnet.

24.4.3.3. /etc/motd

The /etc/motd file is intended to be used as the message of the day. Its content is shown after
a successful system login.

24.5. Shells, Scripting, Programming, and Compiling

24.5.1. Objective 1: Customize and Use the Shell Environment

A shell presents an interactive Textual User Interface, an operating environment, a facility for
launching programs, and a programming language.

Shells can generally be divided into those derived from the Bourne shell, sh (including bash),
and the C-shells, such as tcsh.

Shells are distinct from the kernel and run as user programs.

Shells can be customized by manipulating variables.

Shells use configuration files at startup.

Shells pass environment variables to child processes, including other shells.

24.5.1.1. bash

bash is a descendant of sh.

Shell variables are known only to the local shell and are not passed on to other processes.

Environment variables are passed on to other processes.

A shell variable is made an environment variable when it is exported.

This sets a shell variable:

PI=3.14

This turns it into an environment variable:

export PI

This definition does both at the same time:

export PI=3.14

Shell aliases conveniently create new commands or modify existing commands:

alias more='less'

Functions are defined for and called in scripts. This line creates a function named lsps:

lsps () { ls -l; ps; }

bash configuration files control the shell's behavior. Table 17-1 contains a list of these files.

24.5.2. Objective 2: Customize or Write Simple Scripts

Scripts are executable text files containing commands.

Scripts must have appropriate execution bits set in the mode.

Some scripts define the interpreter using the #!/bin/bash syntax on the first line.

24.5.2.1. Environment

A script that starts using #!/bin/bash operates in a new invocation of the shell. This shell first
executes standard system and user startup scripts. It also inherits exported variables from the
parent shell.

Like binary programs, scripts can offer a return value after execution.

Scripts use file tests to examine and check for specific information on files.

Scripts can use command substitution to utilize the result of an external command.

Scripts often send email to notify administrators of errors or status.

Refer to Chapter 17 for details on bash commands.

24.6. Administrative Tasks (Topic 1.111)

24.6.1. Objective 1: Manage Users and Group Accounts and Related
System Files

24.6.1.1. passwd and group

User account information is stored in /etc/passwd.

Each line in /etc/passwd contains a username, password, UID, GID, user's name, home
directory, and default shell.

Group information is stored in /etc/group.

Each line in /etc/group contains a group name, group password, GID, and group member list.

passwd and group are world-readable.

24.6.1.2. Shadow files

To prevent users from obtaining encrypted passwords from passwd and group, shadow files are
implemented.

Encrypted passwords are moved to a new file, which is readable only by root.

The shadow file for /etc/passwd is /etc/shadow.

The shadow file for /etc/group is /etc/gshadow.

24.6.1.3. User and group management commands

The following commands are commonly used for manual user and group management :

useradd user

Create the account user.

usermod user

Modify the user account.

userdel user

Delete the user account.

groupadd group

Add group.

groupmod group

Modify the parameters of group.

groupdel group

Delete group.

passwd username

Interactively set the password for username.

gpasswd groupname

Interactively set the password for groupname.

pwconv

Convert a standard password file to a shadow configuration.

pwunconv

Revert from a shadow password configuration.

grpconv

Convert a standard group file to a shadow configuration.

grpunconv

Revert from a shadow group configuration.

chage user

Modify password aging and expiration settings for user.

24.6.2. Objective 2: Tune the User Environment and System Environment
Variables

24.6.2.1. Configuration scripts

The bash shell uses systemwide configuration scriptssuch as /etc/profile and /etc/bashrc--
when it starts.

Commands in /etc/profile are executed at login time.

Commands in /etc/bashrc are executed for each invocation of bash.

Changes to these systemwide files affect all users on the system.

24.6.2.2. New account home directories

New user directories are populated automatically by copying /etc/skel and its contents.

The system administrator may add, modify, and delete files in /etc/skel as needed for the local
environment.

24.6.3. Objective 3: Configure and Use System Log Files to Meet
Administrative and Security Needs

24.6.3.1. Syslog

The syslog system displays and records messages describing system events.

Messages can be placed on the console, in log files, and on the text screens of users.

Syslog is configured by /etc/syslog.conf in the form facility.level action:

facility

The creator of the message, selected from among auth, authpriv, cron, daemon, kern,
lpr, mail, mark, news, syslog, user, or local0 tHRough local7.

level

Specifies a severity threshold beyond which messages are logged and is one of (from
lowest to highest severity) debug, info, notice, warning, err, crit, alert, or emerg.
The special level none disables a facility.

action

The destination for messages that correspond to a given selector. It can be a filename,

@hostname, a comma-separated list of users, or an asterisk, meaning all logged-in users.

Together, facility.levels comprise the message selector.

Most syslog messages go to /var/log/messages.

24.6.3.2. Log file rotation

Most system log files are rotated to expire old information and prevent disks from filling.

logrotate accomplishes log rotation and is configured using /etc/logrotate.conf.

24.6.3.3. Examining log files

Files in /var/log (such as messages)and elsewhere can be examined using utilities such as tail,
less, and grep.

Information in syslogd log files includes date, time, origin hostname, message sender, and
descriptive text.

To debug problems using log file information, first look at the hostname and sender, then at
the message text.

24.6.4. Objective 4: Automate System Administration Tasks by Scheduling
Jobs to Run in the Future

Both cron and at can be used to schedule jobs in the future.

Scheduled jobs can be any executable program or script.

24.6.4.1. Using cron

The cron facility consists of crond, the cron daemon, and crontab files containing job-
scheduling information.

cron is intended for the execution of commands on a periodic basis.

crond examines all crontab files every minute.

Each system user has access to cron through a personal crontab file.

The crontab command, shown here, allows the crontab file to be edited and viewed:

crontab

View, or with -e, edit crontab files.

Entries in the crontab file are in the form of:

minute hour day month dayofweek command

Asterisks in any of the time fields match all possible values.

In addition to personal crontab files, the system has its own crontab files: /etc/crontab as well
as files in /etc/cron.d.

24.6.4.2. Using at

The at facility, shown here, is for setting up one-time future command execution:

at time

Enter an interactive session with at, where commands may be entered. time is of the
form hh:mm, midnight, noon, and so on.

24.6.4.3. User access

Access to cron can be controlled using lists of users in cron.allow and cron.deny.

Access to at can be controlled using lists of users in at.allow and at.deny.

24.6.5. Objective 5: Maintain an Effective Data Backup Strategy

System backup provides protection against disk failures, accidental file deletion, accidental file
corruption, and disasters.

System backup provides access to historical data.

Full backups save all files.

Differential backups save files modified or created since the last full backup.

Incremental backups save files modified or created since the last full or incremental backup.

A full backup will be coupled with either differential or incremental backups, but not both.

Backup media are rotated to assure high-quality backups.

Backup media must be verified to assure data integrity.

Backup is often performed using tar and mt, as follows:

tar files

Archive or restore files recursively, to tape or to a tarfile.

mt operation

Control a tape drive, including skipping over multiple archives on tape, rewinding, and
ejecting. operations include fsf, bsf, rewind, and offline (see the manpage for a

complete list).

Backup should include everything necessary to restore a system to operation in the event of a
disaster. Examples include /etc, /home, /var/log, and /var/spool, though individual
requirements vary.

24.6.6. Objective 6: Maintain System Time

See "Objective 6: Maintain System Time" in Chapter 18.

24.7. Networking Fundamentals (Topic 1.112)

24.7.1. Objective 1: Fundamentals of TCP/IP

24.7.1.1. Addressing and masks

An address mask separates the network portion from the host portion of the 32-bit IP address.

Class A addresses have 8 bits of network address and 24 bits of host address.

Class B addresses have 16 bits of network address and 16 bits of host address.

Class C addresses have 24 bits of network address and 8 bits of host address.

Subnets can be defined using the defined "class" schemes or using a locally defined split of
network/host bits.

The all-zero and all-ones addresses are reserved on all subnets for the network and broadcast
addresses, respectively. This implies that the maximum number of hosts on a network with n

bits in the host portion of the address is 2n-2. For example, a class C network has 8 bits in the
host portion. Therefore, it can have a maximum of 28-2=254 hosts.

24.7.1.2. Protocols

TCP/IP is a name representing a larger suite of network protocols. Some network protocols maintain
a constant connection while others do not.

IP

The Internet Protocol is the fundamental building block of the Internet. It is used by other
protocols.

ICMP

This connectionless messaging protocol uses IP. It is used for flow control, detection of
unreachable destinations, redirecting routes, and checking remote hosts (the ping utility).

UDP

The User Datagram Protocol is a connectionless transport agent. It is used by applications
such as DNS and NFS.

TCP

The Tranmission Control Protocol is a connection-oriented transport agent. It is used by
applications such as FTP and Telnet.

PPP

The Point-to-Point Protocol is used over serial lines, including modems.

24.7.1.3. TCP/IP services

Inbound network requests to a host include a port number. Common port numbers are listed in
Table 19-2 in Chapter 19.

Ports are assigned to specific programs. Definitions are stored in /etc/services.

Ports 1-1023 are privileged ports, owned by superuser processes.

24.7.1.4. TCP/IP utilities

ftp implements the File Transfer Protocol client for the exchange of files to and from remote
hosts.

The telnet client program implements a Telnet session to a remote host.

ping sends ICMP echo requests to a remote host to verify functionality.

dig obtains information from DNS servers.

traceroute attempts to display the route over which packets must travel to a remote host.

fwhois queries a whois database to determine the owner of a domain or IP address.

24.7.2. Objective 3: TCP/IP Configuration and Troubleshooting

24.7.2.1. Network interfaces

Interfaces are configured through a number of configuration files .

/etc/hostname contains the assigned hostname for the system.

/etc/hosts contains static mappings between IP addresses and names.

/etc/nsswitch.conf directs system library functions to specific name server methods such as
local files, DNS, and NIS.

/etc/host.conf controls name resolution for older libraries.

/etc/host.conf is only rarely used and is replaced by /etc/nsswitch.conf.

/etc/resolv.conf contains information to direct the resolver to DNS servers.

/etc/networks sets up equivalence between addresses and names for entire networks.

The host command returns DNS information.

The hostname, domainname, and dnsdomainname commands set or display the current host,
domain, or node name.

The ifconfig command configures network interfaces . It is used to create and configure
interface parameters, usually at boot time. Parameters include the IP address and subnet
mask.

The netstat command displays network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.

The route command displays the routing table and can add or delete routes from the table.

24.7.2.2. DHCP

DHCP is the Dynamic Host Configuration Protocol. It is used to assign an IP address and other
information to a client system.

The DHCP server is dhcpd .

A DHCP server offers an address for a finite amount of time known as a lease.

24.7.3. Objective 4: Configure Linux as a PPP Client

PPP is used to make a network connection over a serial interface. This could be a direct cable or
modem connection.

PPP is a peer protocol; there are no clients or servers.

pppd is the PPP daemon, called when a PPP interface is needed. It uses a chat script to send
configuration commands to a modem prior to dialing.

Basic authentication for PPP can be done in clear text via the chat script. However, the PAP,
CHAP, and MSCHAP methods encode their authentication information into the PPP data stream.

24.8. Networking Services (Topic 1.113)

24.8.1. Objective 1: Configure and Manage inetd, xinetd, and Related
Services

inetd is the Internet superdaemon; it listens on multiple inbound ports and launches the
appropriate child daemon to service the requests.

inetd uses TCP wrappers (tcpd) to add access security to services .

inetd is configured in /etc/inetd.conf.

You can eliminate an inbound service managed by inetd simply by commenting out its
declaration in /etc/inetd.conf and restarting or signaling inetd.

TCP wrappers allow the administrator to define access rules for hosts. The configuration files
are /etc/hosts.allow and /etc/hosts.deny.

24.8.2. Objective 2: Operate and Perform Basic Configuration of Mail
Transfer Agent (MTA)

Sendmail is a Mail Transfer Agent (MTA).

Sendmail is configured in /etc/sendmail.cf. This file is generally regarded as difficult to
configure.

The "smart host" parameter is used to configure a local Sendmail daemon to transfer mail to a
site's official mail system.

/etc/aliases is a file that stores aliases for inbound mail addresses; it can redirect mail to one
or more users.

Whenever /etc/aliases is modified, newaliases must be executed.

Each user can forward his own mail using a .forward file, containing the forwarding email
address, in his home directory.

Outbound mail that is trapped due to a network or other problem will remain queued; it can be
examined using the mailq command.

24.8.3. Objective 3: Operate and Perform Basic Configuration of Apache

Apache is configured using httpd.conf, srm.conf, and access.conf. On some installations, these
may all be combined into httpd.conf.

The configuration files contain configuration directives, one per line, consisting of a keyword
and an argument list. For example:

DocumentRoot /home/httpd/html

sets the root directory for HTML files on the system.

Apache is typically started at boot time using the system's startup methods.

24.8.4. Objective 4: Properly Manage the NFS and Samba Daemons

24.8.4.1. NFS

Traditional Unix file sharing is done with NFS, originally developed by Sun Microsystems.

NFS is a client/server package, and any system can hold both roles simultaneously.

Exporting (sharing) a local filesystem with NFS is done by including a line in the /etc/exports
file, consisting of a directory and list of allowed systems, along with NFS options. For example:

/usr (ro) orion.mydomain.com(rw)
/home *.mydomain.com(rw)

Remote NFS filesystems are mounted using the mount command:

mount -t nfs server1:/home /mnt/server1

NFS is typically started at boot time using the system's startup methods.

24.8.4.2. Samba

The Samba suite implements Server Message Block (SMB) protocols used on Microsoft and IBM
LANs.

smbd handles file and printer sharing and authentication.

nmbd implements the WINS service.

Samba is configured in /etc/smb.conf. The file consists of sections, each with a series of
keyword = value pairs.

Samba 2.0 and later comes with a web-based configuration tool called SWAT; it is usually
configured to be monitored by inetd.

24.8.5. Objective 5: Set Up and Configure Basic DNS Services

DNS is the distributed database of name-to-IP-address translations.

24.8.5.1. The resolver

The resolver is a library used by networked applications when a domain name needs to be
translated into an IP address.

The resolver uses local files, NIS, and DNS to resolve hostnames as directed by
/etc/resolv.conf.

24.8.5.2. Domain registration

Domain names are assigned through a registration process with one of the domain name
registrars on the Internet.

The DNS server daemon is named, part of the BIND package.

named can be configured to speed up a local system by acting as a nonauthoritative caching-
only name server.

named is configured using /etc/named.conf.

The nslookup, host, and dig utilities can be used to retrieve information from DNS servers.

BIND Version 4 and Version 8 have significantly different configuration file formats, although
the information contained in the files is similar.

24.8.6. Objective 7: Set Up Secure Shell (OpenSSH)

See "Objective 4: Secure Shell (SSH)" in Chapter 40.

24.9. Security (Topic 1.114)

24.9.1. Objective 1: Perform Security Administration Tasks

24.9.1.1. TCP wrappers

Configuring TCP wrappers (tcpd) using /etc/hosts.allow and /etc/hosts.deny can enhance
security for daemons controlled by inetd.

tcpd is often configured to deny access to all systems for all services (a blanket deny), then
specific systems are specified for legitimate access to services (limited allow).

tcpd logs using syslog, commonly to /var/log/secure.

24.9.1.2. Finding executable SUID files

find can perform searches for file attributes such as SUID using the -perm option.

24.9.1.3. Verifying packages

RPM packages are verified using the Verify mode, enabled using the -V (capital) option.

The output for each package contains a string of eight characters that are set to dots when the
attribute has not changed. The columns represent each of eight different attributes: MD5
checksum, file size, symlink attributes, the file's mtime, device file change, user/owner change,
group change, and mode change.

24.9.1.4. SGID workgroups

The SGID bit can be applied to directories to enforce a policy whereby new files created within
the directory are assigned the same group ownership as the directory itself.

24.9.1.5. The Secure Shell

The Secure Shell, or SSH, can be used as an alternative to Telnet for secure communications.

SSH can also protect FTP and other data streams, including X sessions.

The Secure Shell daemon is sshd.

24.9.2. Objective 2: Set Up Host Security

24.9.2.1. Shadow passwords

Enabling the use of shadow passwords can enhance local security by making encrypted
passwords harder to steal.

The use of shadow passwords causes the removal of password information from the publicly
readable passwd file and places it in shadow, readable only by root.

A similar system is implemented for shadow groups, using the gshadow file.

24.9.3. Objective 3: Set Up User-level Security

Limits can be placed on users by using the ulimit command in the bash shell. This command
allows enforcement of limitations on soft and hard limits on processes and memory usage.

Part III: General Linux Exam 201
Part 3 covers the Topics and Objectives for the LPI's General Linux Certification for Exam 201
and includes the following. sections:

Chapter 25, Linux Kernel

Chapter 26, System Startup

Chapter 27, Filesystem

Chapter 28, Hardware (Topic 2.204)

Chapter 29, File and Service Sharing (Topic 2.209)

Chapter 30, System Maintenance (Topic 2.211)

Chapter 31, System Customization and Automation (Topic 2.213)

Chapter 32, Troubleshooting (Topic 2.214)

Chapter 33, LPI Exam 201 Review Questions and Exercises

Chapter 34, Exam 201 Practice Test

Chapter 25. Linux Kernel
This Topic is dedicated to all things kernel . In Chapter 13 of this book we covered Level 1 kernel
topics for Exam 102. On the 201 exam, LPI covers more advanced kernel-related topics, including
the various components of a Linux kernel, advanced kernel compiling, patching a kernel, and
creating custom kernels.

This Topic on the Linux kernel has four Objectives:

Objective 1: Kernel Components

Candidates should be able to utilize kernel components that are necessary to specific
hardware, hardware drivers, and system resources and requirements. This Objective includes
implementing different types of kernel images and identifying stable and development kernels
and patches, as well as using kernel modules. Weight: 1.

Objective 2: Compiling a Kernel

Candidates should be able to properly compile a kernel to include or disable specific features
of the Linux kernel as necessary. This Objective includes compiling and recompiling the Linux
kernel as needed, implementing updates and noting changes in a new kernel, creating a
system initrd image, and installing new kernels. Weight: 1.

Objective 3: Patching a Kernel

Candidates should be able to properly patch a kernel for various purposes including to
implement kernel updates, to implement bug fixes, and to add support for new hardware. This
Objective also includes being able to properly remove kernel patches from existing production
kernels. Weight: 2.

Objective 4: Customizing a Kernel

Candidates should be able to customize a kernel for specific system requirements by patching,
compiling, and editing configuration files as required. This Objective includes being able to
assess requirements for a kernel compile versus a kernel patch as well as build and configure
kernel modules. Weight: 1.

25.1. Objective 1: Kernel Components

A quick look at the contents of a kernel source directory and you get a good idea of the various
pieces required to make your kernel function. If that doesn't give you any ideas, a glance through
the documentation available should satisfy your curiosity. As discussed in Chapter 13 for Exam 102,
the Linux kernel manages all aspects of your computer, virtual memory, the device drivers,
networking code, and so on. The kernel also runs applications, but in a separate space outside the
kernel. Applications and services are executed in user space.

There are very large books out there covering the nitty-gritty details of the development of the Linux
kernel, but these topics are outside of the scope of a sysadmin, thus are not covered in the LPI Level
2 Exams. Essentially what LPI is looking for is for you to understand the applications for various
types of kernel images, demonstrate proficient use of the various branches of kernel development,
and efficiently implement kernel patches.

25.1.1. Kernel Image Formats

Let's review a couple of fundamentals. Two types of kernel image formats can be used on Intel
platforms: zImage and bzImage. The difference between them is the way they bootstrap and how
large the kernel can be, not the compression algorithm as one might think. Both use gzip for
compression.

zImage

This is the old boot image format for Intel, which works on all known PC hardware. The
bootstrap and the unpacked kernel are loaded into the good old, 8086-era 640 KB of low
memory. The allowed kernel size is 520 KB. If your kernel excedes this size, you either have to
switch to bzImage or put more of the kernel into modules. The boot image builder will tell you
when this is the case.

bzImage

The b in this format stands for big. The bzImage kernel image is not restricted to 520 KB or
even 640 KB. bzImage is now the preferred boot image. Though there are some reports of
boot failures using this boot image type, these problems are being pursued because the kernel
developers want the format to work on all Intel hardware.

25.1.2. Different Kernel Trees

Your dad used to tell you that money didn't grow on trees, but kernels do. Kernel development trees
aren't too dissimilar from your family tree. It all began in Finland when two offspring were born:
stable and development. Traditionally, each branch of the family tree maintains its family naming
schemes, but don't forget that this practice is simply for superficial version tracking and has no
effect on the kernel itself. John Doe will still be the same person, even if he changed his name to

John Buck.

To refresh your memory from your 102 exams, official kernels are numbered with a decimal-
delimited number in the format major.minor.patchlevel, such as 2.6.15. The minor value has

traditionally distinguished a stable kernel from a developoment one: an even number indicates a
stable kernel, whereas an odd number indicates a development kernel. But 2.6 is on a path of
constant development, however, and there is no 2.7, so the stable/development distinction is no
longer as meaningful.

25.1.2.1. Choosing an appropriate kernel

For some kinds of support situations, such as with a Red Hat Enterprise Linux on which you want to
run applications such as Oracle, you may not be able to choose your kernelyou have to use a Red
Hat-issued kernel. Oracle, for one, is very picky about this.

Other than that, there is really no rule to follow when choosing a kernel tree to use. Common sense
should tell you if you're running a production server, stable kernel code will be the best choice.
However, support for new hardware and other features may not be in your stable versions, forcing
you to choose the development kernel. For instance, in the 2.2 stable kernels, USB was supported by
only the 2.3 development kernel. If you wanted to use a USB device on your Linux machine, you had
to either run the development kernel or apply a patch (if available)--a package of source code that
alters the kernel.

25.1.2.2. Hardware support

In your career as a Linux administrator, you may easily get in a situation in which some new
machine has hardware components that are not supported by your custom kernels, or even by your
distributions' kernels. Red Hat kernels usually include support for anything you can think of, but
some other distributions have separate kernels that support specific hardware. If you buy some very
racy new hardware, you may find that there is no support in any kernels and that you either have to
develop it yourself or wait a month while someone else does it. And then you may have to get a
special patch and apply it yourself, as described later in this chapter.

In most other situations, a distribution's kernel will either just work or will work if you construct a
suitable initrd image for the kernel to load the needed drivers.

If you're compiling custom kernels, it is important to know all your hardware: which IDE chipsets,
SCSI controllers, Ethernet cards, and so on you have. Your kernel must have support for your boot
disk system, either inside the kernel or in the initrd image. Otherwise, the kernel will not be able
even to boot and mount the root filesystem. To get on the network, it must either have support for
your Ethernet cards, either in the kernel or as a module that is loaded during the init process
(described in the section "Objective 1: Customizing System Startup and Boot Processes" in Chapter
26).

For you to identify these components, it is a good idea to boot a distribution kernel and scrutinize its
boot log. On Red Hat and Debian systems, this is saved in /var/log/dmesg. In the /proc/pci
pseudofile, or with the lspci command, you can find the complete list of PCI hardware in the
machine. It is also a good idea to have the vendor's documentation of the hardware, because it may
contain the names of chipsets and components.

One of the challenges in all this is that most hardware has two or three different names. It may have
a "trade name" such as Intel Ethernet Express Pro 100, behind which there is a chipset name or part
name, and even a code name or pet name given by the engineers that constructed it. Any of these

three names may be found in the vendor documentation, and any of them may also be used in the
Linux kernel . It will be your job to match all these names and produce a viable kernel for your
hardware. Luckily, it's not as hard as we just made it sound. But there are a lot of different chips
and hardware in a modern PC.

25.1.2.3. Patches

Kernel patches are found in both the stable and the development kernel trees. But there are also
third-party patch repositories that implement some specific features that the kernel maintainers do
not want or that are not mature enough to be in the stable or even development trees. Patches are
minor updates or fixes that can be applied to your specific kernel, but without the need to get a
whole new kernel. Depending on the nature of the patch, you may or may not need to fully
recompile your existing kernel. If the patch just contains new modules or fixes existing modules, you
don't generally need to. If it modifies something in the kernel proper, the whole kernel should be
recompiled from scratch.

While there's nothing magical about the filenames, kernel patches are typically named with patch-
prepended to the kernel version, such as patch-2.4.20.bz2. We'll discuss kernel patching more in the
third section of this chapter.

25.1.2.4. Kernel modules

The Linux kernel supports loading (and unloading) modules. These modules may support different
hardware, filesystems, network stacks, and anything else the kernel needs in different situations.
The mass of supported things in the Linux kernel is quite astounding. Modules are a way to mitigate
the overabundance of features and bring down the kernel image's size.

When you build kernels, you may choose to build some features as a module. When a feature is
needed, it must be loaded either manually by a script or automatically. When a module is loaded, it
may depend on other modules, so it cannot be loaded until those other modules are loaded. Luckily,
the module-loading mechanism can search recursively for dependencies and load whatever is
needed.

After a kernel is built and the modules installed in their directory hierarchy at /lib/modules, their
interdependencies are found with the depmod command, an example of which is:

depmod -ae -F /boot/System.map-2.4.18 2.4.18

If any modules lack functions they need, you may see a message such as this:

depmod: *** Unresolved symbols in /lib/modules/2.4.18/kernel/drivers/scsi
/pcmcia/fdomain_cs.o
depmod: isa_readb
depmod: isa_memcpy_fromio

Such a message[*] is probably due to a programming error. If you have any programming and C
skills, it may be possible for you to resolve the problem. Otherwise this kernel is not usable for you.

The message may also appear if you have built the same kernel version several times with different
options and modules. In that case, the module that the kernel is trying to load may be from an old
compilation and installation and is not supposed to be present any more. If you recognize that this
is, indeed, the case, you can just remove the module, and thus the problem.

[*] This is not a real problem in 2.4.18; it had to be provoked artificially for the sake of an example.

You can put anything you like into a module, even parts of the kernel that are needed to boot the
machine. A mechanism known as initrd can be used to load modules very early in the boot process.
An initrd RAM disk image can be loaded with the help of the system's BIOS. A bit later, before the
kernel needs to access disks or networks, the modules needed to boot are loaded into the kernel.
Therefore, support for SCSI drivers, LVM, filesystems, and anything else can be included in this
initrd image to get the machine booting. initrd is discussed more later in this chapter.

Other issues you need to know about relating to kernel module loading and unloading are covered in
Chapter 13.

25.2. Objective 2: Compiling a Kernel

Regardless of the Linux distribution you choose, no two kernels are the same. The creators of your
distribution had total freedom to customize the kernel, and so do you. Choosing and making these
customizations are discussed in the next section, which covers patching. The current section explains
how to apply the customizations, for which you must be able to compile your kernel.

25.2.1. Kernel Configuration Tools

The first step in compiling (or recompiling) a kernel involves the make tool. One set of commands
provided with this tool allows you to select and deselect the exact options you want to include and
modularize for the new kernel. These configuration settings are stored in a file named .config .
Historically, this file was saved within your kernel source to /usr/src/linux or /usr/src/linux- kernel-
version , but this is no longer the case. Older applications (based on the standard library called libc

) required /usr/src/linux , but the introduction of a new library, glibc , eliminated that dependency.
For the purposes of our examples, however, we will continue to show /usr/src/linux * .

Tip: This book, following LPI program objectives, will assume that kernels are built from the vanilla kernel source available at

http://www.kernel.org . Many major distributions, however, on their web sites, offer new kernel sources that incorporate the distributions' own

patches.

When you configure a kernel using any of the tools described in this section, you are presented with
at least 30 sets of configuration options. These options range from configuration tool preferences to
hardware support and even development tools. For an introduction to the meaning of some kernel
options, check Understanding the Linux Kernel and Understanding Linux Network Internals (both
from O'Reilly).

There are three methods of using make to configure your kernel: make config, make menuconfig ,
and make xconfig . Each of these methods creates a file with the .config extension that is used when
making the zImage or bzImage of the kernel.

Tip: To successfully use make , be sure you have all the appropriate packages or applications installed: All methods of make require the glibc-

devel , gcc or egcs , make , kernel-headers , kernel-source , bin86 , and cpp packages. If you opt to use the make menuconfig option, you

must also have the ncurses and ncurses-devel packages installed. If you opt for the make xconfig option, you must have X Window support.

All make commands used to build and install the kernel must be issued in the top-level directory
where you placed the kernel sources.

25.2.1.1. make config

The first method, make config , is a text-based tool that you step through to configure kernel options
one by one. It is no longer recommended because the kernel provies so many options, and the
interface involves simply stepping one by one through them tediously. However, make config is a
standard tool and is provided with all Linux distributions.

When you enter make config , you are prompted line by line to include support for a specific item.

http://www.kernel.org

Following each question, you are given up to four options: y for yes, n for no, m for modularize, and ?
(question mark) for help. Entering the ? option gives you details about the particular item and what
the recommended settings are.

The possible settings for a particular item are noted after each question, with the default option
capitalized. For instance, the first question, Prompt for development and/or incomplete
code/drivers (CONFIG_EXPERIMENTAL) [Y/n/?] has a default answer of y for yes. So you can accept
the default by pressing the Enter key. The following displays the interface used in make config . (The
first few lines are commands issued by make before the prompts start.)

rm -f include/asm
(cd include ; ln -sf asm-i386 asm)
/bin/sh scripts/Configure arch/i386/config.in
#
Using defaults found in .config
#
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers

(CONFIG_EXPERIMENTAL) [Y/n/?] Enter key pressed
*
* Loadable module support
*

Enable loadable module support (CONFIG_MODULES) [Y/n/?] Enter key pressed
 Set version information on all module symbols (CONFIG_MODVERSIONS) [Y/n/?]

 Enter key pressed

 Kernel module loader (CONFIG_KMOD) [Y/n/?] Enter key pressed
*
* Processor type and features
*
Processor family (386, 486, 586/K5/5x86/6x86/6x86MX, Pentium-Classic,
Pentium-MMX, Pentium-Pro/Celeron/Pentium-II, Pentium-III/
Celeron(Coppermine), Pentium-4, K6/K6-II/K6-III, Athlon/Duron/K7, Elan,
Crusoe, Winchip-C6, Winchip-2, Winchip-2A/Winchip-3, CyrixIII/C3) [Pentium-

III/Celeron(Coppermine)] Enter key pressed
 defined CONFIG_MK7

Toshiba Laptop support (CONFIG_TOSHIBA) [N/y/m/?] Enter key pressed
Dell laptop support (CONFIG_I8K) [N/y/m/?] n
/dev/cpu/microcode - Intel IA32 CPU microcode support (CONFIG_MICROCODE) [M/

n/y/?] Enter key pressed
/dev/cpu/*/msr - Model-specific register support (CONFIG_X86_MSR) [M/n/y/?]

 Enter key pressed

/dev/cpu/*/cpuid - CPU information support (CONFIG_X86_CPUID) [M/n/y/?] Enter key pressed

High Memory Support (off, 4GB, 64GB) [off] Enter key pressed
 defined CONFIG_NOHIGHMEM

Math emulation (CONFIG_MATH_EMULATION) [N/y/?] Enter key pressed

MTRR (Memory Type Range Register) support (CONFIG_MTRR) [Y/n/?] Enter key pressed

Symmetric multi-processing support (CONFIG_SMP) [N/y/?] Enter key pressed
...

25.2.1.2. make menuconfig

The second type of make method is make menuconfig . It gives you a graphical menu-based display
without requiring you to use the X Window System. When you use make menuconfig , you are
presented with a directory tree menu system. Following each selection, you are presented with the
available options. To include an option, use the y key; to exclude it, use the n key; and to include it
as a module, use the m key. Letters that are highlighted are considered hotkeys and allow you to
quickly maneuver through the menu options. To exit a window, select the Exit option, or press the
Esc key twice.

25.2.1.3. make xconfig

The third type of make method is make xconfig . This method is very popular among new Linux
users and users who are accustomed to graphical interface tools. The make xconfig tool requires X
Window System support. When starting make xconfig , you are presented with a window with
buttons for each class of configuration. Pressing a configuration button, you are prompted, in a tree
style, the options available. You can then select, deselect, or modularize each option by pressing the
corresponding button next to the item. One of the benefits of using this configuration method over
the standard make config method is the backward mobility of the configuration. This means that if
you change your mind, or make a mistake, you can move back and change the option in make
xconfig ; you can't do this with make config . Figure 13-2 in Chapter 13 shows the graphical user
interface used with the make xconfig method.

25.2.2. Compiling and Installing a Custom Kernel

When compiling and installing a kernel, you use various make options. There are as many as 11
options, which we will describe in this section, that you can use when compiling and installing your
kernel from start to finish. Follow these steps to compile and install a new kernel:

You must first configure your kernel as discussed in the "Kernel Configuration Tools " section
earlier in this chapter. Several options are available. First, to compile your kernel, you must be
in the directory with your kernel source files, such as /usr/src/linux directory. Next, if you plan
to configure your kernel completely from scratch, enter make mrproper . Doing so removes
your current .config file and allows you to set up all new options for your kernel without
knowing your current default configuration. If you wish to see your current default options, skip
the make mrproper step. To configure your kernel, use your choice of make config, make
menuconfig , or make xconfig , as discussed earlier in this chapter.

1.

Next, you must do some general kernel housekeeping. This means that you need to clean up
any unneeded or temporary files from the kernel source tree. To clean the source tree, run
make clean .

2.

In 2.4 kernels, build dependency tables between the various features and modules you have
chosen so that they can be built in the correct order and without building unused features and
modules. To build these tables, run make dep . This step should not be performed for 2.6
kernels, because the build process generates dependency information automatically.

3.

Create the kernel image using make bzImage (or make zImage if your hardware requires this
older image type; the rest of this text assumes you use bzImage). This command compiles a
kernel image and places it in the file arch/i386/boot/bzImage . After the image is created, copy
the bzImage to the /boot directory. In the /boot directory, you may wish to rename the image
to something like vmlinuz- kernel-version , e.g., vmlinuz-2.4.18 . You should also copy the

file System.map to /boot/System.map-2.4.18 , which enables such things as module loading
and the symbolic display of kernel routines by the top program.

4.

5.

Compile your modules. If you made a completely monolithic kernel, skip ahead to Step 7.
Otherwise, run make modules to compile all of your selected modules.

5.

Install your compiled modules by running make modules_install . When you install the modules
with this make option, make installs them to /lib/modules . With the postconfiguration make
options such as make clean, make dep, make bzImage, make modules , and make
modules_install , you don't have to invoke each make command one at a time. You can string
them together to run automatically without user intervention by simply running:

make clean dep bzImage modules install modules_install

6.

Create the RAM disk image (if required). The RAM disk image is used to preload block device
modules (such as SCSI drivers to access SCSI hard drives) that are required during a boot to
access the root filesystem. To create this RAM disk image, use the mkinitrd command, which is
covered in more depth later in this chapter.

7.

Lastly, you need to set up your boot loader for your new kernel. If you're using LILO, do this by
editing the etc/lilo.conf file. Simply add an additional boot image section to /etc/lilo.conf or
change the current boot image section to reflect your new kernel image name and initrd image
(if necessary).

8.

For instance, if you just compiled kernel 2.4.18, named the image /boot/vmlinuz-2.4.18 , and
created an initrd image named /boot/initrd-2.4.18 , your new boot image section of
/etc/lilo.conf should look like this:

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
delay=20
timeout=240
root=/dev/hda3
read-only
image=/boot/vmlinuz-2.4.18
 label=2.4.18
 initrd=/boot/initrd-2.4.18

Tip: After you have edited your /etc/lilo.conf file, be sure to install the new configuration by running /sbin/lilo or all changes to the file will

be ignored.

9.

If you use GRUB instead of LILO, the GRUB configuration file needs to be updated, although no
command needs to be run for it to take effect on the next boot. A grub.conf that is analogous to the
one shown previously should look like the following listing. GRUB's filenames are relative to the top
of your boot partition; that is why the pathnames look different from those in the lilo.conf file shown
earlier.

timeout=240
splashimage=(hd0,0)/grub/splash.xpm.gz

title Linux 2.4.18
 kernel (hd0,0)/vmlinuz-2.4.18 root=/dev/hda3
 initrd (hd0,0)/initrd-2.4.18

25.2.3. Using initrd

initrd is a contraction of "initial ram disk." This initrd image is used by the kernel to load drivers
before it starts booting. The purpose of this is to let users build modularized kernels that do not
contain support for all 40 different SCSI controllers (for example) and still are able to boot from any
SCSI hardware. In this case, the initrd image would contain the needed SCSI drivers and any other
drivers needed to get the kernel off the ground.

An initrd image is typically constructed automatically by the mkinitrd command. This command
differs substantially among distributions.

25.2.3.1. mkinitrd on Red Hat/Fedora

Tip: To be able to build and use initrd images on Red Hat, you need support for two things in your kernel: RAM disks and loop devices . Loop

devices lets the kernel mount a file as if it were a device.

Red Hat and Fedora systems check various files for things that are likely to be needed to boot the
machine. In /etc/modules.conf , they look for a line reading alias scsi_hostadapter that defines
which SCSI module is needed to boot. They check for LVM (Logical Volume Manager) configurations
and include the LVM drivers if they find anything, in case the boot depends on LVM. They look for md
configurations to see whether it's necessary to include RAID drivers. Then they check all these
module dependencies and include the whole bunch in the initrd image. This is all done automatically
in a script; your job is restricted to running the right command. The most likely options are shown:

--preload module

Name a module you want loaded before the others.

--omit-scsi-modules

Skip the check for SCSI modules. You can use this if you know that SCSI is not needed to boot
your system. Instead, the module will be loaded after the root filesystem is mounted.

--omit-raid-modules

Skip the check for whether MD modules are needed.

--omit-lvm-modules

Skip the check for LVM modules.

--with=module

Include a specific module.

-v

Be verbose.

An example follows. It shows how to make an initrd for the 2.4.18 kernel mentioned earlier in the
file /boot/initrd-2.4.18 . If the kernel has any EXTRAVERSION parts (described later), these must also
be included in the version given and should be included in the filename as well.

mkinitrd -v /boot/initrd-2.4.18 2.4.18
Looking for deps of module ide-disk
Looking for deps of module lvm-mod
Looking for deps of module ext2
Using modules:
Using loopback device /dev/loop0
/sbin/nash -> /var/tmp/initrd.c19229/bin/nash
/sbin/insmod.static -> /var/tmp/initrd.c19229/bin/insmod
ls -l /boot/initrd-2.4.18
-rw-r--r-- 1 root root 101224 jan 11 13:01 /boot/initrd-2.4.18

25.2.3.2. mkinitrd in Debian

Tip: To be able to use an initrd image on Debian, you need support for cramfs (Compressed ROM filesystem) in your kernel.

The Debian mkinitrd command has fewer options and more customization files, making it harder to
customize for a one-time generation, but easier in the long run because the files remain around for
the next time. The general behavior is described in /etc/mkinitrd/mkinitrd.conf , and any modules
you may want included are listed in /etc/mkinitrd/modules . As usual with Debian, the files are
heavily documented and are thus largely self-explanatory. A default mkinitrd.conf follows:

/etc/mkinitrd/mkinitrd.conf:
Configuration file for mkinitrd(8). See mkinitrd.conf(5).
#
This file is meant to be parsed as a shell script.

What modules to install.
MODULES=most

The length (in seconds) of the startup delay during which linuxrc may be
interrupted.
DELAY=0

If this is set to probe, mkinitrd will try to figure out what's needed to
mount the root filesystem. This is equivalent to the old PROBE=on setting.
ROOT=probe

This controls the permission of the resulting initrd image.
UMASK=022

Command to generate the initrd image.
MKIMAGE='mkcramfs %s %s > /dev/null'

With these defaults, mkinitrd is largely self-configuring. Generating an image analogous to the
image made for Red Hat in the previous section is as simple as the following command. Note that,
instead of the kernel version demanded by Red Hat's mkinitrd , this one wants the name of the
kernel's module directory where it will find the modules it should use.

mkinitrd -o /boot/initrd-2.4.18 /lib/modules/2.4.18
ls -ld /boot/initrd-2.4.18
-rw-r--r-- 1 root root 811008 Jan 11 13:32 /boot/initrd-2.4.18

25.2.4. Updating Your Kernel

Updating your kernel involves applying a patch or getting a complete source tree in a tarfile. The
updated Linux kernels are best found at http://www.kernel.org . There you will also find the change
logs for each patch level of the kernel. kernel.org stores compressed files in both bz2 and gzip

formats. bz2 is compressed and decompressed by bzip2 . gzip is compressed by the more familiar
gzip . We will use bz2 for the rest of this chapter.

If you are looking to upgrade from 2.6.15.5 to 2.6.15.6, as an example, you will need to retrieve
patch-2.6.15.6.bz2 for just the patch or linux-2.6.15.6.tar.bz2 for the complete source code. It is
also a good idea to retrieve ChangeLog-2.6.15.6 , which contains the developers' descriptions of
what has changed in this release. In this file you may find important information about fixed bugs,
including security, new features, and perhaps features that were removed.

If you fetched the full source tree, you just have to unpack it, configure it, and install it as described
earlier in this chapter. If you fetched the patch, use the patching process described in the next
objective.

25.3. Objective 3: Patching a Kernel

When you start patching and customizing kernels, it becomes vital to make it obvious which source
tree contains which patches and exactly what special functionality is in the currently running kernel.
You should use directory names and other means to actively indicate these things.

25.3.1. Applying the Patch

Once your desired patch has been located and fetched, you can start building a new kernel with it.
In the following example, you will install a new kernel patch to take your kernel from 2.4.23 to
2.4.24. After fetching it, a good place to store it is /usr/src/patch-2.4.24.bz2 .

Copy your unpatched source tree to a tree that you're going to patch. Choose a target directory
name that reflects the capabilities of the patched kernel. If this is going to be a symmetric
multiprocessing (SMP) kernel, linux-2.4.24-SMP might be most appropriate:

cp -a linux-2.4.23 linux-2.4.24-SMP

1.

Inspect your patch, using bzmore for a bz2 file, to see what path it operates on. This one starts
modifying linux-2.4.24/Makefile . The directory name does not match the one you've chosen
earlier, and this must be corrected in the next two steps. The top of the patch file is shown
here:

diff -urN linux-2.4.23/Makefile linux-2.4.24/Makefile
--- linux-2.4.23/Makefile 2003-11-28 10:26:21.000000000 -0800
+++ linux-2.4.24/Makefile 2004-01-05 05:53:56.000000000 -0800
@@ -1,6 +1,6 @@
 VERSION = 2
 PATCHLEVEL = 4

2.

Change to the top-level of the source tree:

cd linux-2.4.24-SMP

3.

Apply the patch:

bzip2 -dc ../patch-2.4.24.bz2 | patch -p1
patching file Makefile

4.

patching file arch/cris/drivers/ds1302.c
patching file arch/cris/drivers/pcf8563.c
patching file arch/m68k/bvme6000/rtc.c
...

The -p1 option to patch instructs it to remove one level of path from the front of the filenames
in the patch. In this case, it removes the leading linux-2.4.24 and leaves Makefile , which is the
correct path considering the directory you're standing in. Thus, the option corrects for the
directory name mismatch in the path. patch reads patch files from its standard input, so it
must always be fed by a pipe or an input redirect (the < shell metacharacter).

Now you must reconcile any rejected chunks in the patch. Any rejected chunks are saved into
.rej files, which are clearly shown in the run. In case the output from patch is overwhelming,
the files can easily be found with a find command such as find . -name '*.rej' .

These rejected patch chunks must be applied by hand. By this we mean that you must take out
your favorite editor and look at the .rej file alongside the file it failed to patch. If a patch to
orinoco.c failed, the corresponding reject file is orinoco.c.rej . Such a file is shown next:

*** 4160,4168 ****
 /* Setup / override net_device fields */
 dev->init = orinoco_init;
 dev->hard_start_xmit = orinoco_xmit;
- #ifdef SET_MAC_ADDRESS
- dev->set_mac_address = orinoco_set_mac_address;
- #endif /* SET_MAC_ADDRESS */
 dev->tx_timeout = orinoco_tx_timeout;
 dev->watchdog_timeo = HZ; /* 1 second timeout */
 dev->get_stats = orinoco_get_stats;
--- 3947,3952 ----
 /* Setup / override net_device fields */
 dev->init = orinoco_init;
 dev->hard_start_xmit = orinoco_xmit;
 dev->tx_timeout = orinoco_tx_timeout;
 dev->watchdog_timeo = HZ; /* 1 second timeout */
 dev->get_stats = orinoco_get_stats;

The lines marked with a hyphen should be removed from orinoco.c . Any lines marked with a
plus sign are to be inserted. The numbers on top are the approximate line numbers; these can
be very approximate, especially if you're applying a third-party patch.

Reasons for patches being rejected could be that the line numbers are too far off or that the
lines cannot be matched exactly. As a human, you can do more intelligent string matching and
line searching than patch can do.

5.

If you are going to give this patched kernel a special name reflecting its special capabilities,
edit the top-level Makefile . If you're going to build an SMP kernel, for example, you can add
that as follows. If you're simply applying a kernel patch, the patch updates the SUBLEVEL itself.

VERSION = 2

6.

PATCHLEVEL = 4
SUBLEVEL = 24
EXTRAVERSION = -SMP

Note that the directory the modules will be installed in will be named /lib/modules/2.4.24-SMP
and that the System.map file must be called /boot/System.map-2.4.24-SMP after this. The
uname -r will also show the version to be 2.4.24-SMP .

Update the kernel configuration. The easiest way is to run make oldconfig , which will reapply
the configuration already in the source tree and ask you about any new kernel options. If you
prefer, you can instead use your favorite of the config, menuconfig or xconfig methods.

7.

Now build and install the kernel through the make commands discussed earlier.8.

25.3.2. Removing a Patch

You should not ordinarily need to remove a patch, because you should have backups of your kernel
source without the patches you apply. But sometimes the kernel sources just take too much space,
and sometimes you have worked, say, three different patches into the kernel and then want to
reverse just one. Removing the 2.4.24 patch applied earlier is a simple matter of running patch in
reverse with -R as shown in the following listing:

bzip2 -dc ../patch-2.4.24.bz2 | patch -p1 -R
patching file Makefile
patching file arch/cris/drivers/ds1302.c
patching file arch/cris/drivers/pcf8563.c
patching file arch/m68k/bvme6000/rtc.c
...

When reversing a patch, you may also get rejects, so check for them and resolve them. It is also
worth mentioning that patch understands enough of what it does that it may well deduce that you
meant to use -R , as shown in the following command:

bzip2 -dc ../patch-2.4.24.bz2 | patch -p1
patching file MakefileReversed (or previously applied) patch detected! Assume -R? [n]

In that case, if you know that patch is right, just answer y . If you ever get this message while
applying a patch, you should take a look at the patch before answering either way. It may be that
the patch producer reversed the order of the old and new files on his command line and produced a
reversed patch. It may also be that the patch includes a patch you have already applied. Then it will
look as if the patch is reversed because patch material is already present in your sources. But the
patch is not reversed, it only has redundant parts that will fail to apply. It is usually very easy to see
if a patch is reversed. If you look at the first few lines of the following patch, they should give clues:

Index: linux-2.4.23/arch/alpha/defconfig
===
--- linux-2.4.23.orig/arch/alpha/defconfig 2003-12-15 15:06:57.853807752 +0

100
+++ linux-2.4.23/arch/alpha/defconfig 2003-12-15 15:06:58.497669693 +0100
@@ -1,6 +1,9 @@
 #

The first filename given, marked --- , has a path that contains .orig , a good clue that this is the
original source file. The second line, marked +++ , has nothing specific in its path and thus seems
likely to be the modified tree. The old file is supposed to be first and the modified second, so this
patch is probably not reversed.

25.4. Objective 4: Customizing a Kernel

You can apply oodles of different customizations to your kernel. The simplest customization is, of
course, to just tweak options in one of the configuration interfaces. Beyond the ordinary kernel
maintenance patches, there are many third-party patches. Some of these are written by the main
kernel hackers and some by others around the world. Some of the most popular patches relate to
performance and security enhancements. Here, we'll discuss the Access Control List (ACL) patches
as an advanced example.

If you need very detailed access permissions on files and/or directories, the ACL patches may meet
your requirements. There are patches for this at http://acl.bestbits.at. This site documents a
number of different things that you need to sort through and relate to. Select which patches you
need, find out which user space packages or patches you need to support the extensions, and
download the needed files.

ea-version.diff.gz

Patch for extended attributes

acl-version.diff.gz

Patch for access control lists

The ACL patch is a bit more far-reaching that your ordinary kernel patch. For ACLs to work properly,
all filesystem utilities such as cp and mv, and a whole lot of other commands need to know about
ACLs and be able to manipulate them as well as the files. We will not go into that in this book, but
briefly, the process combines software compilation (discussed in Chapter 4) and patching as
illustrated earlier.

In an environment that requires high uptimes, your smartest move may be to test patches on
noncritical machines for quite some time before you apply them to critical equipment. You should
also be careful about how much you mix and match patches and kernels. The procedure is as
follows:

Apply the patches:

cd /usr/src/linux
zcat ea-"version".diff.gz | patch -p1
zcat acl-"version".diff.gz | patch -p1

1.

Edit your .config file to look like this:

CONFIG_FS_POSIX_ACL=y

2.

http://acl.bestbits.at

CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_XATTR_SHARING=y
CONFIG_EXT3_FS_XATTR_USER=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_XATTR_SHARING=y
CONFIG_EXT2_FS_XATTR_USER=y
CONFIG_EXT2_FS_POSIX_ACL=y

Alternatively, use make config or one of its alternatives to set up the kernel.

2.

Proceed with kernel compilation and installation.3.

After a reboot, the system will be ready to deal with extended file attributes and access control lists.

Chapter 26. System Startup
This Topic focuses on the system boot processes and recovery procedures. LPI's Level 1 Objectives
covered general booting material such as runlevels, the init utility, and how the system boots. At
Level 2, LPICs are expected to be able to customize a system's startup procedures and recover a
system when it is not booting properly.

This Topic contains two Objectives:

Objective 1: Customizing System Startup and Boot Processes

Candidates should be able to edit appropriate system startup scripts to customize standard
system runlevels and boot processes. This Objective includes interacting with runlevels and
creating custom initrd images as needed. Weight: 2.

Objective 2: System Recovery

Candidates should be able to properly manipulate a Linux system both during the boot process
and during recovery mode. This objective includes using both the init utility and init= kernel
options. Weight: 3.

26.1. Objective 1: Customizing System Startup and Boot
Processes

In Chapter 14 , we discussed boot procedures for a Linux system. Specifically, we covered boot-time
kernel parameters, boot initialization scripts, and how to change system runlevels. The 201 exam
takes this subject a step further and addresses how to customize your system's startup procedures.

When the kernel has mounted the root filesystem, it executes /sbin/init . This program's first task is
to read /etc/inittab , which defines everything done thereafter.

26.1.1. /etc/inittab

The /etc/inittab file describes what processes are started at boot time and during normal operation.
This file is well-documented. For the examples in this section, we'll use a typical inittab file from a
Red Hat system. After some initial comments, the file might contain:

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, with no networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)
#
id:3:initdefault:

The comments explain when the various runlevels are used on this machine. The first noncomment
line is the one tagged id: , which defines the default runlevel for this system. As explained in the
listing, this is multiuser mode with no X Window System. On a Debian system, the default runlevel is
2. Debian specifies only that 25 are multiuser. In virtually all distributions, runlevel 0 is used to halt
the system, 1 to run it in single-user mode, and 6 to reboot.

After your system is booted into a particular runlevel, you can change to another runlevel using the
init or telinit commands. By issuing init 6 at the root prompt, you can command the system to
reboot. Issuing init 1 commands the system to boot into single-user mode. These commands can be
issued only by root.

The inittab file continues:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0

l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

The si line defines that the script /etc/rc.d/rc.sysinit is to run first (because there are no other lines
before it). It is run on all runlevels, because the second parameter on the line is empty (::). Debian
also uses the sysinit script, but runs /etc/init.d/rcS instead. This in turn runs the contents of the
/etc/rcs.d directory and then the /etc/rc.boot directory. Red Hat's script is monolithic.

The six lines following, labeled l0 tHRough l6 , execute the /etc/rc.d/rc script with an argument
corresponding to the runlevel. This script runs the contents of the corresponding /etc/rc runlevel .d

directory as explained in Chapter 14 .

The next section sets specific commands and options. In particular, it maps the Ctrl+Alt+Delete key
sequence, which automatically reboots the system. You can disable or change that option here. This
section also has some options regarding SmartUPS settings. If the system is connected to a UPS
with serial feedback that instructs the system when the UPS will run out of power, the system can
automatically shut itself down with this entry. Debian systems have one additional action here for
powerfailnow .

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few
minutes of power left. Schedule a shutdown for 2 minutes from
now. This does, of course, assume you have power installed and
your UPS connected and working correctly.
pf::powerfail:/sbin/shutdown -f -h +2"Power Failure;System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c"Power Restored;Shutdown Cancelled"

The next section of the /etc/inittab file sets up your virtual consoles. The setup shown here is the
default on Red Hat, and allows up to six virtual consoles. To add additional virtual consoles,
duplicate the lines and then change the first field as well as the tty field to represent the appropriate
number of your virtual console.

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

26.1.2. System Initialization Scripts

System initialization scripts, most of which are found under the /etc/init.d directory, are used to boot
the system and start daemons and services. The scripts you are looking for are in /etc/rc0.d through
/etc/rc6.d (runlevel directories), as well as the all-important initial script, which is named
/etc/rc.d/rc.sysinit in Red Hat and /etc/init.d/rcS in Debian.

26.1.2.1. System initialization

On Debian, the /etc/init.d/rcS script is the first startup script. On Red Hat, the corresponding script
is /etc/rc.d/rc.sysinit . They do a lot of chores that you might never have thought were needed and
are an education to read. Because the Red Hat script is monolithic (indeed, currently more than 800
lines), it is perhaps easiest to read.

One of the most important tasks the script performs is to check all the local filesystems. If a problem
is found, the script drops into a sulogin shell to let the administrator intervene and fix the problem.
For some kinds of filesystem problems, the machine is now rebooted.

If there is a quota executable and quotas are configured, the rc.sysinit script enables the quotas.
The following are some excerpts from the Red Hat rc.sysinit script. The excerpts include the
information related to filesystem checking and quotas. If you have a Red Hat system, take a glance
at your /etc/rc.sysinit file for a complete tour.

Start up swapping. action "Activating swap partitions"
swapon -a -e

Check filesystems
if [-z "$fastboot"]; then
 STRING=$"Checking filesystems"
 echo $STRING
 initlog -c "fsck -T -R -A -a $fsckoptions"
 rc=$?
 if ["$rc" = "0"]; then
 success "$STRING"
 echo
 elif ["$rc" = "1"]; then
 passed "$STRING"
 echo
 fi

 # A return of 2 or higher means there were serious problems.
 if [$rc -gt 1]; then
 if ["$BOOTUP" = "graphical"]; then
 chvt 1
 fi

 failure "$STRING"
 echo
 echo
 echo $"*** An error occurred during the file system check."
 echo $"*** Dropping you to a shell; the system will reboot"
 echo $"*** when you leave the shell."

 str=$"(Repair filesystem)"

 PS1="$str \# # "; export PS1
 sulogin

 echo $"Unmounting file systems"
 umount -a
 mount -n -o remount,ro /
 echo $"Automatic reboot in progress."
 reboot -f
 elif ["$rc" = "1" -a -x /sbin/quotacheck]; then
 _RUN_QUOTACHECK=1
 fi
fi

Mount all other filesystems (except for NFS and /proc, which is already
mounted). Contrary to standard usage,
filesystems are NOT unmounted in single user mode.
action $"Mounting local filesystems: " mount -a -t nonfs,smbfs,ncpfs -O no_netdev

check remaining quotas other than root
if [X"$_RUN_QUOTACHECK" = X1 -a -x /sbin/quotacheck]; then
 if [-x /sbin/convertquota]; then
 # try to convert old quotas
 for mountpt in 'awk '$4 ~ /quota/{print $2}' /etc/mtab' ; do
 if [-f "$mountpt/quota.user"]; then
 action $"Converting old user quota files: " \
 /sbin/convertquota -u $mountpt && \
 rm -f $mountpt/quota.user
 fi
 if [-f "$mountpt/quota.group"]; then
 action $"Converting old group quota files: " \
 /sbin/convertquota -g $mountpt && \
 rm -f $mountpt/quota.group
 fi
 done
 fi
 action $"Checking local filesystem quotas: " /sbin/quotacheck -aRnug
fi

if [-x /sbin/quotaon]; then
 action $"Enabling local filesystem quotas: " /sbin/quotaon -aug
fi

Configure machine if necessary.
if [-f /.unconfigured]; then
 if ["$BOOTUP" = "graphical"]; then
 chvt 1
 fi

 if [-x /usr/bin/passwd]; then
 /usr/bin/passwd root
 fi
 if [-x /usr/sbin/netconfig]; then
 /usr/sbin/netconfig
 fi
 if [-x /usr/sbin/timeconfig]; then
 /usr/sbin/timeconfig

 fi
 if [-x /usr/sbin/kbdconfig]; then
 /usr/sbin/kbdconfig
 fi
 if [-x /usr/sbin/authconfig]; then
 /usr/sbin/authconfig --nostart
fi
 if [-x /usr/sbin/ntsysv]; then
 /usr/sbin/ntsysv --level 35
 fi

 # Reread in network configuration data.
 if [-f /etc/sysconfig/network]; then
 . /etc/sysconfig/network

 # Reset the hostname.
 action $"Resetting hostname ${HOSTNAME}: " hostname ${HOSTNAME}
 fi

 rm -f /.unconfigured
fi

Clean out /.
rm -f /fastboot /fsckoptions /forcefsck /.autofsck /halt /poweroff

One weakness of the single-user runlevel is that, as you can see from the lines just quoted, all the
filesystems are mounted and the operating system itself is almost completely initialized. If you're
experiencing bad filesystem or hardware problems, this script may never complete. The only way to
avoid this problem is to not run init when booting. This is dealt with in more detail in "Objective 2:
System Recovery " later in this chapter.

26.1.2.2. Runlevel directories

The system run-level directories on Red Hat are named /etc/rc0.d through /etc/rc6.d . These
directories don't actually contain real files or scripts. Instead, they contain links to scripts that are
located in the /etc/init.d directory.

Tip: Due to some silly antics during an earlier release, Red Hat still stores the rc scripts in /etc/rc.d/init.d and /etc/rc.d/rc n .d . But now at least

the system provides symbolic links from the more standard paths of /etc/init.d and /etc/rc n .d .

The links in the rc n .d directories run through after the system has completed the system

initialization script. Each directory contains symbolic links to real scripts. Here is a list of some of the
files in a typical /etc/rc0.d directory:

lrwxrwxrwx 1 root root 14 Dec 10 10:27 K00cups -> ../init.d/cups*
lrwxrwxrwx 1 root root 18 Dec 23 01:07 K05keytable -> ../init.d /keytable*
lrwxrwxrwx 1 root root 16 Sep 17 2001 K08autofs -> ../init.d/autofs*
lrwxrwxrwx 1 root root 16 Dec 23 00:59 K10psacct -> ../init.d/psacct*
lrwxrwxrwx 1 root root 14 Aug 29 2002 K10wine -> ../init.d/wine*
lrwxrwxrwx 1 root root 13 Sep 17 2001 K10xfs -> ../init.d/xfs*
lrwxrwxrwx 1 root root 16 Sep 17 2001 K12mysqld -> ../init.d/mysqld*

lrwxrwxrwx 1 root root 13 Sep 17 2001 K15gpm -> ../init.d/gpm*
lrwxrwxrwx 1 root root 15 Dec 23 01:03 K15httpd -> ../init.d/httpd*
lrwxrwxrwx 1 root root 15 Sep 17 2001 K15sound -> ../init.d/sound*

Every symbolic link in each of the rc n .d directories is named with an initial S or K. S indicates that

the service is to be started; K indicates that it should be stopped. Following the S or K is a two-digit
number that indicates the order in which the scripts are to be run. For example, 10 gets run before
15. In the rc0.d directory just shown, for instance, CUPS starts first and sound support starts last.

26.1.3. Customizing Runlevels

As you can see, quite a lot of a system's behavior is determined through what is in the system
startup scripts.

Whenever you add a service to your system, a script should be deposited in /etc/init.d and links to it
from the right runlevel directories should be made. In Red Hat and some other distributions, the
chkconfig is used for this. On Debian and many others, you can use update-rc.d . Once a script to
start and stop services is in /etc/init.d , symbolic links to it can be made in the individual runlevel
directories, so that the script runs at the proper runlevels .

26.1.3.1. Customizing runlevels on Red Hat

As said in the previous section, Red Hat and some related distributions use the helper utility
chkconfig to make this easy.

Syntax

chkconfig --list [service]

chkconfig --add service

chkconfig --del service

chkconfig [--level levels] service [on|off|reset]

Description

chkconfig lets you very simply make the appropriate entries in the appropriate runlevel directories or
remove them. Thereby it enables or disables the startup of the service during system boot.

Frequently used options

chkconfig --list [service]

If no service is given, list the status of all services. If the name of a service is given, only that
service is shown.

chkconfig --add service

Add a new service rc file to the /etc/init.d directory, then initialize all the right runlevels with
links to the service rc script. After this, the service will be started when booting.

chkconfig --del service

chkconfig service off

Disable the startup of the service during boot. Note that this does not stop a running
service. To do that, invoke /etc/init.d/ service stop .

chkconfig service on

Enable starting the service during boot. Note that this does not start the service now . To
start it now, run /etc/init.d/ service start .

Examples

Add a service called foo and manipulate it.

chkconfig --add foo
chkconfig --list foo
foo 0:off 1:off 2:on 3:on 4:on 5:on 6:off# chkconfig foo off
chkconfig --list foo
foo 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Runlevel files

chkconfig can manipulate only rc files that have the correct comment lines. Two lines are needed:

chkconfig: 345 99 01
description: Starts the foo service to contribute toward world foo-ness

The chkconfig: line has three parameters: the runlevels the service should run at and the sequence
numbers the S and K files should have. When a service is started last, it should be stopped first; that is
why the start sequence number in the previous example is 99 and the stop sequence number is 01. The
description is for human consumption. You will find other such labels used in some of these scripts. They
are not documented.

Customizing runlevels on Debian

Debian and a number of other distributions use the script update-rc.d to manipulate the runlevels.

Syntax

update-rc.d [-n] [-f] service remove

update-rc.d [-n] service defaults [nn | nn-start nn-stop]

update-rc.d [-n] service start|stop nn runlevel runlevel ...

 [start|stop nn runlevel runlevel ...]

Description

update-rc.d is used to manage init script links. Once a service rc script is present in /etc/init.d
, it can be manipulated by this command. The command enables or disables the startup of the
service during system boot.

Frequently used options

update-rc.dz service defaults nn

Adds the service to the startup of all runlevels at sequence number nn .

update-rc.d service start nn 2 3 4 5 . stop mm 2 3 4 5 .

Adds start links with sequence number nn at runlevels 2 through 5 and stop links with
sequence number mm at the same runlevels. Note the important use of a period (.) in

this command; it's required when you want to make multiple settings in a single
command line.

update-rc.d -f service remove

Remove the service from the startup of any runlevels it is present in. The -f option is
needed if the service script is present in /etc/init.d . If it is not present, the -f can be left
out.

Examples

update-rc.d foo defaults 99
 Adding system startup for /etc/init.d/foo ...
 /etc/rc0.d/K99foo -> ../init.d/foo
 /etc/rc1.d/K99foo -> ../init.d/foo
 /etc/rc6.d/K99foo -> ../init.d/foo
 /etc/rc2.d/S99foo -> ../init.d/foo
 /etc/rc3.d/S99foo -> ../init.d/foo
 /etc/rc4.d/S99foo -> ../init.d/foo
 /etc/rc5.d/S99foo -> ../init.d/foo
update-rc.d -f foo remove
update-rc.d: /etc/init.d/foo exists during rc.d purge (continuing)
 Removing any system startup links for /etc/init.d/foo ...
 /etc/rc0.d/K99foo
 /etc/rc1.d/K99foo

 /etc/rc2.d/S99foo
 /etc/rc3.d/S99foo
 /etc/rc4.d/S99foo
 /etc/rc5.d/S99foo
 /etc/rc6.d/K99foo
update-rc.d foo stop 99 0 1 6 . start 99 2 3 4 5 .
 Adding system startup for /etc/init.d/foo ...
 /etc/rc2.d/K01foo -> ../init.d/foo
 /etc/rc3.d/K01foo -> ../init.d/foo
 /etc/rc4.d/K01foo -> ../init.d/foo
 /etc/rc5.d/K01foo -> ../init.d/foo
 /etc/rc2.d/S99foo -> ../init.d/foo
 /etc/rc3.d/S99foo -> ../init.d/foo
 /etc/rc4.d/S99foo -> ../init.d/foo
 /etc/rc5.d/S99foo -> ../init.d/foo

The first command shown is almost certainly not what you want. Also note that the policy in Debian
is to enter start scripts at all runlevels where a service is to run and to add stop scripts at all other
levels, but with the same sequence number. Thus, the list of runlevels for the stop and start links
shown in the third command are complementary.

26.1.4. Customizing initrd Images

Chapter 25 discussed how to generate initrd images to enable booting all sorts of hardware with a
skinny kernel that contains next to no hardware support. The initrd is not just a ram disk containing
some modules, but a standalone root filesystem. The modules in it are loaded by a script or
executable on the disk. If they are loaded by a script, it must have an interpreter. The following
documentation of the initrd boot process is found in Documentation/initrd.txt in any kernel source
tree. We won't include a customization example here, but we'll attempt to explain how initrd boots
and what the environments look like on Red Hat and Debian.

The boot loader loads the kernel and the initrd.1.

The kernel converts initrd into a "normal" RAM disk and frees the memory used by initrd.2.

The initrd is mounted read/write as root.3.

The /linuxrc file is executed. This file can be any valid executable, including shell scripts; it is
run with UID 0 and can do basically everything init can do.

4.

/linuxrc mounts the real root filesystem.5.

/linuxrc places the root filesystem at the root directory using the pivot_root command.6.

The usual boot sequence (the invocation of /sbin/init) is performed on the root filesystem.7.

The initrd filesystem is removed.8.

By studying your distribution's mkinitrd script, you can see how the /linuxrc script works and how
you can customize it. Additionally, the documentation present in Documentation/initrd.txt is very
detailed and extensive. Your most likely reasons to customize an initrd in this way are to support
something that is too new to be supported by the mkinitrd script or to construct a universal rescue
floppy that autodetects the root filesystem and other interesting things on the computer it boots on.

As you can see from the list of steps just enumerated, the key filename in the boot process is
/linuxrc . If you take a copy of the mkinitrd script to customize and look in it for /linuxrc , you will be
able to deduce how the bootstrap works. In both Debian and Red Hat, /linuxrc is a script.

26.1.4.1. initrd and /linuxrc on Debian

In Debian, the /linuxrc script interpreter is either dash or, more likely, ash . As you can see in the
manpage for the interpreter, it offers a pretty complete set of built-in commands. (It is not,
however, the standard command interpreter for the system, as the manpage claimsthat honor goes
to bash .) And in the mkinitrd script, you will find which other external commands are available.
When /linuxrc starts, it reads configuration data from /linuxrc.conf , which was written by mkinitrd .
And then the Debian people have thrown in a twist. The /linuxrc file does not execute pivot_root as it
should. Instead, when the kernel sees that /linuxrc has terminated, it executes /sbin/init , which is
the script that does the real work. One of the things it does is to execute the contents of the /scripts
directory in shell sorting order. After that, the real root filesystem is mounted, pivot_root is
executed, and the real init command is executed.

The supported way to modify this process is to put your scripts into /etc/mkinitrd/scripts . They will
then be executed in order. This solution requires no changes in the system tools. The alternatives
are to change the template /linuxrc , the /sbin/init script it installs, or the /linuxrc.conf file. All these
options are fairly straightforward, as long as you recall your limited range of commands until the
root filesystem is mounted.

Debian offers the following external commands in addition to the regular shell built-ins listed in the
ash manpage:

/sbin/init

The special Debian initrd version of init , from the initrd-tools package

/sbin/modprobe

The familiar modprobe command

/sbin/insmod

The familiar insmod command

/bin/echo

The familiar echo command

/bin/mount

The familiar mount command

/bin/umount

The familiar umount command

/bin/pivot_root

The magical command that rotates away the initrd root filesystem and replaces it with the real
one

/bin/cat

The familiar cat command

/bin/mknod

The familiar mknod command

/usr/sbin/chroot

The familiar chroot command

In addition, there is a custom-built /dev directory that matches your hardware pretty well. To
support the executables, /lib and /usr/lib are filled with shared libraries. /lib/modules contains a
complement of kernel modules that fits your setup. Altogether, Debian offers a pretty rich starting
point.

26.1.4.2. initrd and /linuxrc on Red Hat

Red Hat generates the /linuxrc file dynamically, line by line. Customizing it thus becomes a question
of generating the lines you need in the place you need. In the Red Hat initrd environment,
customization is probably not as easy as in Debian. Few tools are provided. The shell used by Red
Hat is /bin/nash , which is linked statically. It has the commands needed in an initrd environment
built in, but it has very little in the way of general shell syntax. Therefore, the filesystem contains
practically nothing to support it; just the following files:

/bin/insmod

A statically linked version of insmod .

/bin/modprobe

Actually a symbolic link to nash , which exits without doing anything when started as
modprobe .

/bin/vgchange

The vg* commands are installed only if you use LVM. These help support for an LVM root disk.

/bin/vgscan

See previous entry.

/bin/vgwrapper

See previous entry.

/dev and /lib/modules have contents suitable for your setup. Red Hat does not need a real modprobe
because the mkinitrd script analyzes the module dependencies at build time and makes sure that
they are loaded in the correct order. Altogether this environment is very sparse. To customize the
Red Hat initrd could turn out to be a great deal of work. But it does support booting off LVM-
managed USB disks.

26.2. Objective 2: System Recovery

Unfortunately, things don't always go well when working on a system . The most frequent system
recovery happens automatically. Filesystems are fixed when booting, and while it takes some time,
it's fully automatic most of the time. All other problems are infrequent.

One occasional problem is that one of the runlevel scripts cannot complete and causes the whole
boot sequence to halt. This is easy to fix: just boot in single-user mode as described in Chapter 14,
and edit the script. A harder problem is if the system initialization script or init somehow fails and
foils the boot. Coping with this is described later in "init or the System Initialization Fails.

26.2.1. Filesystem Damage

Sometimes a filesystem is damaged in a way that the boot process does not want to fix
automatically; in this case, it drops into a root password prompt with a display like the following
(this is from Red Hat):

*** An error occurred during the file system check."
*** Dropping you to a shell; the system will reboot"
*** when you leave the shell."

Give root password for maintenance(or type Control-D for normal startup): password
(Repair filesystem) 1 #

After entering the password, you can fix the filesystem manually. Fixing a filesystem manually
requires running fsck device. Answer y to all the questions. Answering anything but y to all the

questions requires quite some knowledge of how your filesystem works. Very few have such
knowledge, and so the questions are cunningly posed in such a manner that answering y to all of
them is the safest option. It may seem a bit silly to force you to answer y so many times, but at
least it forces you to notice a bad error condition and enables you to follow the boot process after
the repair is done.

26.2.2. init or the System Initialization Fails

If there is a failure during init, the system initialization script (/etc/rc.sysinit or /etc/init.d/rcS, as
the case may be) or a script that is executed as part of the single-user runlevel, the machine will fail
to reach even single-user mode. You must take unusual measures to put your system in a state
where you can fix it.

26.2.2.1. Bypassing init

The first step is to try to bypass init. In your boot loader, GRUB or LILO, you must enter the
parameter init=/bin/bash or another interpreter. Instead of executing/sbin/init to perform system
initialization, bash will be started and it is then your job to initialize the system. This enables you to
correct error conditions, debug scripts, or even get the machine networked and to fetch files or
perform backups.

After the kernel is done initializing, you will pretty quickly be dropped into a root shell with a regular
root prompt (#). You do not not have any virtual consoles now, nor any mouse support or cut-and-
paste. Furthermore, you do not have a real tty or job control (and bash may complain about those
things). Because you don't have a tty, some software will refuse to work. The lack of job control is
very important, because interrupting with Ctrl-C and Ctrl-Z does not work. If you start a command
that for some reason does not terminate, you will not be able to terminate it yourself; all you can do
is reboot the system and make sure not to repeat the mistake (which could be as simple as trying to
ping another systemthe ping by default does not stop). All in all, the environment is quite hard to
use.

Commands that may not complete should be started in the background by ending the command in &
(ampersand). But this does not work well for interactive programs, because they will not be able to
read input.

26.2.2.2. Working in the shell environment

The first thing to do when you have the prompt, if you are sure the root filesystem is sound, is to
mount it read/write. If you are uncertain of its soundness, you should run fsck -f / on it first. The
command to mount it is mount -o remount,rw /. If your /etc/fstab file is damaged, you may have to
add the device name: fsck -f device and mount -o remount,rwdevice.

Once your root filesystem is mounted, you can do almost whatever you want to troubleshoot and fix
your system. Most things, however, will involve software from /usr and files in /var and /tmp.
Additionally, /proc usually gets into the picture pretty quickly. All of these can be mounted with a
simple mount -av, if your fstab is intact. You may want to fsck everything first, through fsck -A -a.

A lot of work will involve looking at and editing files. The software to do this invariably resides in
/usr, and if your /usr is unavailable you need to get creative. Both cat and dd are in /bin. cat can be
used to list entire files, and the Linux console can be paged up and down with the key combinations
Shift-Page up and Shift-Page down. dd with parameters skip=n and count=m can be used to read a
file starting at the nth block for m blocks. When all is lost, the cat command is your hardcore editor.

You can use cat >/etc/fstab to rewrite your fstab file. But if your system is this damaged, it may be
easier to use a rescue CD, as discussed later in this chapter.

Your general tactic should be to try to find the (hopefully) single problem that stops your boot from
working smoothly. You can run each of the scripts of the startup process by hand and watch them
work, and note any errors without risking them scrolling beyond the top of your screen. Once you
get the system initialization script and the scripts in /etc/rc1.d working, you can do a single-user
boot. In a single-user environment you will regain virtual consoles and job control; it will be much
more comfortable to work in.

Once in single-user mode, if there are more problems, you can again run each single script in the
default runlevel directory /etc/rcn.d in the correct sequence. If the scripts appear to work one by
one, you can stop them again and use initn to get init to run the runlevel scripts in the ordinary

manner. The init command is discussed extensively in Chapter 14.

26.2.3. Booting from a Rescue CD

It is particularly hard to restore your system to working order if your disk bootstrap is damaged or if
your system has serious damagein particular, a very damaged root filesystem in which files in /etc
are corrupted or lost (/etc/fstab and /etc/inittab are particularly important to booting). The best
solution then is a rescue disk or your distribution's boot disks.

Using your distribution's installation or rescue CDs to boot can be immensely helpful. Red Hat's
installation CD has a distinct rescue boot mode. Both the Debian and Red Hat CD installation
procedures fork a shell on a virtual console, so that when the first dialog appears on the main screen
you can switch virtual consoles and find a root shell on one of them. Both CD environments are
complete enough that you can do a good deal of troubleshooting. If you need a more complete
environment, there are many dedicated rescue disks on the Internet that provide everything but the
kitchen sink.

26.2.3.1. Restoring the bootstrap

There is a fairly simple workaround for damage to your disk bootstrap program, GRUB or LILO.
Mount the root filesystem and then reinstall the boot loader. You can easily reinstall your bootstrap
as described in Chapter 4 without any exotic options.

The following command sequence assumes that /dev/hda is your boot disk and that /mnt is where
you mounted your root filesystem. Some boot and rescue disks use /mnt for their own purposes. By
the way, if your bootstrap program is damaged, did you put something bad in the configuration file?
Perhaps you should review it.

chroot /mnt /bin/bash# mount /boot# lilo -v
 or
grub-install /dev/hda

26.2.3.2. Exploring the damaged system

The chroot command in the previous example is also useful for doing other things to explore your
damaged disks. Such exploration is easier if you have a correct mtab file. On a lot of rescue
environments, /etc/mtab is linked to /proc/mounts. In any case, the mtab file is usually correct in
the rescue environment. Not so in the chroot environment. If you do the following, your mtab will be
correct and a lot of important commands such as df will work right. mount -a can mount all your
disks into the chroot environment. This is a good thing, because sometimes the problem that stops
you from booting normally turns out to be a disk chock full of stuff; it needs a good cleaning before
you can boot.

chroot /mnt /bin/bash
mount /proc
cat /proc/mounts /etc/mtab
fsck -A -a# mount -av
...
df -k
...

26.2.3.3. Loss of key files

There are some things you can't recover from without doing some sort of reinstallation. Among
these are missing binaries and shared libraries. A good many of the files in /etc can easily be copied
from other machines or written by hand. Booting a rescue CD, going into the chroot environment,
and getting the network up by running the network initialization script are quite easy. You can then
use a file copy command such as ftp or scp, or even a package update command such as apt-get, to
copy the needed files from another machine or an FTP site. If the system is too badly damaged, it
will be hard or impossible to execute programs on it. For such as a situation, both dpkg and rpm
support options (--root=/mnt and --root /mnt, respectively) that let you install packages without
doing the chroot first. But the easiest recovery solution is perhaps to make a tarfile of the damaged
files from a similar healthy machine and get them onto the patient by FTP, floppy, USB memory
stick, or some other mechanism and then untar the tarfile on top of the damaged filesystem.

Rescue initrd

Considering the usefulness of rescue disks for some kinds of system recovery scenarios
and the completeness of Debian's initrd environment, it's not that far-fetched to
imagine a rescue initrd. In fact, in Debian it's as simple as setting DELAY in
/etc/mkinitrd/mkinitrd.conf to a nonzero value and pressing the Enter key when booting
at the Waiting for $DELAY seconds, press ENTER to obtain a shell prompt. The boot
process will drop you into ash with the full Debian environment described earlier at
your disposal. This is a bit harder to do in Red Hat.

The exam won't ask about this.

Chapter 27. Filesystem
This Topic has significant overlap with Chapter 6, which covered LPIC Level 1 Topic 104, Devices,
Linux Filesystems, and the File Hierarchy Standard. For that reason, this section will reiterate some
content regarding filesystem management, such as creating, mounting, and maintaining filesystems.
While an LPIC-1 is expected to be proficient at each of these tasks in isolation, an LPIC-2 must be
able to utilize these skills in a production environment, streamlining filesystem tasks and
maintaining live productive server environments.

This Topic contains three Objectives:

Objective 1: Operating the Linux Filesystem

Candidates should be able to properly configure and navigate the standard Linux filesystem.
This Objective includes configuring and mounting various filesystem types. Also included is
manipulating filesystems to adjust for disk space requirements or device additions. Weight: 3.

Objective 2: Maintaining a Linux Filesystem

Candidates should be able to properly maintain a Linux filesystem using system utilities. This
objective includes manipulating a standard ext2 filesystem. Weight: 4.

Objective 3: Creating and Configuring Filesystem Options

Candidates should be able to configure the automounting of filesystems. This Objective
includes configuring automount for network and device filesystems. Also included is creating
non-ext2 filesystems for devices such as CD-ROMs. Weight: 3.

27.1. Objective 1: Operating the Linux Filesystem

If you've been through the Level 1 program already (or simply are already familiar with the first
parts of this book), you should understand the basics behind operating your Linux filesystem pretty
well. The first of the following subsections reviews some utilities covered in Level 1 Topic 104.

Part of life is planning for, setting up, and living with things for some period of time, while being
ready (when requirements change) to cope and alter the setup to fit the new situation without
destroying what you already have. Working as a senior Linux administrator, you will likely be
responsible for a number of production servers or at the very least some company's very important
production server. For that reason, you don't have much room for trial and error; you need to know
how things should be and what needs to be changed without fiddling around for days. The Level 2
Exams will expect you to be able to create filesystems on production servers, add swap partitions as
needed, protect filesystem data integrity, and deal with changing demands.

27.1.1. Level 1 Review

You've covered the bases on mount and umount as well as the /etc/fstab file in Chapter 6, but if
you're a little rusty, here's a recap.

Syntax

mount [options] device

mount [options] directorymount [options] device directory

Description

Used to mount filesystems onto the filesystem hierarchy. The first and second forms consult
/etc/fstab and mount the filesystem located on device or attached to directory, respectively.
The third form ignores /etc/fstab and mounts the filesystem on device at mount point
directory.

Command-line options

-a

Mount all of the partitions specified in /etc/fstab, except those with the noauto option.

-h

Display help on the mount command.

-omount_options

Specify mount options on the command line. The following list applies to any filesystem:

async

All I/O to the filesystem should be done asynchronously.

atime

Update inode access time for each access. This is the default.

auto

Can be mounted with the -a option.

defaults

Use default options: rw, suid, dev, exec, auto, nouser, and async.

noatime

Do not update inode access times on this filesystem. This option might be useful,
for instance, for faster access on the news spool to speed up news servers.

noauto

Can be mounted only explicitly (i.e., the -a option will not cause the filesystem to
be mounted).

noexec

Do not allow execution of any binaries on the mounted filesystem. This option
might be useful for a server that has file systems containing binaries for
architectures other than its own.

nosuid

Do not allow set-user-identifier or set-group-identifier bits to take effect.
Increases security.

remount

Attempt to remount an already-mounted file system. This is commonly used to
change the mount flags for a file system, especially to make a read-only file

system writable. It does not change device or mount point.

ro

Mount the file system read-only.

sync

All I/O to the file system should be done synchronously. All changes are physically
written to the device at the time you issue the command. Recommended for
removable devices.

user

Allow an ordinary user to mount the file system. The name of the mounting user is
written to the mtab file so that she can unmount the file system again. This option
implies the options noexec, nosuid, and nodev (unless overridden by subsequent
options, as in the option line user, exec, dev, suid).

users

Allow every user to mount and unmount the file system. This option implies the
options noexec, nosuid, and nodev (unless overridden by subsequent options, as
in the option line users, exec, dev, suid).

-r

Mount the filesystem read-only.

-tfstype

Specify that the filesystem to be mounted is of type fstype. This option is typically used

interactively, when no entry for the mount exists in /etc/fstab.

-v

Set verbose mode.

-w

Mount the filesystem in read/write mode.

Syntax

umount [options] deviceumount [options] directory

Description

Unmount the filesystem on device or mounted on directory.

-a

Unmounts all of the filesystems described in /etc/mtab.

-t fstype

Unmounts only filesystems of type fstype.

The /etc/fstab is a plain text file and consists of lines with six fields:

Device

Mount point

Filesystem type

Mount options

Dump frequency

Pass number for fsck

Example 27-1 shows some of the items that are typically mounted.

Example 27-1. Sample /etc/fstab file

/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /boot ext2 defaults 1 2
/dev/sda9 /home ext2 defaults 1 2
/dev/sda6 /root ext2 defaults 1 2
/dev/sda10 /tmp ext2 defaults 1 2
/dev/sda8 /usr ext2 defaults 1 2
/dev/sda7 /var ext2 defaults 1 2
/dev/sda11 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto,users 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro,users 0 0
/dev/hdd /mnt/zip vfat noauto,users 0 0
fs1:/share /fs1 nfs defaults 0 0

27.1.2. Additional Filesystem Management Files

While /etc/fstab is the most important file when it comes to manipulating your filesystems, two
additional files are important too: /etc/mtab and /proc/mounts. These two files contain the same
information, and /etc/mtab could be dropped had it not been that Linux should work even if the
/proc filesystem is not present. Some distributions and live CDs (which let you boot a Linux system
from a CD instead of installing it on your hard disk) do drop mtab and symbolically link it to
/proc/mounts.

The information these files contain is the list of filesystems mounted on the system. Sometimes,
such as after a system crash, the mtab file won't be accurate, but the system initialization scripts
assiduously rebuild it from scratch. The kernel maintains the mounts file, and it will be quite
accurate, but perhaps not 100% helpful.

Examples 27-2 and 27-3 show the files' formats for a single system.

Example 27-2. /etc/mtab example

/dev/hda2 / ext3 rw 0 0
none /proc proc rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext3 rw 0 0
/dev/hdb1 /home ext3 rw 0 0
none /dev/shm tmpfs rw 0 0
none /dev/pts devpts rw,gid=5,mode=620 0 0
automount(pid1017) /misc autofs rw,fd=5,pgrp=1017,minproto=2,maxproto=3 0 0
automount(pid1019) /homes autofs rw,fd=5,pgrp=1019,minproto=2,maxproto=3 0 0
none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0

Example 27-3. /proc/mounts example

rootfs / rootfs rw 0 0
/dev/root / ext3 rw 0 0
/proc /proc proc rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext3 rw 0 0
/dev/hdb1 /home ext3 rw 0 0
none /dev/shm tmpfs rw 0 0
none /dev/pts devpts rw 0 0
automount(pid1017) /misc autofs rw 0 0
automount(pid1019) /homes autofs rw 0 0
none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0

If you compare these two examples, you'll see that the information for the root filesystem in mounts
is generic and that there are two / filesystems mounted. mtab, in contrast, specifies the device. With

regard to the oddities in the mounts file, if you recall the use of initrd scripts in Chapter 26, you
should recognize that this is due to the use of initrd, which requires two root filesystems and assigns
odd device names in the initrd environment.

27.1.3. Managing Swap

Setting up swap is usually done once in a machine's life, when Linux is installed. However, it may
turn out that the applications you run require a lot more memory and a lot more swap to be able to
run effectively, or at all. If so, you will need to have spare disk space, or new disks, and then add
swap space as needed. After a new swap partition is created, issue mkswap to create a swap
signature on it, which enables it for swap use. After that you should update /etc/fstab appropriately,
and if you don't wish to reboot, issue swapon to activate the partition. If for some reason you need
to stop using a swap partition, swapoff can do it for you.

Unix has used advanced caching techniques to speed up filesystem operations for a long time. To
ensure that the files on disk were updated, a process called update ran the sync command every 30
seconds. This would flush all cached writes to disk at once. Flushing everything every 30 seconds is
quite crude, so at some time in the history of Linux this process was moved into the kernel and
refined. The Linux program known as update got a new alias, bdflush. The 2.4 kernel carried out
flushing through a pair of threads. bdflush looked for dirty buffers to write to disk. kupdated worked
like the old update process, but flushed individual buffers instead of flushing all of them. In the 2.6
kernel, the functions are combined once again in a set of pdflush threads.

Data buffers are flushed 30 seconds after the kernel is done with them, and meta data buffers are
flushed after 5 seconds. Some filesystems that have very strong data consistency requirements
make sure their data is flushed according to a stricter schedule.

The sync command is still there, but you will very seldom need it. It will still flush all buffers at once,
and on a active system with a lot of memory it can take a while to complete. If your disks are set up
right, the system will be far from frozen, so only the sync command will hang.

Since it takes up to 30 seconds to flush things, it is always a good idea to either wait 30 seconds
after all activity has ceased before you reboot a system or to call sync. You will still see old Unix
hands do a repeated sync; sync; sync; reboot just to make sure everything is on disk before the
reboot commences.

Syntax

mkswap [-c] [-vn] [-f] device [size]

Description

Create a Linux swap area on a device, such as a hard drive, or in a file. The device is usually a
disk partition but can also be a file. You can also specify size, but it's not recommended.

When size is omitted, mkswap simply uses the entire partition or file specified.

Frequently Used Options

-c

Check the device for bad blocks before creating the swap area. This is in fact an
infrequently used option; it's a waste of time to run it. Modern disks remap bad sectors,
whereas old disks just got read errors on bad sectors.

-f

Force execution of the mkswap command with its options regardless of errors and
warnings. Also infrequently used, unless you know that an error in /etc/mtab is
confusing mkswap.

-vn

Specifies the version of swap style. -v0 creates the old swap style, whereas -v1 creates
the new one. If no -v argument is supplied, mkswap uses the new style unless you're
running a pre-2.2 kernel. If you need to run a pre-2.2 kernel, you must specify -v0.

Syntax

swapon [options]

Description

The swapon command enables devices and files to be used for swap. swapon is required after
creating a swap partition with mkswap.

Frequently used options

--a

Enable all devices marked as swap in /etc/fstab. Using -e with -a skips defined swap
devices that do not exist.

h

Display help for swapon.

-s

Display a swap usage summary.

Syntax

swapoff options

Description

Disable swap devices.

Frequently used options

-a

Disable all devices marked as swap in /etc/fstab. Using -e with -a skips defined swap
devices that do not exist.

27.1.4. Linux Partitioning Scheme

Chapter 6 presented a lot of important directories. In this chapter, we'll rehash that information with
a view toward when some of these different directories should be made separate filesystems.

/ (root)

Everything needed to boot a Linux system must reside on this filesystem: /dev, /bin, /sbin,
/etc, and /lib. You can certainly have many other things in this partition, but they are optional.
The root filesystem can run anything from 100 MB and up; 700 MB is quite large if the other
large filesystems are separated. The one imperative is to keep this filesystem from being
100% full. If it is filled, the machine will quite probably fail to boot if you try to reboot it.
Separating out the logs (mostly in /var) to a separate partition is one of the smartest things
you can do to prevent this problem.

/boot

Quite a few PC BIOS can't boot anything that resides beyond the 1024th cylinder of your boot
disk, which allows 64 MB of data. The /boot partition needs to house only some kernels, so 64
MB should be plenty. Realistic usage is in the order of 1020 MB. Due to the kernel's small
space needs, it can equally well be stored in the root partition, as long as the kernel is entirely
within the 1024th cylinder of the boot disk.

/usr

The main bulk of the software in a Linux distribution goes here. A pretty full installation seems
to be around 4 GB these days, but there have been dramatic increases in the past. If you plan
for the system to exist for a long time without being reinstalled and repartitioned, you should
make this partition at least 8 GB. If you are going to build your kernels yourself, you may
want to make the partition even larger. The kernel source usually resides in /usr/src, and a

full, compiled, 2.4 kernel tree is about 250 MB, so the megabytes can add up pretty quickly if
you patch the kernels, keep backups, and keep a couple of versions around.

/home

Users are very inconsiderate. They won't understand if you yell at them because they filled
your root filesystem so that the machine won't boot. Keeping the user home directories in a
separate partition is a big favor to yourself and them. But remember that a .mozilla directory
alone can be 200 MB because Mozilla caches web objects and mail.

/var

This is where the logs live and where download commands such as apt-get cache packages.
On an active system, the logs can be pretty big. Make this partition at least 2 GB; anything up
to 8 GB or even beyond can be useful. For example, the complete set of Fedora Core 1 RPMs is
about 1.8 GB, and if you want to yum update a heavily loaded system, you need enough space
to store all the packages. /var/tmp is often used to offload things such as the contents of CDs
to install software or data waiting to be burned to CDs.

/opt

This is the standard location for installing applications, the kind that run your business or
whatever. Look at the installation requirements for each application; 8 GB goes a long way.

/usr/local

This is the standard location to install OS add-ons that are not managed by the OS package
system. Separating them out can keep them from crowding out the OS from /usr. But because
a Linux distribution these days contains almost anything you can think of, there is not much
call for /usr/local, and a few hundred megabytes are usually enough.

/tmp

Some kinds of work require a lot of temporary space; /tmp is the default place to store it.
Some software will take direction from the TMP or TEMP environment variables to store
temporary files somewhere else. If you want to ensure that excessive use of /tmp does not
affect any other parts of your system, you can put it on a separate partition. A few hundred
megabytes usually suffice. If you have a lot of memory or the speed of temporary file
operations is of importance, consider mounting /tmp as tmpfs, which makes it memory-
resident instead of confined to a slow disk. The complete fstab line to do this is:

swap /tmp tmpfs rw,mode=1777 0 2

27.2. Objective 2: Maintaining a Linux Filesystem

This Objective has major overlaps with Chapter 6, Objective 2. You may wish to review the section
"Maintain the Integrity of Filesystems" there. Here we'll just touch on the fine points of some tune2fs
settings, when and how to force fsck to save your system, and how to resize filesystems.

Fortunately, Linux filesystems require very little maintenance. For example, Linux's allocation
strategies lead to very little disk fragmentation , so defragmentation tools, while they exist, are not
used much. Fragmentation does increase, though, if the disk becomes excessively full, so monitoring
free space is a very good idea. Maintenance tasks are mostly restricted to watching fsck do its work
automatically after a crash.

27.2.1. tune2fs

It's important, despite the availability nowadays of journaling (see the next Objective) and RAID, to
run fsck on all filesystems from time to time. The two parameters for controlling how often a fsck of
a filesystem is forced are: -i and -c. The default for a filesystem is shown when it is created:

This filesystem will be automatically checked every 29 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

If you find that your disk systems are very reliable and experience very few corruption problems,
you can increase the period between forced filesystem checks. To change the number of mounts
between checks (the filesystem typically gets mounted once for each boot), use the -c option. It is
relatively important that the number be odd, and even better if it's prime. The reason for this is that
you do not want to wait while all your filesystems are being fsck'ed at the same time after, say, 24
reboots. If you use different odd numbers for -c on all your disks, they will tend to be checked at
different times. The time between checks is already quite high, so you may not want to use the -i to
change it. But if you do, the value is taken to be days, which you can change to weeks or months by
postfixing the value with w or m, respectively.

If you ever run into errors in an ext2 filesystem, the kernel can take three different actions based on
this, regulated by the value in the -e option:

continue

Just ignore the error. A read or write error should be reported to any application.

remount-ro

Remount the filesystem read only. This prevents escalating or dominoing failures because the
filesystem cannot be updated. If the error is due to filesystem inconsistency, more corruption
may otherwise result. Applications will fail with write errors subsequent to this remounting,

but the data already on disk is secured.

panic

Cause a kernel panic and halt the system. This is a very obvious failure mode that forces
action by the user, whereas the two previous failure modes are more subtle and the problems
might go unnoticed.

Choose the -e option best suited to your needs. If data consistency is of the utmost importance, one
of the two l ast options should be chosen. In any case, the filesystem will be marked as unclean and
will be checked on next reboot.

27.2.2. dumpe2fs

We must admit to never having used dumpe2fs. Furthermore, upon reviewing the manpage, we
haven't found any use for anyone without a university major in filesystem design. The one option
that could be understood by a mere senior system administrator with a decade of experience but
without a special interest in filesystems is:

/sbin/dumpe2fs -h /dev/Disk2/test
dumpe2fs 1.34 (25-Jul-2003)
Filesystem volume name: <none>
Last mounted on: <not available>
...
Filesystem features: filetype sparse_super
...
Filesystem state: clean
Errors behavior: Continue
...
Reserved block count: 10240
Free blocks: 197429
Free inodes: 51181
First block: 1
...
Filesystem created: Sat Jan 24 22:14:19 2004
Last mount time: Sat Jan 24 22:14:37 2004
Last write time: Sat Jan 24 22:14:59 2004
Mount count: 1
Maximum mount count: 34
Last checked: Sat Jan 24 22:14:19 2004
Check interval: 15552000 (6 months)
Next check after: Thu Jul 22 23:14:19 2004
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Default directory hash: tea
Directory Hash Seed: b5824b65-c864-4ee5-82f1-39aaae3fb572

But this is identical to the output of tune2fs -l. In any case, it supplies information about the

filesystem features. The filetype feature is standard and tells you that file types are stored in
directory entries. sparse_super indicates that a long space is left between superblock backups,
saving some space. If the filesystem were larger than 2 GB, large_files would be set as well, and
the filesystem would support files larger than 2 GB. The free blocks and inodes information are the
same as displayed by df. The mount counts and next check information were discussed in the
previous tune2fs section.

27.2.3. debugfs

Sometimes called debuge2fs. Also a very intricate tool. But it has one very good feature, which helps
you undelete files. Helps is a very important word here. First of all, it can help only on ext2
filesystems; on ext3 it does not work at all. Secondly, a real filesystem always has a lot of deleted
files, so you have to work hard to find the right one. Finally, you can only hope that the file's blocks
have not been reused since you deleted it. Following is an ideal situation with only one deleted file:

debugfs -w /dev/Disk2/test
debugfs 1.34 (25-Jul-2003)
debugfs: lsdel
 Inode Owner Mode Size Blocks Time deleted
 12 0 100644 261117 256/ 256 Sat Jan 24 22:14:55 2004
1 deleted inodes found.
debugfs: undelete <12> undeleted-file
debugfs: ^D
mount -t ext2 /dev/Disk2/test /mnt
cd /mnt
file undeleted-file
undeleted-file: RPM v4 bin i386 maildrop-1.3.4-1.7.0
mv undeleted-file maildrop-1.3.4-1.7.0.i386.rpm

The lsdel and undel commands in debugfs are undocumented in both Debian and Red Hat. The way
this process works is that you find a file with a likely size and deletion date with lsdel. In the first
column of that line is the inode number of that file. This inode number is then given to undel along
with a filename. Note that the <> around the inode number are required. Prior experience has shown
that this command sometimes will fail, and sometimes work, and that a fsck after an undelete can
be a good idea.

27.2.4. badblocks and e2fsck

Luckily, the badblocks command is very seldom needed these days. All modern disks do bad block
remapping, meaning that if they detect a bad block a spare block is substituted. Very neat and nice
for system administrators. Sometime in the childhood of Linux, IDE disks could not do such things.
Because the disks were small and expensive, a bad block scan was an economic thing to do.

Today disks are huge, and they all do bad block remapping, so badblocks is by and large useless
because it takes too long to scan the disk.

There is one situation in which badblocks can potentially be handy. When a disk is failing, it will
usually get an exponential increase in bad blocks, and after a short while it will run out of spare

blocks, whereupon you will get into trouble with your filesystems on that disk.

You may manage to save the filesystem by running badblocks on it and then passing the list of bad
blocks to e2fsck to get the filesystem working enough for a backup. Bad block scanning will take a
very, very, very long time on a big device. The process is as follows:

badblocks -c 4096 -n -v -v -b 1024 -o /tmp/hdc1-badblocks /dev/hdc1...
e2fsck -l /tmp/hdc1-badblocks /dev/hdc1...

The -n does a nondestructive read/write test. The -v -v ensure that you get progress reports. The -b
is important, because if badblocks gets the wrong block size, the badblocks file will be useless. The
filesystem block size is 1024 by default, but large filesystems use 4096. You can derive the right
parameter by entering tune2fs -l or dumpe2fs -h. The -c 4096 is how many blocks should be
checked at a time. The manpage warns about using this, but 4096 blocks of 1024 bytes at once uses
only about 14 MB of memory. Most modern systems can handle that well enough.

All in all, and due to the number of hours it takes badblock to scan a modern disk with any
interesting size, it seems more likely that a disk with exponential bad blocks will fail totally before
the scan is completed.

27.2.5. fsck

Sometimes you will see strange behavior from a filesystem. Files that just disappear. File sizes that
are all wrong. File permissions being odd or impossible. You should then know that it's time for a
filesystem check, even if Linux thinks that the filesystem is clean and it's a long time until a forced
check is due. How to do a file check was discussed in Chapter 26, but briefly summarized, you boot
the machine in single-user mode, unmount the filesystem in question, and run fsck -f on it. fsck will
look up the partition in /etc/fstab and supply the filesystem type itself. If you know the filesystem to
be an ext2 or ext3 filesystem, you can run e2fsck -f or fsck.ext2 -f directly.

27.2.6. mke2fs

This command does not handle filesystem maintenance as such. But there are some things you
might want to consider to make maintenance easier or the filesystem more suitable or flexible for
future needs. Mostly, some of the command's sizing options are interesting:

-O sparse_super

Enable (first option) or disable (second option) sparse superblocks. On very large disks (which
includes most modern disks), it is pointless to have super block backups as often as
administrators used to have with small disks. mke2fs does a very good job of guessing what
you need here.

-J size=100

Set the size of the ext3 journal. On some fast systems that do an unusual volume of I/O, you

may find that the default journal size is too small. The journal must be between 1024 and
102,400 blocks. The size value is in megabytes.

-N number-of-inodes

In filesystems that are going to have a lot of small files, such as a news spool, or the index
disk of some backup systems, you need more than the usual number of inodes. One inode is
used per file. Round the number up generously. For all normal filesystem uses, the default is
generous.

27.2.7. Filesystem Resizing

An ext2 filesystem can be resized. This can be very handy, but is of limited value if your disk does
not have free space that you can add to the partition on which the filesystem resides. In Objective 3
of Chapter 28 we'll discuss LVM, which lets you easily resize data volumes. If you don't use LVM, you
can use parted (Partition EDitor) to resize, move, and copy partitions and the filesystems they
contain.

To enlarge a partition, you must first create free space elsewhere on the same disk. If you don't
have any, find one or more underutilized partitions and make them smaller. Then move the
partitions that are between the free space and the partition you want to enlarge so that the free
space becomes adjacent to the partition you want to enlarge. You're now free to enlarge it.

Several cautions apply to the use of parted:

parted, unfortunately, has been known to corrupt partition tables and ruin filesystems. Before
using it, as before any major operation on your system, back up your data and feel relieved if
you don't have to restore it later.

The filesystems containing the partitions you are working on need to be unmounted when you
work on them.

You should go down to single-user mode if you're doing large operations.

If you are just resizing an existing filesystem, you'll find it simpler to use resize2fs, described later.

Syntax

parted [device [command [options]]]

Description

parted can be used to edit partition tables. For human consumption, it is best to use it
interactively. But scripts, or very knowledgeable humans, may give the options directly on the
command line.

Some useful commands

move partition N start end

Move the partition numbered N to the given start and end points. This can resize the

partition at the same time.

resize partition N start end

Resize the partition numbered N to fit within the new start and end. Making a filesystem

smaller can be quite time consuming, because files that are stored past the new end of
the filesystem must be moved.

Syntax

resize2fs [-f] device_name [size]

Description

Resize the ext2 filesystem present on the partition named by device_name. If the size is
omitted, the filesystem is resized to fill the whole partition. size should be given in units of

filesystem blocks, or if it is postfixed by s, K, M, or G, it is in 512-byte sectors, kilobytes,
megabytes, or gigabytes, respectively. The -f option forces resizing.

Example

resize2fs /dev/hda7 5G

27.2.8. fsck

fsck is normally run automatically as needed. Under certain circumstances, you may want to make
sure it runs because, for example, you see things that makes you believe the filesystem is corrupt. It
could be files disappearing, files that have 0 or small sizes but appear huge if you read them with
less or cat, or anything else that makes you feel that the filesystem is not acting sanely.

The commands and techniques discussed for system recovery will be useful here. If any filesystem
except your root filesystem seems messed up, simply take the machine down to single-user mode,
unmount the problematic partition, and run fsck -f on it. If it is the root filesystem that seems
insane, you will need to reboot with the kernel option init=/bin/bash and, instead of mounting the
root filesystem, run fsck -f on it.

After fixing the filesystem, reboot. The system should come up sanely and without any strangeness
in the filesystems.

27.2.9. Self-Monitoring, Analysis, and Reporting Technology System
(SMART)

This system is built into most modern ATA and SCSI hard disks. SMART provides an efficient and
cheap solution for monitoring potential failures in your hard disk devices. A hard disks is a very
delicate device, so it is well worthwhile having any potential warning that it is about to crash.

Warning: SMART doesn't substitute for the always-recommended practice to get all your critical data stored, updated, and tested in your

backup media.

SMART implementation in Linux is very mature, and there are good tools to manage it. To start
using this great benefit of modern disks, you must check these prerequisites:

The hard disk must be SMART compliant.

Your operating system must read SMART commands.

You must install software capable of managing and showing SMART alert messages.

Assuming you don't have problems with the first and second items, you can use smartmontools
(http://smartmontools.sourceforge.net) to fulfill the last one. This suite contain two binaries, smartd
and smartctl, along with corresponding initialization scripts.

smartd runs as a daemon working in the background and monitors the hard disk. smartctl is a utility
that controls and monitors SMART. smartctl is designed to perform SMART tasks such as printing the
SMART self-test and error logs, enabling and disabling SMART automatic testing, and initiating
device self-tests. Assuming that /dev/hda is the first hard disk installed in your system, you can
display the status as follows:

/etc/init.d/smartd start
 * Starting S.M.A.R.T. monitoring daemon... [ok]
smartctl -i /dev/hda
smartctl version 5.30 Copyright (C) 2002-4 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

=== START OF INFORMATION SECTION ===
Device Model: WDC WD400BB-00FRA0
Serial Number: WD-WMAJF1340215
Firmware Version: 77.07W77
Device is: In smartctl database [for details use: -P show]
ATA Version is: 6
ATA Standard is: Exact ATA specification draft version not indicated
Local Time is: Tue Jul 26 20:23:21 2005 BRT
SMART support is: Available - device has SMART capability.
SMART support is: Enabled

If the command shows:

http://smartmontools.sourceforge.net

SMART support is: Disabled

just turn it on using:

smartctl -s on /dev/hda

You can customize /etc/smartd.conf to monitor the temperature and error rates of disks, among
other interesting things, but details are outside the scope of this objective.

27.3. Objective 3: Creating and Configuring Filesystem
Options

In Chapter 6 we covered mounting various types of filesystems, but up to this point we have
discussed creating only ext2 filesystems. In this objective, LPI expects you to be able to create other
types of filesystems, such as ISO9660 filesystems for CD-ROMs. In addition, you should be able to
set up automounting for network and device filesystems.

27.3.1. Automounting Filesystems

An automounter is a system that automatically mounts disks on demand. It can mount any kind of
filesystem that mount can mount, as long as there is no interactive authentication. The handiest
property of an automounter is that it is dynamic. If you make an update of the configuration, it's
ready to mount at once.

Linux supports an automounter called autofs that is inspired by a Solaris utility of the same name.
autofs is configured by two kinds of files.

The master map (usually /etc/auto.master) defines which mount points should be governed by
autofs . Each mount point again has an automount map associated with it. The maps are usually
stored in files called /etc/auto .mount_point. autofs can store the maps in NIS and LDAP as well as
in flat files. We'll concentrate here on flat files. Consider the following /etc/auto.master file:

Format of this file:
mountpoint map options
For details of the format look at autofs(8).
/misc /etc/auto.misc --timeout=15
/home /etc/auto.home

The contents of /etc/auto.misc are:

usbdisk -fstype=vfat,umask=0,dotsOK=yes :/dev/sda1
cdrom -fstype=iso9660 :/dev/cdrom

This will mount a USB memory stick or disk that appears as /dev/sda1 and the CD-ROM. All the user
has to do is insert the CD and issue cd /misc/cdrom ; there is no need for a mount command. Due to
the --timeout=15 option, the mount will disappear after 15 seconds of disuse. Quite convenient on
end user machines.

How this works is that when a user attempts to access /misc/ something , or anything underneath it,
something is looked up in the automount map, and if it comes up with a match, the indicated device

is mounted with the indicated options. The syntax of the file is fairly trivial, looking generally like

this:

key [options] location

The first column contains lookup keys, the directory names specified by users. The rest of each line
is the matching value. Any mount options must come first and be prefixed by a hyphen (-).

After looking up cdrom in our previous example, we use -fstype=iso9660 :/dev/cdrom . The -fstype
option is passed to mount as the filesystem type (mount -t fstype), while the other options are
mount options (mount -o options). All the same mount options that were discussed in Chapter 6

can go here.

Any string containing a : specifies the thing to mount. If the colon is a prefix, as in the previous
example, it's a local device. If something precedes the colon, the device is (by default) NFS-
mounted. You can mount SMB/CIFS mounts by specifying something like this:

windows -fstype=smbfs ://windows/c

In a real environment, the main use of autofs is for NFS mounts. Home directories are a favorite
example. The contents of /etc/auto.home could be:

janl -rw,intr,hard server:/server/bighome/&
killroy -rw,intr,hard server:/server/bighome/&
* -rw,intr,hard server:/server/homes/&

Here you see that /home/janl is mounted from server:/server/bighome/janl . You may recognize the
use of the ampersand (&) from sed ; it means to put the string that was matched (i.e., the whole
key) in the place of the ampersand. This comes in very handy with the wildcard mount. Whenever a
home directory other than janl or killroy is requested, it matches the last line and therefore mounts
the corresponding directory from server:/server/homes . For instance, requesting /home/silug
results in an attempt to mount server:/server/homes/silug . The options shown are pretty common
for NFS mounts.

autofs becomes more useful once you add a way to distribute the map files, whether by copying
them from a master to all takers with FTP or by using NIS or LDAP.

27.3.2. Other Filesystems

The Objective vaguely calls for knowledge of "other" filesystems. Earlier chapters have concentrated
on ext2 , Linux's vintage filesystem, while mentioning ext3 in passing. ext3 is an extension to ext2
that adds metadata journaling (or logging, if you will). If a system crashes, the log enables playback
of the filesystem events (file creation, deletion, etc.) that happened up to that point from the log.
This enables quick recovery after crashes, rather than having to do a full multipass scan of the
filesystem to discover inconsistencies caused by the crash. Thus, the log playback guarantees
consistency: some recent changes may be lost, but the files and directories are not corrupted.

Among the "other" filesystems on Linux are ReiserFS, JFS, and XFS. ReiserFS originated from

independent development on Linux. JFS comes from IBM and is used in both OS/2 and AIX. XFS was
made by SGI for use with IRIX. All of these are journaling filesystems but otherwise support a wide
array of different goals and features. IBM and SGI have been porting JFS and XFS to Linux on their
own initiatives. They started before ext3 was really stable.

Of these journaling filesystems, only ext3 (and to some degree, ReiserFS) see widespread use. While
both ReiserFS and JFS are included in the kernel sources, many distributions do not offer to make
them during installation. The most marginal of these filesystems seems to be XFS: it is not included
in kernel sources and its utilities are not included in most distributions.

For now we'll concentrate on making and tweaking ext3 filesystems. ext3 requires both a pretty
recent kernel and updated ext2 utilities. Reiserfs, JFS, and XFS all need additional utility packages
installed.

Please read the following warnings carefully: each one offers some sound advice!

Warning: If you use a journaling filesystem, it is quite important not to muck about with caching and flushing. A disk drive that does write

caching (and most do, because their benchmarks are much nicer) also often do write reordering. But a journaling filesystem depends on the

journal entries being written in the correct order. If the disk reorders them, the journal becomes corrupt. The problem becomes even worse if you

use RAID, because different stripes of the same data become inconsistent. Experiments

(http://www.sr5tech.com/write_back_cache_experiments.htm) have shown that there is about a 10% chance of filesystem corruption on a large

filesystem after an uncontrolled shutdown.

Warning: The 2.6 kernels contain "write barriers" in appropriate places to prevent such corruption. For earlier kernels, the very best cure is

having a UPS and shutting down systems in an orderly manner before the power disappears. This is smart in any case, but more important if

you have a lot of storage.

Warning: On a risky system that runs an old kernel and has no UPS, consider disabling write back caches on your drives. If you have IDE

drives, a simple hdparm -W0 /dev/hda (and similar commands for other disks) suffices. With SCSI and RAID, there may be BIOS settings to do

the job, or you may need to locate a package called xscsi to manipulate the drive mode pages directly. The price for this is considerably higher

latency for disk writes, and this may kill the performance of some system/software combinations.

27.3.2.1. Using ext3

Since ext3 is an extension of ext2 , making an ext3 filesystem is done by invoking mke2fs with the -j
option.

mke2fs -j -L test /dev/sda1
mke2fs 1.34 (25-Jul-2003)
Filesystem label=test
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
51200 inodes, 204800 blocks
10240 blocks (5.00%) reserved for the super user
First data block=1
25 block groups
8192 blocks per group, 8192 fragments per group
2048 inodes per group
Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729

Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 36 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

The -j option is all that is needed. You now have an ext3 filesystem. ext3 has the nice property that
after it is fsck ed it's a valid ext2 filesystem as well. Thus, you may access ext3 disks on systems
that support only ext2 , providing that you make sure they are fsck ed. Conversely, a plain ext2
filesystem can very easily be upgraded to an ext3 filesystem; all you need to do is add the journal
like this:

tune2fs -j /dev/sda1
tune2fs 1.34 (25-Jul-2003)
Creating journal inode: done
This filesystem will be automatically checked every 29 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

After you upgrade a filesystem to ext3 , change its /etc/fstab entry to match.

27.3.2.2. vfat filesystems

There is one more group of filesystems that deserves mention: the Microsoft DOS/Windows FAT
filesystems and their variants. Under Linux, these are accessed through the vfat filesystem type. vfat
is not used much on enterprise Linux systems, but it is used a lot on desktop systems for devices
such as USB memory sticks or disks, MP3 players, camera memory cards, and so on.

vfat really encompasses a class of different FAT filesystems with support for differently sized devices
and short or long filenames. vfat can also be used for NTFS partitions on modern derivatives of
Windows NT. Linux can create, mount, read, and write reliably to all these. The support for checking
them is not complete, though it should be good enough for most jobs. Simply use mount -t vfat to
mount them, mkfs.vfat to create them, and fsck.vfat to check them. The last two commands come
from a package called dosfstools in both Debian and Red Hat.

Linux also offers an ntfs filesystem, but it's experimental and not offered by default in many
distributions. Luckily, it's not needed either. vfat can be used with partitions considered to be NTFS
partitions on Windows. Linux's ntfs is also less desirable because it doesn't reliably support writes,
which vfat does.

27.3.3. ISO9660 Filesystems

ISO9660 filesystems are quite a bit different from the filesystem types mentioned before; hence we
offer a whole section about them. As a sysadmin, you must be comfortable creating ISO9660 for
applications that write to CDs or DVDs. When writing to CD media, you don't simply save files to
them as you would a floppy drive. Even non-Linux operating systems require some type of program
to simulate that behavior transparently to the user. Instead, you have to create a filesystem to be
written, or burned , to CD-writable media. This filesystem is the ISO9660 filesystem, called ISO for
short.

Standards with an ISO prefix, such as ISO9660, are defined by the International Organization for
Standardization. While you may find references to ISO being an acronym for this organization, it is
actually intended to refer to a pun on the Greek prefix "iso-" which means "same."

27.3.3.1. Creating ISO9660 images

Before you start burning CD-ROMs, you must first create your image, or ISO. This is a job done in
two steps. First, you create a directory hierarchy containing all the files you want the CD to contain.
Ensure that it's no larger than the maximum size supported by the CD-R (or CD-RW or even DVD)
medium you're going to burn on. After that, use mkisofs to generate an ISO image (sometimes
called a CD image). This image can in turn be burned onto a CD.

Syntax

mkisofs options [-o filename] path [path...]

Description

Generate an ISO9660 filesystem image for burning onto CD media. The original ISO9660
standard is quite rudimentary; for example, it supports only filenames in DOS 8.3 style.
Therefore, it has many mutations, and mkisofs has options to support a lot of them. Most of
them are obsolete or irrelevant to us.

Two mutations that are still interesting are: Rock Ridge and Joliet. The Rock Ridge extensions
support filenames with up to 30 characters, UID/GID file permissions, and POSIX symbolic
links and devices. Joliet is the Windows CD-ROM filesystem.mkisofs can generate both, and
Linux understands both natively (but support for Joliet requires a kernel option).

Interesting options

-J

Generate Joliet extensions. These are understood by Windows starting with Windows 95
and NT. Filenames are Unicode encoded and can be up to 64 characters long. Joliet
alone should be used for CDs intended for Windows only.

-r -ldots -l

These options allow Unix-style filenames. The -r option activates Rock Ridge extensions,
mostly interesting because of the long filenames. It also defaults the
UID/GID/permission settings in a way that is appropriate for a CD-ROM. The -r option is
absolutely necessary if you want to create a CD that contains Linux executables and
scripts. Omitting it removes the executable bits from all files so that they will not be
executable any more. The -ldots allows filenames to start with a period (.), which is
otherwise forbidden. The -l option allows 31-character names in the basic ISO9660
directories on the image. There is space for this in the directory entries, but the ordinary
filename standard for ISO9660 is 8.3. Both -l dots and -l are violations of the standard,
but CD-ROM images burned with seem to work on all known systems.

-T

This creates TRANS.TBL files in each directory of the image. The literature says that
"some" systems use these to support long filenames with special characters. These files
are very often seen on old Linux CD-ROM distributions.

-o filename

Write the image to the named file.

Example

Generate an ISO image named /var/tmp/image.iso from the files in /var/tmp/backup :

$ mkisofs -T -r -ldots -l -J -o /var/tmp/image.iso /var/tmp/backup
Warning: creating filesystem that does not conform to ISO-9660.
 6.74% done, estimate finish Wed Jan 21 14:53:06 2004
 13.46% done, estimate finish Wed Jan 21 14:53:06 2004
 20.21% done, estimate finish Wed Jan 21 14:53:06 2004
 26.93% done, estimate finish Wed Jan 21 14:53:06 2004
 33.67% done, estimate finish Wed Jan 21 14:53:06 2004
 40.39% done, estimate finish Wed Jan 21 14:53:06 2004
 47.14% done, estimate finish Wed Jan 21 14:53:06 2004
 53.86% done, estimate finish Wed Jan 21 14:53:06 2004
 60.60% done, estimate finish Wed Jan 21 14:53:06 2004
 67.32% done, estimate finish Wed Jan 21 14:53:06 2004
 74.07% done, estimate finish Wed Jan 21 14:53:06 2004
 80.79% done, estimate finish Wed Jan 21 14:53:06 2004
 87.53% done, estimate finish Wed Jan 21 14:53:06 2004
 94.25% done, estimate finish Wed Jan 21 14:53:06 2004
Total translation table size: 459
Total rockridge attributes bytes: 429
Total directory bytes: 0
Path table size(bytes): 10
Max brk space used 21ac4
74269 extents written (145 Mb)

Despite the warning about nonconformance with ISO9660, the image should be compatible with all
modern operating systems.

27.3.3.2. Burning CD-ROMs

Burning a CD is, in a mechanical sense, quite complicated. The CD burner must be fed with data
quickly enough to keep the disk rotating at just the right speed while the laser moves in a precise
spiral. With older burners, if the data does not arrive soon enough, the whole burning will fail and
you will have a new coaster. New burners support different kinds of BurnProof and BurnFree
technologies, meaning that the CD drive has precise enough control of speed, the angular position of
the disk, and the spiral position of the laser that when a data under-run occurs, it can resume the
burn when data arrives. Nonetheless, CD burning is considerably more complex than writing to a
disk, and special software is needed. Linux provides cdrecord and sometimes dvdrecord . We will

concentrate on the former.

27.3.3.2.1. Burning with IDE CD burners

This applies to all except a few CD burners that are SCSI units.

In the beginning, all CD burners were SCSI units and cdrecord understood only SCSI CD burners. At
some point, IDE CD burners appeared. To allow use of these with cdrecord , the ide-scsi kernel
module was extended so that the kernel could show IDE burners as SCSI devices to cdrecord and
then translate the SCSI commands to IDE commands. Before you can burn anything, this module
must be installed, which means first of all that your kernel must be configured with it. We'll assume
it is compiled as a module. On Red Hat, the lines shown next should be entered directly into
/etc/modules . On Debian, put them in /etc/modules.d/local (for example) and run modules-update
afterwards.

alias scd0 sr_mod
pre-install sg modprobe ide-scsi
pre-install sr_mod modprobe ide-scsi
pre-install ide-scsi modprobe ide-cd

These lines set up the system so that if the SCSI CD device or the SCSI "generic" driver is loaded,
the ide-scsi module will be loaded first.

In your boot loader, add the option hdc=ide-scsi on the kernel command line. For LILO, insert
append="hdc=ide-scsi" to the lilo.conf , while in GRUB simply type the option into each kernel
command line. The hdc assumes that your CD-burner is the master of the second IDE bus; if it's
something else, change the device name appropriately. Now reboot; you should be all set to burn
CDs.

27.3.3.2.2. Using cdrecord

In most cases cdrecord needs quite a long command, but fortunately it's not hard to figure out which
options you need.

Syntax

cdrecord -scanbus

cdrecord [general_options] dev=device image_file

Description

Burn an audio or data CD according to the relevant standards. We will restrict ourselves to data CDs.
The device refers to a bus,target,lun tuple rather than a Unix-style device name. This tuple

identifies the burner device. The appropriate tuple is found using the -scanbus form of the command.
See the examples that come later in this section.

Interesting options

-v

Verbose output. Use one -v to track the burning process.

-dummy

Only pretend to burn. This will go through all the motions of burning, but the laser will be off.
If your burner does not support BurnFree or some such feature, you can use this to verify that
your system can feed data fast enough to avoid data underruns. Combine the option with -v to
get information about the data feeding process.

driveropts=burnfree

Enables the burning mode that tolerates data underruns.

speed= speed

Set the burning speed. This is quite often autodetected. But if your drive does not tolerate
underruns, you can reduce the speed so that data is fed to it fast enough to prevent them.

dev= device

Specify which device to burn to.

Examples

First locate your CD burner device.

cdrecord -scanbus
Cdrecord-Clone 2.01a19 (i686-redhat-linux-gnu) Copyright (C) 1995-2003 Jorg Schilling
Linux sg driver version: 3.1.25
Using libscg version 'schily-0.7'
cdrecord: Warning: using inofficial libscg transport code version (schily -
Red Hat-scsi-linux-sg.c-1.75-RH '@(#)scsi-linux-sg.c 1.75 02/10/21
Copyright 1997 J. Schilling').
scsibus0:
 0,0,0 0) 'PLEXTOR ' 'DVDR PX-708A ' '1.02' Removable CD-ROM
 0,1,0 1) *
 0,2,0 2) *
 0,3,0 3) *
 0,4,0 4) *
 0,5,0 5) *
 0,6,0 6) *
 0,7,0 7) *

The output indicates that you want to use dev=0,0,0 . To test burn a CD:

cdrecord -v -dummy driveropts=burnfree dev=0,0,0 /var/tmp/image.iso
Cdrecord-Clone 2.01a19 (i686-redhat-linux-gnu) Copyright (C) 1995-2003 Jorg Schilling
TOC Type: 1 = CD-ROM
scsidev: '0,0,0'
scsibus: 0 target: 0 lun: 0
Linux sg driver version: 3.1.25
Using libscg version 'schily-0.7'
cdrecord: Warning: using inofficial libscg transport code version (schily -
Red Hat-scsi-linux-sg.c-1.75-RH '@(#)scsi-linux-sg.c 1.75 02/10/21 Copyright 1997
J. Schilling').
Driveropts: 'burnfree'

... [verbiage about drive and media capabilities deleted for brevity]

Driver flags : MMC-3 SWABAUDIO BURNFREE VARIREC FORCESPEED SINGLESESSION HIDECDR

...

Power-Rec write speed: 40x (recommended)
Starting to write CD/DVD at speed 40 in dummy TAO mode for single session.
Last chance to quit, starting dummy write 0 seconds. Operation starts.
Waiting for reader process to fill input buffer ... input buffer ready.
BURN-Free is OFF.
Turning BURN-Free on
Starting new track at sector: 0
Track 01: 145 of 145 MB written (fifo 100%) [buf 97%] 27.9x.
Track 01: Total bytes read/written: 152102912/152102912 (74269 sectors).
Writing time: 52.236s
Average write speed 19.0x.
Min drive buffer fill was 97%
Fixating...
WARNING: Some drives don't like fixation in dummy mode.
Fixating time: 0.000s
Last selected write speed: 40x
Max media write speed: 40x
Last actual write speed: 26x
BURN-Free was never needed.
cdrecord: fifo had 2396 puts and 2396 gets.
cdrecord: fifo was 0 times empty and 1388 times full, min fill was 93%.

An altogether successful dummy burning. If your drive can't tolerate underruns, look closely at the last line
detailing fifo filling: 93% is quite acceptable; 50% should be more worrying and perhaps a clue to reduce
the writing speed.

27.3.3.2.3. CD miscellany

A CD, burned or obtained commercially, can be accessed as a block device with ordinary Linux
commands. To verify a burned CD, simply use the cmp to check it against your original input
directory, as shown below. If there is no output, you're fine.

$ cmp /dev/cdrom /var/tmp/image.iso

If you want to burn a copy of a data CD, you can simply copy the image from the CD to disk with dd
. For example:

$ dd bs=2k if=/dev/cdrom of=/var/tmp/cd-image.iso
56942+0 records in
56942+0 records out

After the operation is done, you can turn around and burn new CDs with the image (if you have the
necessary legal rights to copy it, of course). This is also a great way to back up CDs and to have
them available for use quickly without running around finding the disk, inserting it in the right
computer, and so on.

ISO filesystems on CDs are easy to mount. This is discussed in Chapter 6 . The complete command
to mount an ISO CD is:

mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

If loop devices are supported by your kernel, you can mount the image file directly with this
command:

mount -t iso9660 -o loop,ro /var/tmp/image.iso /mnt/cdrom

You can also use the losetup command to easly manage loop devices.

Syntax

losetup [[-e|-E] encryption] [-o offset] [-p pfd] loop_device file

losetup [-d] loop_device

Description

losetup is used to associate loop devices with regular files or block devices, to detach loop
devices, and to query the status of a loop device. If only the loop_device argument is given,

the status of the corresponding loop device is shown.

Interesting options

-e encryption

Enable data encryption with the specified name.

-d

Detach the file or device associated with the specified loop device.

Examples

You can use this example to encrypt (painfully) a file.

dd if=/dev/zero of=/file bs=1k count=100# losetup -e des /dev/loop0 /file
Init (up to 16 hex digits):
mkfs -t ext2 /dev/loop0 100
mount -t ext2 /dev/loop0 /mnt

27.3.4. dd

On the face of it, dd may seem like an odd program, but it's widely useful because it is very good at
copying data from devices to files and vice versa. In the ISO9660 section earlier in this chapter,
you've already seen dd used to copy a CD image from the CD to a disk file. dd can be used with
almost any Linux tool to facilitate I/O with block devices. (Moving data between files and character
devices can be done with just cat .)

For example, if you want to move a filesystem from one device to another and the receiving device
is at least as big as the originating one, just enter something such as:

dd bs=1k if=/dev/from of=/dev/too

If you combine dd with rsh or ssh , a filesystem can be transferred from system to system over the
networkjust not very efficiently, because the free blocks will also be transferred. Add gzip -1 -c to
the pipeline before the network copy command, and all the blocks containing zeros will be transfered
much faster.

When operating on block devices, the block size can be very important. One point to remember is
that larger blocks are faster. When writing to and from disks, bs=8k can help immensely. When
operating on tar files, you should always use bs=10k , because tar uses a block size of 10 KB by
default.

The dd command can copy raw data and disk images to and from such devices as floppies and tape
drives. A common use is to create boot floppies:

dd if=kernel_image.iso of=/dev/fd0

Similarly, dd can copy the entire contents of a floppy, even one formatted with a "foreign" OS, to the
hard drive as an image file.

Chapter 28. Hardware (Topic 2.204)
This Topic supplements the Level 1 Topic 101, Hardware and Architecture. In Chapter 3, we
discussed hardware subjects such as BIOS, modem and sound cards, SCSI devices, PC expansion
cards, modems, and USB devices. For Level 2, you're expected to implement software RAID
solutions, configure specialized hardware, customize software drivers and kernel configurations, and
install PCMCIA hardware devices.

This Topic contains four Objectives:

Objective 1: Configuring RAID

Candidates should be able to configure and implement software RAID. This Objective includes
using mkraid tools and configuring RAID 0, 1, and 5. Weight: 2.

Objective 2: Adding New Hardware

Candidates should be able to configure internal and external devices for a system including
new hard disks, dumb terminal devices, serial UPS devices, multiport serial cards, and LCD
panels. Weight: 3.

Objective 3: Software and Kernel Configuration

Candidates should be able to configure kernel options to support various hardware devices
including UDMA drives and IDE CD burners. This Objective includes using LVM to manage hard
disk drives and partitions as well as software tools to interact with hard disk settings. Weight:
2.

Objective 4: Configuring PCMCIA Devices

Candidates should be able to configure a Linux installation to include PCMCIA support. This
objective includes configuring PCMCIA devices, such as Ethernet adapters, to autodetect when
inserted. Weight: 1.

28.1. Objective 1: Configuring RAID

A RAID is a Redundant Array of Independent Disks. Sometimes it is more lovingly referred to as a
Redundant Array of Inexpensive Disks, recalling RAID's roots in the search to create large disk
storage from cheap, smaller-capacity hardware. While RAID is still used to maximize the use of
inexpensive disks today, it is also used to achieve faster access speeds and data security.

RAID makes multiple hard disk drives look like one drive to the user's filesystem. There are multiple
types of RAID, which are indicated by the level number. They achieve their effects through various
combinations of mirroring and striping. Mirroring data refers to having identical copies of data in
separate locations (disks). Striping data refers to distributing data across multiple disks, which
involves more than a simple copy. RAID level 5 (referred to as RAID 5) is the most common form of
RAID. RAID 5 uses striping with parity across your RAID array. RAID 1 is used to mirror identical
copies of data between disk pairs. RAID 0 is used for simply striping data across the disks in your
array.

Currently, the LPIC Level 2 Exams cover the software RAID tools mkraid, raidstop, and raidstart.
These utilities use the /etc/raidtab configuration file.

28.1.1. The mkraid Tools

The mkraid tools are included in almost every major Linux distribution. /etc/raidtab is the default
configuration file for the raid tools. It defines how RAID devices are configured on a system.

Syntax

mkraid [-cvfu] /dev/md?

Description

This command sets up a set of block devices into a single RAID array. It looks in its
configuration file for the md devices mentioned on the command line and initializes those
arrays. mkraid works for all types of RAID arrays (RAID1, RAID4, RAID5, LINEAR and RAID0).

Options

-c, --configfile filename

Use filename as the configuration file (/etc/raidtab is used by default).

-f, --force

Initialize the constituent devices even if they appear to have data on them already.

-o, --upgrade

Upgrade older arrays to the current kernel's RAID version, without destroying data.
Although the utility detects various pitfalls, such as mixed-up disks and inconsistent
superblocks, this option should be used with care.

-V, --version

Display a short version message, then exit.

Syntax

raidstart [options] raiddevice

Description

Activate an existing md device.

Options

-a, --all

Apply the command to all of the configurations specified in the configuration file.

-c, --configfile filename

Use filename as the configuration file (/etc/raidtab is used by default).

-h, --help

Display a short usage message, then exit.

-V, --version

Display a short version message, then exit.

Syntax

raidstop [options] raiddevice

Description

Turn off an md device and unconfigure it.

Options

-a, --all

Apply the command to all of the configurations specified in the configuration file.

-c, --configfile filename

Use filename as the configuration file (/etc/raidtab is used by default).

-h, --help

Display a short usage message, then exit.

-V, --version

Display a short version message, then exit.

28.1.2. How to Create RAID 1 (Mirroring)

This procedure prepares one or more devices for redundancy. Firs,t set up the /etc/raidtab file to
describe your configuration:

raiddev /dev/md0
 raid-level 1
 nr-raid-disks 2
 nr-spare-disks 0
 persistent-superblock 1
 device /dev/sdb1
 raid-disk 0
 device /dev/sdb2
 raid-disk 1

Now issue the following command to construct the mirror:

mkraid /dev/md0

Wait for whole process to finish. Check the estimated time (which depends on device sizes) and
progression by looking inside of /proc/mdstat file. The process will happen online and the filesystem
can be mounted.

28.2. Objective 2: Adding New Hardware

Configuring specialized hardware has become easier and easier, even since the development of LPI's
Level 2 Exams. Items such as LCD panels and serial UPS devices used to not be as common in our
homes and offices, but today they are considered standard equipment.

When you prepared for Level 1, you became familiar with a number of the tools you must utilize
when adding new hardware to your systems. For the Level 2 exams, you must be prepared to
understand when to use them and the most efficient methods for installing your new devices.

28.2.1. Reporting Your Hardware

Before you tackle adding any new hardware devices to your system, it's useful to be able to obtain
information about the hardware you have installed. Some useful tools to report this information
include lsmod, lsdev, and lspci.

Syntax

lsmod [options]

Description

The lsmod command displays all the information available about currently loaded modules.
Reviewing your loaded modules is often the first step in identifying possible problems, such as
driver conflicts (quite frequently found with USB device drivers). This information can also be
found in /proc/modules. lsmod has only two options, neither of them affecting its operation.

Options

-h, --help

Display help information.

-V, --version

Display the version.

The output of lsmod is a series of columns identifying the module name, its size, its use
number, and its status. A sample of lsmod output looks like this:

Module Size Used by Not tainted
vfat 12844 0 (autoclean)
fat 38328 0 (autoclean) [vfat]
nfs 79960 0 (autoclean)
ide-scsi 11984 0 (autoclean)
ide-cd 35196 0 (autoclean)
cdrom 33440 0 (autoclean) [ide-cd]
tuner 11680 1 (autoclean)
tvaudio 14940 0 (autoclean) (unused)
bttv 73568 0 (autoclean)
videodev 8192 2 (autoclean) [bttv]
radeon 114244 28
agpgart 46752 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]

Syntax

lsdev

Description

The lsdev command displays information about your system's hardware, such as interrupt
addresses and I/O ports. The command is useful for obtaining information prior to installing
devices that may have hardware addressing conflicts, such as ISA devices. This command uses
DMA files in /proc to also report I/O addresses and IRQ and DMA channel information. There
are no options for lsdev.

The output of lsdev is very simple, similar to lsmod. It lists information in four columns: device
name, DMA address, IRQ address, and I/O ports. The following is some sample output from
lsdev:

Device DMA IRQ I/O Ports
--
ATI c800-c8ff
bttv 10
Creative e800-e81f ec00-ec07
dma 0080-008f
dma1 0000-001f
dma2 00c0-00df
e100 e000-e03f
EMU10K1 11 e800-e81f
fpu 00f0-00ff
ide0 14 01f0-01f7 03f6-03f6 fc00-fc07
ide1 15 0170-0177 0376-0376 fc08-fc0f
Intel e000-e03f
keyboard 1 0060-006f
ohci1394 12

PCI 0cf8-0cff c000-cfff

Syntax

lspci [options]

Description

The lspci command displays information about your system's PCI buses and your installed PCI
devices. This information is found primarily within /proc.

Options

-t

Show a treelike diagram containing all buses, bridges, devices, and connections between
them.

-vv

Very verbose mode.

28.3. Objective 3: Software and Kernel Configuration

In the Level 1 Exams, you were prepared to compile kernels and install software to be used with
your hardware, including using various hardware-specific tools. For this objective, you are expected
to use these tools and kernel options for special hard drive applications, such as Logical Volume
Manager (LVM).

28.3.1. hdparm

This command can find a lot of information about your hard drives beyond the more familiar fdisk
output. Specifically, hdparm can provide this type of information:

hdparm /dev/hda

/dev/hda:
 multcount = 16 (on)
 IO_support = 0 (default 16-bit)
 unmaskirq = 0 (off)
 using_dma = 1 (on)
 keepsettings = 0 (off)
 readonly = 0 (off)
 readahead = 8 (on)
 geometry = 9729/255/63, sectors = 156301488, start = 0
hdparm -i /dev/hda

/dev/hda:

 Model=ST380013AS, FwRev=3.05, SerialNo=3JV2WAWB
 Config={ HardSect NotMFM HdSw>15uSec Fixed DTR>10Mbs RotSpdTol>.5% }
 RawCHS=16383/16/63, TrkSize=0, SectSize=0, ECCbytes=4
 BuffType=unknown, BuffSize=8192kB, MaxMultSect=16, MultSect=16
 CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=156301488
 IORDY=on/off, tPIO={min:240,w/IORDY:120}, tDMA={min:120,rec:120}
 PIO modes: pio0 pio1 pio2 pio3 pio4
 DMA modes: mdma0 mdma1 mdma2
 UDMA modes: udma0 udma1 *udma2
 AdvancedPM=no WriteCache=enabled
 Drive conforms to: ATA/ATAPI-6 T13 1410D revision 2:

 * signifies the current active mode

All this can be useful to troubleshoot and/or tune IDE disks. The most important thing for I/O
performance is not to use PIO (programmed I/O) modes . To use PIO, the kernel must run in a loop,
fetching 1 byte at a time from the disk. This is how IDE disks used to work originally, but it's not at
all effective, and even the fastest Pentium 4 gets bogged down with this kind of I/O.

The next line, DMA modes , lists the original DMA modes supported by IDE disks. These are quite a bit
faster, and you will probably find that CD-ROMs and DVD drives support only these modes. UDMA
modes are "Ultra" DMA, which is very fast DMA. In general, you want to be the furthest down and to
the right on these three lines. But beware: the BIOS and drives usually default these to the fastest
mode that is commonly supported. If you set one of these the wrong way, you may well end up
breaking things and massively corrupting the filesystem. The one thing that's quite safe to do is
enable using_dma .

In the first listing, you can see that using_dma is already on. In the second listing, you can see that
udma2 is the active DMA mode. Since this is the highest mode the drive supports, you can't do much
better.

Using DMA is the default in all recent kernels, including the ones used in distributions. If you roll
your own kernels, you should make sure that you configure it correctly. In 2.4 kernel configurations,
there is a top-level selection called "ATA/IDE/MDM/RLL support." Select it, enable
"ATA/IDE/MFM/RLL support," and then select "IDE, ATA and ATAPI Block devices." Here you will
need to find and enable support for the IDE chipset or chipsets you have. Then, under "PCI IDE
chipset support," you will find "Use PCI DMA by default when available." This should be safe to
enable, In fact, it would have been the default were there not some systems using an old chipset
called VIA VP2.

Syntax

hdparm [flags] [device]

Description

The hdparm command configures Linux ATA/IDE driver hard disk ioctls. It can both view and
set hard disk parameters. There are many options available.

Frequently used options

-a

Get or set the sector count for filesystem read-ahead. -a disables or enables the read-
ahead feature. The default is on.

-Bnum

Set APM (Advanced Power Management) features. A low num value sets higher power
management, whereas a high num value delivers better performance. The num range is 0

to 255; 255 disables APM on the drive.

-c [num]

Query or enable IDE 32-bit I/O support. num can be 0, 1, or 3; 0 disables 32-bit I/O

support, 1 enables support, and 3 enables support with a special sync sequence.

-d [0|1]

Get or set the using_dma flag.

-g

Display drive geometry.

-i

Display identification information.

-k

Get or set the keep_settings_over_reset flag.

-mnum

Get or set the sector count for multiple sector I/O. A num value of 0 disables this feature.

Most drives support 2, 4, 8, 16, or 32 sectors. Your drive manufacturer will often
recommend the optimal setting.

-r [0|1]

Get (1) or set (0) the read-only flag.

-S

Set the standby (spindown) timeout.

-u [0|1]

Get (1) or set (0) the interrupt-unmask flag.

-v

Display all settings, except -i .

-y

Force an IDE drive to immediately go into low power consumption mode.

-z

Force a kernel reread of the partition table.

28.3.2. tune2fs

tune2fs was a subject on the Level 1 Exams and was also mentioned in the previous chapter. When
it comes to how ext2 and ext3 filesystems interact with the kernel, there are a couple of options
worth mentioning.

-e error_behavior

This parameter decides how the kernel should react when it finds errors in the specific
filesystem that tune2fs is applied to. The possible behaviors are as follows (repeated from
Chapter 27).

continue

Just ignore the error. A read or write error should be reported to any application that
tries to access that part of the filesystem.

remount-ro

Remount the filesystem read only. This prevents escalating or dominoing failures that
could otherwise result when a filesystem that cannot be written is remounted. After you
set this option, applications that subsequently try to write to the filesystem will fail with
write errors, but the data already on disk is secure.

panic

Cause a kernel panic and halt the system. This is a very obvious failure mode that is
certain to get noticed. In the two previous failure modes, errors are more subtle and the
problems might not be noticed right away.

-mreserved_block_percentage

When a filesystem begins to fill up, a normal user will be barred from filling the filesystem
completely up. The reason for this is that a completely full filesystem will suffer bad
fragmentation, which should be avoided for performance reasons. Also, if the root filesystem is
100% full, the machine may become unbootable. A full disk also usually means that users with
home directories on that partition may find it impossible to log in.

Only the root user is allowed to exceed this limit. The margin of free disk allows the boot
process to work and the root user to log in. But if the root user fills up the disk, you're in
trouble.

Now that disks are becoming huge, the default percentage of 5% may be overly large, and
something more like 1% may be suitable for some filesystems.

-uuser

Change the user that can use reserved blocks. The user is stored as a numerical UID.

-ggroup

Set a group that can use reserved blocks. This is stored as a numerical GID in the filesystem.

-O [^]mount_option ...

Set the filesystem's mount options. This is supported only by kernels from 2.4.20 on. Any
values given at mount time, or in /etc/fstab , will override these options. An option prefixed
with ^ is cleared instead of set. Many options can be given, separated by commas.

-s [0|1]

Enable or disable the sparse superblock feature. On huge filesystems, enabling this can save
quite a bit of space because fewer backup superblocks are used, freeing up space. After setting
or resetting this feature, you must run e2fsck on the filesystem to make it valid again.

28.3.3. Supporting IDE CD Burners

As mentioned in Chapter 27 , when CD burners first appeared on the market, they were all SCSI.
The standard Linux tool to burn CDs, cdrecord , was written to support SCSI burners. Later, cheaper
IDE burners appeared. Rather than fixing cdrecord to understand IDE burning, the SCSI-IDE
translation module was made to bridge the gap. This is important for CD burning in 2.4 kernels; it is
no longer needed in 2.6.

This module is available in all stock distribution kernels now; CD burners are very common
hardware these days. But if you roll your own 2.4 kernel, enable it like this: In the kernel
configuration, select and enable "SCSI support," then enable support for SCSI CD-ROMs and SCSI
generic. Back at the main level, select "ATA/IDE/MFM/RLL support," then "IDE, ATA and ATAPI Block
devices." Finally, find and enable "SCSI emulation support."

After building this kernel, configure the modules in /etc/modules (Red Hat/Fedora) or
/etc/modules.d/local (Debian) as described in the section "Burning with IDE CD burners " in Chapter
27 . This procedure sets up the system so that it loads the ide-scsi module before loading the SCSI
CD device module or the SCSI "generic" driver. As described in the same section, put the option
hdc=ide-scsi onto the kernel command line in your boot loader. If you now reboot, you should be all
set to burn CDs.

28.3.4. Logical Volume Manager (LVM)

Logical volume management is one of the most powerful disk management techniques available on
Linux. It allows you to free yourself from having to think about physical volumes and, instead, think
about the volumes you need in a logical fashion. Almost. It is very seductive, but you should keep in
mind that disks do fail, and if you do not plan for this in your LVM management, you may lose a lot
of data. What LVM does allow you to forget about entirely is all the messing about with partitions
that people traditionally do when finding space for user data and system files. LVM volumes can be
resized at will, so if your filesystem can be resized (and most can) you gain a great degree of
freedom in managing your disk resources.

The basic way to set up LVM is to set aside some disks or disk partitions. The sequence of utilities
used is as follows:

Put the disks or partitions under LVM management by using pvcreate . This puts the physical
volume under LVM control.

1.

2.

1.

Once you have one or more physical volumes, run vgcreate to create a volume group,
combining one or more of the physical disks into one large virtual disk.

2.

On this volume group, you can create one or more logical volumes using lvcreate . These
logical volumes can be used for filesystems, for swap, or directly by applications such as
databases.

3.

Each of these building blocks has programs to display their properties, called pvdisplay, vgdisplay ,
and lvdisplay . There are multiple other commands to change different properties of LVM objects.
And most of them have a lot of options, most of which you will never use or miss. Because there are
so many commands, we'll go through them by task instead of by command and show only typical
option usage. The following is ordered more or less as follows: creating, displaying, changing, and
destroying LVM objects.

28.3.4.1. Initializing a disk or partition

You can initialize either a whole disk or a partition for LVM use as follows:

pvcreate /dev/hdc
pvcreate -- physical volume "/dev/hdc" successfully created

If you're initializing a whole disk that has a partition table on it, pvcreate will back off, and not even
--force will talk it into initializing it. You must destroy the partition table, as shown in the following
procedure. The procedure is very dangerous because there are no sanity checks. Only you can stop
yourself from doing something wrong, such as destroying the contents of a disk, with the dd
command.

pvcreate /dev/hdc
pvcreate -- device "/dev/hdc" has a partition table

pvcreate [-d|--debug] [-f[f]|--force [--force]] [-h|--help]
 [-s|--size PhysicalVolumeSize[kKmMgGtT]] [-y|--yes] [-v|--verbose]
 [--version] PhysicalVolume [PhysicalVolume...]
dd if=/dev/zero of=/dev/hdc bs=1k count=1
1+0 records in
1+0 records out
blockdev --rereadpt /dev/hdc# pvcreate /dev/hdc
pvcreate -- physical volume "/dev/hdc" successfully created

Tip: When booting, the partition check will print hdc: unknown partition table . This is nothing to worry about, because there is no

partition table on a disk that is all devoted to LVM.

When you create a physical volume in a partition, the partition needs to be the right type. You can
find out the type though fdisk (which is normally used to change partitions, but can also be used just
to view information about them):

pvcreate /dev/hdc1
pvcreate -- invalid partition type 0x83 for "/dev/hdc1" (must be 0x8e)

fdisk /dev/hdc
...Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
pvcreate /dev/hdc1
pvcreate -- physical volume "/dev/hdc1" successfully created

28.3.4.2. Creating a volume group

A volume group occupies one or more physical volumes. A volume group, in turn, contains one or
more logical volumes. A logical volume can contain several physical volumes, but it becomes more
vulnerable that way, because two disks fail twice as often as one disk. Therefore, although it is
seductive to pool all your physical disks into one volume group, it may also cause a lot of trouble if a
disk fails.

You can create a volume group called Disk2 on /dev/hdc this way:

vgcreate Disk2 /dev/hdc
vgcreate -- INFO: using default physical extent size 4 MB
vgcreate -- INFO: maximum logical volume size is 255.99 Gigabyte
vgcreate -- doing automatic backup of volume group "Disk2"
vgcreate -- volume group "Disk2" successfully created and activated

A "physical extent" can be likened to a partition. When managing volume group space, LVM allocates
space in units of extents.

28.3.4.3. Making a logical volume

Logical volumes can be used for filesystems, swap, or perhaps databases that want disk devices
without file systems. To create a logical volume named accounting on Disk2 , enter:

lvcreate -L5G -n accounting Disk2
lvcreate -- doing automatic backup of "Disk2"
lvcreate -- logical volume "/dev/Disk2/accounting" successfully created

The size number can be postfixed by K, M, G , or T , meaning kilobytes, megabytes, gigabytes, or
terabytes, respectively. The default, if no unit is given, is megabytes. If the volume is going to be
used for database use and speed is important, you may want to ensure that it is allocated
contiguously in one block by supplying -C y on the command line. Note that this may make it harder
to resize the volume later if there are other logical volumes in the volume group and they use space
around the volume you want to resize.

Instead of the -L option, you can use the -l option and give the size of the logical volume in logical
extents, which are usually the same size as physical extents. If you obtain the number of available
physical extents in a volume group with vgdisplay (discussed later), this makes it easier to specify
such things as making the volume half the size of the volume group or filling the whole volume
group.

Now the volume is ready to be used as if it were a disk device. As the last line of the previous output
shows, the path of the device is in the form /dev/ volume_group / logical_volume .

28.3.4.4. Displaying physical volume properties

Perhaps the most interesting property of a physical volume is how many free physical extents it
contains. The following pvdisplay output shows that the PE size of the device is 4 MB, and that
23,497 PEs are free. There is a lot of space, and if you want to move the contents through the
pvmove command (shown later), there is little to move.

pvdisplay /dev/hdc
--- Physical volume ---
PV Name /dev/hdc
VG Name Disk2
PV Size 111.79 GB [234441648 secs] / NOT usable 4.25 MB [LVM: 239 KB]
PV# 1
PV Status available
Allocatable yes
Cur LV 3
PE Size (KByte) 4096
Total PE 28617
Free PE 23497
Allocated PE 5120
PV UUID BSN7hI-u8DU-vT4g-WUdv-aaYZ-ECNK-5f65vm

28.3.4.5. Displaying volume group properties

The vgdisplay command shows all available volume groups on the system. The following display
shows several interesting parameters: the maximum logical volume size (MAX LV), how many logical
volumes it houses (Cur LV), the number of physical volumes it consists of (Cur PV), and how many
physical extents you still have at your disposal (Free PE).

If invoked with the -v option, vgdisplay also lists all the logical volumes and physical volumes
associated with each disk group.

vgdisplay -v Disk2
--- Volume group ---
VG Name Disk2
VG Access read/write
VG Status available/resizable
VG # 2
MAX LV 256
Cur LV 1
Open LV 0

MAX LV Size 255.99 GB
Max PV 256
Cur PV 1
Act PV 1
VG Size 111.79 GB
PE Size 4 MB
Total PE 28617
Alloc PE / Size 1280 / 5 GB
Free PE / Size 27337 / 106.79 GB
VG UUID K7L9Gz-foUx-gw7W-5Iy9-Sfoo-8d4C-EtZqQT

--- Logical volume ---
LV Name /dev/Disk2/accounting
VG Name Disk2
LV Write Access read/write
LV Status available
LV # 1
open 0
LV Size 5 GB
Current LE 1280
Allocated LE 1280
Allocation next free
Read ahead sectors 1024
Block device 58:7

--- Physical volumes ---
PV Name (#) /dev/hdc (1)
PV Status available / allocatable
Total PE / Free PE 28617 / 27337

28.3.4.6. Displaying logical volume properties

The default lvdisplay displays exactly the same information as vgdisplay -v . With the -v option,
however, lvdisplay shows something you can't get through vgdisplay : which physical volumes the
logical volume occupies and some additional, less interesting I/O statistics.

lvdisplay -v /dev/Disk2/accounting
--- Logical volume ---
LV Name /dev/Disk2/accounting
VG Name Disk2
LV Write Access read/write
LV Status available
LV # 1
open 0
LV Size 5 GB
Current LE 1280
Allocated LE 1280
Allocation next free
Read ahead sectors 1024
Block device 58:7

 --- Distribution of logical volume on 1 physical volume ---

 PV Name PE on PV reads writes
 /dev/hdc 1280 1 82369

 --- logical volume i/o statistic ---
 1 reads 82369 writes

 --- Logical extents ---
 LE PV PE reads writes
 00000 /dev/hdc 00000 1 2086
 00001 /dev/hdc 00001 0 0
...
 01278 /dev/hdc 01278 0 0
 01279 /dev/hdc 01279 0 64

28.3.4.7. Listing disks and volume groups

The pvscan command scans your system's disks to find physical volumes. It also shows the available
volume groups as a side effect, as well as the free and occupied space in them.

pvscan
pvscan -- reading all physical volumes (this may take a while...)
pvscan -- inactive PV "/dev/hdc" is in no VG [111.79 GB]
pvscan -- ACTIVE PV "/dev/hda11" of VG "Disk0" [43.77 GB / 584 MB free]
pvscan -- ACTIVE PV "/dev/hdb" of VG "Disk1" [232.88 GB / 0 free]
pvscan -- total: 3 [388.45 GB]/in use:2 [276.66 GB]/in no VG: 1 [111.79 GB]

28.3.4.8. Adding disks to a volume group

To add /dev/hdd (previously formatted as a physical volume using pvcreate) to Disk2 , enter:

vgextend Disk2 /dev/hdd
vgextend -- INFO: maximum logical volume size is 255.99 Gigabyte
vgextend -- doing automatic backup of volume group "Disk2"
vgextend -- volume group "Disk2" successfully extended

28.3.4.9. Removing a disk from a volume group

If the physical disk has one or more logical volumes, their contents must be moved before it is
removed from its volume group. The move is done with pvmove , as shown in the following
example:

pvmove /dev/hdc
pvmove -- moving physical extents in active volume group "Disk2"
pvmove -- WARNING: moving of active logical volumes may cause data
loss!pvmove -- do you want to continue? [y/n] y

pvmove -- 249 extents of physical volume "/dev/hdc" successfully moved
vgreduce dev /dev/hdc
vgreduce -- doing automatic backup of volume group "Disk2"
vgreduce -- volume group "Disk2" successfully reduced by physical volume:
vgreduce -- /dev/hdc

If the destination is not specified as a parameter, the data in /dev/hdc will be moved to free extents
on other physical volumes. It is recommended that you make a backup of your data before doing
this. Once the physical volume is clear, it can be removed from the volume group with vgreduce ,
and then the disk can be removed safely.

If you have a new disk in the system where you want to move the data from the old disk, add the
new disk to the volume group and enter pmove olddisk newdisk .

28.3.4.10. Expanding a logical volume

Expanding a volume with lvextend is quite easy, providing one of the major advantages of LVM. No
preparation is needed, so long as you have enough space to perform the expansion. After the logical
volume has been expanded, the filesystem on it can be enlarged or the application using it can be
told of the change. Note that not all software using disk partitions directly is capable of taking
advantage of a resized partition. You may want to just create a new logical volume for these
applications and add in the application. An ext2 (or ext3) filesystem is resized with resize2fs , which
is capable of finding the size of the underlying device itself.

lvextend -L +5G /dev/Disk2/accounting
lvextend -- extending logical volume "/dev/Disk2/accounting" to 10 GB
lvextend -- doing automatic backup of volume group "Disk2"
lvextend -- logical volume "/dev/Disk2/accounting" successfully extended
resize2fs /dev/Disk2/accounting
resize2fs 1.34 (25-Jul-2003)
Resizing the filesystem on /dev/Disk2/accounting to 2621440 (4k) blocks.
The filesystem on /dev/Disk2/accounting is now 2621440 blocks long.

The -L option to lvextend accepts, as its parameter, either the absolute size or size changes prefixed
with + or - . Units of K, M, G , and T can be used, just as with lvcreate .

28.3.4.11. Shrinking a logical volume

Shrinking a logical volume is just like expanding it, except that the application or filesystem must
use less space before you can shrink the volume. Even fewer applications support shrinking their
disk usage than growing it. The trick with shrinking a logical volume is to shrink it no more than its
contents, because otherwise you will destroy some of the contents. In the case of an ext2 filesystem,
it can be convenient to take a two-step approach: first shrink the filesystem a tad too much, then
shrink the logical volume, and then resize the filesystem again, letting resize2fs figure out the right
size. So, to shrink the accounting filesystem from 5 GB to 4 GB, run something like this:

resize2fs /dev/Disk2/accounting 3993M
resize2fs 1.34 (25-Jul-2003)
Resizing the filesystem on /dev/Disk2/accounting to 1022208 (4k) blocks.

The filesystem on /dev/Disk2/accounting is now 1022208 blocks long.
lvreduce -L -1G /dev/Disk2/accounting
lvreduce -- WARNING: reducing active logical volume to 4 GB
lvreduce -- THIS MAY DESTROY YOUR DATA (filesystem etc.)
lvreduce -- do you really want to reduce "/dev/Disk2/accounting"? [y/n]: y
lvreduce -- doing automatic backup of volume group "Disk2"
lvreduce -- logical volume "/dev/Disk2/accounting" successfully reduced
resize2fs /dev/Disk2/accounting
resize2fs 1.34 (25-Jul-2003)
Resizing the filesystem on /dev/Disk2/accounting to 1048576 (4k) blocks.
The filesystem on /dev/Disk2/accounting is now 1048576 blocks long.

28.3.4.12. Removing a logical volume

Of course, you should be sure that there is no data you want on the volume before removing it. Then
enter a command such as:

lvremove /dev/Disk2/accounting
lvremove -- do you really want to remove "/dev/Disk2/accounting"? [y/n]: y
lvremove -- doing automatic backup of volume group "Disk2"
lvremove -- logical volume "/dev/Disk2/accounting" successfully removed

28.3.4.13. Removing a volume group

Once a volume group has no logical volumes left, removing the volume group is a two-step process.
First deactivate the group with vgchange , then remove it with vgremove :

vgchange -a n Disk2
vgchange -- volume group "Disk2" successfully deactivated
vgremove Disk2
vgremove -- volume group "Disk2" successfully removed

The -a option to vgchange changes the availability of a volume group. Use n to make it unavailable
and y to make it available again.

28.3.4.14. Removing a physical volume

Actually, this section has a trick subject. There is no way to remove a physical volume. Once pvscan
shows the volume to be "inactive" or pvdisplay alleges that the volume is a "new physical volume,"
the disk or partition may be reused for whatever purpose.

pvscan
pvscan -- reading all physical volumes (this may take a while...)
pvscan -- inactive PV "/dev/hdc" is in no VG [111.79 GB]
pvscan -- ACTIVE PV "/dev/hda11" of VG "Disk0" [43.77 GB / 584 MB free]

pvscan -- ACTIVE PV "/dev/hdb" of VG "Disk1" [232.88 GB / 0 free]
pvscan -- total:3 [388.45 GB]/in use: 2 [276.66 GB]/in no VG: 1 [111.79 GB]
pvdisplay /dev/hdc
pvdisplay -- "/dev/hdc" is a new physical volume of 111.79 GB

28.3.4.15. Starting and stopping LVM

If you are in a recovery or troubleshooting situation and LVM needs to be manipulated by hand,
there are two commands. vgscan shows you the status of the logical volumes on the system, and
vgchange changes their status:

vgscan
vgscan -- reading all physical volumes (this may take a while...)
vgscan -- found inactive volume group "Disk2"
vgscan -- found inactive volume group "Disk0"
vgscan -- found inactive volume group "Disk1"
vgscan -- "/etc/lvmtab" and "/etc/lvmtab.d" successfully created
vgscan -- WARNING: This program does not do a VGDA backup of your volume groups
vgchange -ay
vgchange -- volume group "Disk0" successfully activated
vgchange -- volume group "Disk1" successfully activated
vgchange -- volume group "Disk2" successfully activated

Stopping LVM is even easier:

vgchange -an
vgchange -- volume group "Disk0" successfully deactivated
vgchange -- volume group "Disk1" successfully deactivated
vgchange -- volume group "Disk2" successfully deactivated

28.3.4.16. LVM snapshots

LVM supports a very useful feature called snapshots . With this, you can freeze a volume while it's
being used and then, for example, make a backup of the frozen copy. This should get you a
consistent backup image.

If you back up a partition while it's being usedunless you use special toolsthe backup will in many
cases be unusable. Most filesystem backup tools have no problems with the filesystem itself, but if
the accounting software continues to write onto its files while they are being backed up, the backup
will probably be useless. Most software needs to be shut down during backups for this reason. An
LVM snapshot is a good and fast alternative:

lvcreate -L100M -s -n accbackup /dev/Disk2/accounting
lvcreate -- WARNING: the snapshot will be automatically disabled once it gets full
lvcreate -- INFO: using default snapshot chunk size of 64 KB for "/dev/Disk2/accbackup"
lvcreate -- doing automatic backup of "Disk2"

lvcreate -- logical volume "/dev/Disk2/accbackup" successfully created

 ... do backup of /dev/Disk2/accbackup ...
lvremove /dev/Disk2/accbackup
lvremove -- do you really want to remove "/dev/Disk2/accbackup"? [y/n]: y
lvremove -- doing automatic backup of volume group "Disk2"
lvremove -- logical volume "/dev/Disk2/accbackup" successfully removed

The snapshot stays unchanged because, even while the original is being updated, LVM backs up the
unchanged data, a strategy called "copy on write." This has two implications. First, it means that if
there are few changes to the original, the snapshot will use very little space. Second, making a
snapshot is very fastbut as long as you keep the snapshot around, there is a extra read/write
operation every time a block is updated. The previous command creates a reserve of 100 MB for all
changes made during the snapshot, and if more space is needed for the changed data, the snapshot
will be deactivated.

A snapshot can be regarded as a backup. If you make a snapshot every night, you can have several
days of backups online and accessible at all times. The snapshot is read-only and can't be made
read/write, so you must copy the whole snapshot to a fresh volume before it's usable as a ordinary
filesystem.

28.3.5. Runtime Kernel Configuration

Changing a system's properties without having to reboot it, or even take down services, is one of the
holy grails of system administration. Linux has many shortcomings in this area, but the kernel itself
is fairly reconfigurable. Not only does runtime kernel module loading and unloading allow you to
change properties and hardware support in a system, but the Linux kernel has two ways of changing
quite a few configuration parameters. The /proc/sys files and sysctl command are different interfaces
that let you manipulate these parameters. Both require procfs support in the kernel.

If you have a look at /proc/sys , you might find, depending on your hardware and kernel options,
300 or more different files that tune the kernel in some way. If you take one of the filenames found
there, say, fs/file-max , you can transform it into a variable name for sysctl by simply exchanging
the slashes with dots. Thus, fs/file-max becomes fs.file-max . If you do a long listing (ls -l) of fs/file-
max , you'll see it has read/write permissions for root, which means that it can be changed. Most of
the files in /proc/sys are writable. A small demonstration of the interfaces follows:

cd /proc/sys# sysctl fs.file-max
fs.file-max = 92000
cat fs/file-max
92000
echo 92100 > fs/file-max
cat fs/file-max
92100
sysctl -w fs.file-max=92000
fs.file-max = 92000

The filesystem limits in particular are self-tuning. They grow as the system needs them to. Other
parameters that you yourself need to tune will be mentioned in relevant documentation. For
example, if you configure a firewall's parameters, such as net.ipv4.ip_forward and

net.ipv4.conf.default.rp_filter , the iptables documentation lists the parameters and discusses
the appropriate settings. If you struggle with a specific problem that the kernel seems to be
imposing on you, you can find what can be changed through:

find /proc/sys -type f -perm -0600 -print
/proc/sys/abi/fake_utsname
/proc/sys/abi/trace
...

Syntax

sysctl [-n] [-e] variable ...

sysctl [-n] [-e] -w variable=value ...

sysctl [-n] [-e] -p [filename]

Description

The sysctl command displays and changes kernel parameters. The variables available are the
same as found in /proc/sys and vary depending on kernel configuration, the modules loaded,
and the hardware on the system.

The first syntax is used to show a kernel parameter. Several parameter names can be given on
the command line. The second form changes the given parameters. The third form loads a file
with settings. If no filename is given, the default is /etc/sysctl.conf , and this file is loaded on
boot by most distributions.

Examples

The following is a default /etc/sysctl.conf file from a Red Hat Fedora Core system.

Controls IP packet forwarding
net.ipv4.ip_forward = 0

Controls source route verification
net.ipv4.conf.default.rp_filter = 1

Controls the System Request debugging functionality of the kernel
kernel.sysrq = 0

Controls whether core dumps will append the PID to the core filename.
Useful for debugging multithreaded applications.
kernel.core_uses_pid = 1

The commands to get and set kernel.core_uses_pid are as follows:

sysctl -w kernel.core_uses_pid=1
kernel.core_uses_pid = 1
sysctl kernel.core_uses_pid
kernel.core_uses_pid = 1

Note that the syntax in the file is different from the command line. In the file, there must be spaces
around the equals sign, whereas on the command line there must be none.

28.4. Objective 4: Configuring PCMCIA Devices

PCMCIA devices have historically been handled fairly well by Linux. For the most part, they will just
work as long as your system has the right drivers. If you have a problem, follow the troubleshooting
steps given in this section.

PCMCIA hardware is detected when the OS boots. PCMCIA devices are manufactured to relatively
strict standards and generally run into few problems. On Red Hat systems, PCMCIA is supported by
a module called kernel-pcmcia-cs. Debian-based systems use the pcmcia-cs module. Your PCMCIA
devices often require a package called hotplug. This package is responsible for providing a daemon
that can:

Recognize card insertions and removals as events to be acted upon

Load and unload drivers whenever an event is recorded

Allow hot swapping of cards

Provide the necessary modules for proper recognition of PCMCIA cards

The cardmgr process is watching your PCMCIA/PC-CARD slots. If it sees a 32-bit PC-CARD, the
process ignores it. Instead, the kernel hotplug system picks up the insertion event and handles the
card. Both cardmgr and hotplug will load the kernel driver module appropriate for the inserted card
and then configure it according to the administrative settings. When the card is removed, the driver
is taken down and unloaded. Unlike with Windows, you can safely remove cards without telling the
operating oystem about it first. But sometimes you may want to. For example, if the device is a
network card, you may want to release the DHCP lease before removing the card so that you can get
the same IP number back when returning (this will depend on the DHCP server policy). Also, it isn't
a good idea to remove a PCMCIA hard disk device while it is in operation.

When it comes to a 32-bit PC-CARD, there is little to configure. They are in reality PCI cards, and
like other PCI cards they're automatically configured. PCMCIA devices, on the other hand are more
closely related to the old ISA bus, and there are many things to handle. The rest of this chapter
assumes that card services are installed and start on boot.

28.4.1. PCMCIA configuration files

Several configuration files govern cardmgr. When a PCMCIA card card is first inserted, its
identification is read and looked up in /etc/pcmcia/config . This causes the correct module or
modules to be loaded and a script corresponding to the device class to be run to do setup work. The
scripts are stored in /etc/pcmcia. The classes found in the config file are currently network, isdn,
cdrom, ftl, serial, parport, ide, iccc, and teles. Not all these have scripts. The scripts further
consult files called /etc/pcmcia/*.opts to fetch user/administrator settings, such as IP numbers for
network cards.

28.4.1.1. /etc/pcmcia/config

This file contains the card database, which maps card identifiers to drivers. A card's identification
can be shown by cardctl as shown here:

cardctl ident
Socket 0:
 product info: "3Com", "Megahertz 589E", "TP/BNC LAN PC Card", "005"
 manfid: 0x0101, 0x0589
 function: 6 (network)
Socket 1:
 product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01", ""
 manfid: 0x0156, 0x0002
 function: 6 (network)

Based on this, you can look the card up in the config file. If you search for the first two strings, you
will find this:

card "Lucent Technologies WaveLAN/IEEE Adapter"
 version "Lucent Technologies", "WaveLAN/IEEE"
 bind "orinoco_cs"

The bind "orinoco_cs" tells cardmgr to bind the card to the drivers defined for orinoco_cs. This is
defined earlier in the file:

device "orinoco_cs"
 class "network" module "hermes", "orinoco", "orinoco_cs"

This shows that the card is a network card and lists the relevant driver modules. cardmgr will load
these in sequence, with appropriate options. Then the /etc/pcmcia/network script will run to
initialize the device.

If you have a PCMCIA card that you know to be supported by some existing driver but that is not
listed in the file, insert the card, check its identification, and write in a card section corresponding to
the card. If needed, also write in a device section enumerating the drivers, if this is not already
present. After changing the file, you must restart cardmgr, because it reads the file only once, at
startup.

28.4.1.2. /etc/pcmcia/config.opts

This file is actually included from /etc/pcmcia/config, but as with the other .opts files, it is a local
configuration file. It should be installed only the first time the packages are installed, not when they
are overwritten. The most important configuration options here are toward the top. On some
machines, the defaults in the file do not match the actual hardware and will need tweaking.

...
System resources available for PCMCIA devices

include port 0x100-0x4ff, port 0x800-0x8ff, port 0xc00-0xcff
include memory 0xc0000-0xfffff
include memory 0xa0000000-0xa0ffffff, memory 0x60000000-0x60ffffff

High port numbers do not always work...
include port 0x1000-0x17ff

Extra port range for IBM Token Ring
include port 0xa00-0xaff

Resources we should not use, even if they appear to be available

First built-in serial port
exclude irq 4
Second built-in serial port
#exclude irq 3
First built-in parallel port
exclude irq 7
...
Examples of options for loadable modules

To fix sluggish network with IBM Ethernet adapter...
#module "pcnet_cs" opts "mem_speed=600"
...

If your host has an extra parallel port to support an extra printer, you should also exclude the IRQ
this hardware is using. Because of hardware conflicts, a few PCMCIA adapters work better if the port
ranges and memory ranges are adjusted.

28.4.1.3. /etc/pcmcia/network.opts

Network configuration options are fetched from this script by /etc/pcmcia/network, which does the
actual setup work. On Red Hat and systems derived from that distribution, this file is not used,
because the system gets network parameters from its own configuration system instead. If you look
in the /etc/pcmcia/network script, it should be clear whether this file is included or not. The usual
setup here is that the script tests the current "scheme" and the card hardware address and sets
things according to those values. Schemes can be set with cardctl scheme name, where name is

something like home or work. That way you easily have different configurations for the same network
card when you are at home and at work. About 20 different options can be set in this file, some of
them quite uninteresting. A very abbreviated excerpt is reproduced here to illustrate what can be
done:

The address format is "scheme,socket,instance,hwaddr".
...
case "$ADDRESS" in
,,*,00:10:5A:FB:F0:D2)
...
 # Use DHCP (via /sbin/dhcpcd, /sbin/dhclient, or /sbin/pump)? [y/n]

 DHCP="y"
 # If you need to explicitly specify a hostname for DHCP requests
 DHCP_HOSTNAME="lorbanery"
 # Host's IP address, netmask, network address, broadcast address
 IPADDR=""
 NETMASK="255.255.255.0"
 NETWORK="10.10.10.0"
 BROADCAST="10.10.10.255"
 # Gateway address for static routing
 GATEWAY="10.10.10.1"
 # Things to add to /etc/resolv.conf for this interface
 DOMAIN=""
 SEARCH=""
 DNS_1=""
 DNS_2=""
 DNS_3=""
...

In Debian, this file can be managed by the pcnetconfig command. In Red Hat, the corresponding
files are /etc/sysconfig/network-scripts/ifcfg-*, one for each interface. These can be managed with
Red Hat's netconfig command.

28.4.1.4. /etc/pcmcia/*.opts

The other class scripts and the attendant *.opts scripts are patterned along the same lines. They are
all well-commented, and the *.opts files contain at least one complete example, which is also often
used as the default configuration. There are too many options and details in these scripts to repeat
here or to test on a exam. If you insert a card and the drivers are loaded but it seems not to work,
you should visit and customize these files to fix it.

28.4.2. PCMCIA commands

As shown in the previous sections, two commands that manage PCMCIA cards are cardmgr and
cardctl.

Syntax

cardmgr [-q] [-d]

Description

cardmgr does its work as a daemon. When invoked, it goes into the background. When it
detects the insertion or removal of a PCMCIA card, it installs or removes the corresponding

drivers according to the driver database in /etc/pcmcia/config.

The -q (quiet) option stops cardmgr from beeping when cards are inserted and removed. The -
d option causes cardmgr to use modprobe to load modules instead of insmod.

In Red Hat you can set the default options in /etc/sysconfig/pcmcia; on Debian the filename is
/etc/pcmcia.conf. Use the CARDMGR_OPTS variable.

Syntax

cardctl scheme [name]

cardctl command [socket]

Description

cardctl checks and manipulates PCMCIA cards. The first form is used to set the desired
configuration scheme, which some distributions support. The second form takes one of several
commands, the most likely of which are:

ident

Identify the card in the given socket. If no socket is given, all cards are identified.

eject

Shut down the driver and cut power to the socket.

insert

Enable power to the socket and perform the insertion procedure.

Examples

Change the scheme to work:

cardctl scheme work

Check the identification of the card in PCMCIA slot number 1:

cardctl ident 1

28.4.3. PCMCIA Troubleshooting

Here are some steps to take when your PCMCIA devices don't work as expected.

28.4.3.1. Steps for troubleshooting PCMCIA devices

While the system is running, try the following:

Use the cardmgr and cardctl commands, as described earlier, to determine manufacturer
information. This information will help you determine whether you are using the correct
drivers.

1.

Issue the cardinfo command, which shows you all of the PCMCIA slots that exist. The command
provides a graphical utility that provides information about each of your system's PCMCIA
slots. It shows whether the device has been suspended, whether it is receiving power, whether
it is compatible with the system, and whether the device is write-protected. If not run as root,
cardinfo will only report information. Run as root, cardinfo allows you to suspend, resume, and
eject devices, when those operations are supported.

2.

Review and, when necessary, edit the /etc/pcmcia/config file: This file contains the drivers that
configure the card. Uncomment sections relevant to your card (e.g., orinoco_cs).

3.

Verify that you have the proper drivers installed.4.

Determine that the proper devices are supported. You may need to install the Atmel or
package, which in turn installs the /etc/pcmcia/atmel.conf file. You may even need to update
this file after it is installed. Such additions and edits allow the system to recognize additional
devices that have different firmware. Other packages may need to be installed, depending
upon your card. For example, to support Linksys cards, you may need to install the WPC11
package.

5.

After you have made the necessary changes, restart PCMCIA through /etc/init.d/pcmcia restart.6.

Use the iwconfig, ifup, or ifconfig command to configure the system.7.

Review the /var/log/messages and /var/log/syslog files for information (e.g., tail -f
/var/log/messages). If you discover a message that reads something similar to "unsupported
card in socket 0," you need to map the right driver to the correct device in the
/etc/pcmcia/config file.

8.

Manually load possible modules. The modules that you can install using the modprobe
command include pcmcia_core, yenta_socket, and ds. In some cases, you will have to install
the i82092 or i82365 modules.

9.

Beware the probe feature: if can cause problems when PCMCIA card modules are loaded. To
isolate this problem, modify the modprobe command with the following argument:

10.

PCMCIA_CORE_OPTS="probe_io=0 setup_delay=10"

28.4.3.2. Boot problems

At times, a system will hang during the boot process when PCMCIA devices are scanned. This
problem is sometimes caused by conflicts with the ACPI subsystem. To resolve such problems
quickly, boot the system to LILO or GRUB, and then enter the following at the boot prompt:

NOPCMCIA=yes

You can also enter interactive mode to load PCMCIA modules one at a time at boot time. This will
help you isolate the problem and create a fix.

28.4.3.3. Common PCMCIA errors

Several types of errors occur in regard to PCMCIA cards :

The system does not respond to card insertion.

ACPI is often the culprit. Reboot the system and pass the following parameter at boot time:
pci=noacpi.

The system responds to the card, but fails to recognize it as valid.

If the system fails to respond at all, it's generally because no driver is assigned, or a driver
mismatch has occurred. Use the command cardctl ident to determine the nature of the card.
Review the card's information and settings. You can then edit the /etc/pcmcia/config file (and
related files) to resolve the problem. Look in /lib/modules/kernel-version to see what

modules you may have missed.

The driver does not load.

In such cases, your system will recognize the card, but it will not function. The
/var/log/messages file will contain entries related to this problem. It means you are using the
wrong driver for the card. It is also possible that the PCI card containing the PCMCIA interface
is experiencing an IRQ conflict. If you suspect this is the case (and such cases are rare), use
the lspci command to determine what IRQ and I/O port is used. Devices can share IRQs, but
not I/O ports.

Improper configuration.

Fix the configuration with the getcfg command.

28.4.3.4. Kernel upgrades

When upgrading the kernel, make sure that you select the "Network device support" and "Pocket
and portable adapters" portions of the kernel configuration menu. These ensure that PCMCIA

support is enabled.

You may find that your PCMCIA card no longer works after upgrading your kernel. This might be
because you have forgotten to install the modules for that kernel. Before taking any further action,
upgrade your kernel modules to see if this resolves the problem.

Chapter 29. File and Service Sharing (Topic
2.209)
This Topic covers software that is used to share files and services between systems. Samba is used
to share files and services between Linux and Microsoft Windows systems. NFS, the Network File
System, is used to share files between systems running NFS clients (typically other Linux- or Unix-
based systems).

This Topic contains only two Objectives:

Objective 1: Configuring a Samba Server

The candidate should be able to set up a Samba server for various clients. This Objective
includes setting up a login script for Samba clients and setting up an nmbd WINS server. Also
included is to change the workgroup in which a server participates, define a shared directory
in smb.conf, define a shared printer in smb.conf, use nmblookup to test WINS server
functionality, and use the smbmount command to mount an SMB share on a Linux client.
Weight: 5.

Objective 2: Configuring an NFS Server

The candidate should be able to create an exports file and specify filesystems to be exported.
This Objective includes editing exports file entries to restrict access to certain hosts, subnets,
or netgroups. Also included is to specify mount options in the exports file, configure user ID
mapping, mount an NFS filesystem on a client, use mount options to specify soft or hard and
background retries, signal handling, locking, and block size. The candidate should also be able
to configure TCP wrappers to secure NFS. Weight: 3.

29.1. Objective 1: Configuring a Samba Server

Samba is the name given to the software that implements the Server Message Block (SMB) protocol
on Unix systems. SMB is the name commonly used to refer to the numerous services and protocols
that are involved in implementing file and print sharing between computers running Microsoft
Windows. Because file and print sharing in the Windows world includes many additional features
(Kerberos authentication, WINS server integration, NetBIOS name lookups, domain and workgroup
membership, and browser elections, just to name a few), Samba is a relatively complex piece of
software. However, configuring it is not difficult, as long as you understand some basics of how the
software works and what exactly needs to be done.

Because of all the functionality that is involved and because the Samba team is always trying to play
catch-up with the moving target of Microsoft Windows releases, Samba is in active development.
Samba 2.0 was released in January 1999 and was a major milestone in the world of Windows-to-
Unix file and print integration. Samba 2.0 brought basic emulation of the Windows Primary Domain
Controller (PDC), which gave administrators the ability to replace many of their existing Windows
NT-based primary domain controllers with Linux systems running Samba. Samba 3.0 was released
in September, 2003 and includes such new features as Kerberos 5 and LDAP integration, full Unicode
support, trust relationships with other Windows-based PDCs, and support for Windows NT access
control lists. For the purposes of this chapter, we will not be going into the Samba configuration
required for many of these advanced network configurations. We will focus on:

Configuring Samba to act as a Windows PDC and handle domain logins from a Windows PC

Configuring Samba to serve directories and printers to Windows PCs

Accessing a resource shared on a Windows PC from a Linux workstation

Samba most likely came as a default package with your Linux distribution. Many distributions ship it
in three packages named samba-common, samba-server, and samba-client. If you're planning on
using Samba only as a server, allowing Windows PCs to access directories on your Linux server, you
don't need the samba-client package. For the purposes of this chapter, we will assume all Samba
components are installed. If your vendor does not offer Samba as a package or you'd rather go the
source route and compile it yourself, you can download the latest version of the Samba source from
a mirror listed at http://www.samba.org.

The Samba packages include many files, the most important of which are described in Table 29-1.

Table 29-1. Key Samba files

Filename Description

/etc/samba/smb.conf Default configuration file for Samba

/usr/bin/smbpasswd Creates or modifies a Windows user

/usr/bin/testparm Checks the syntax of /etc/samba/smb.conf

/usr/bin/smbstatus Lists connection information and open files

http://www.samba.org

Filename Description

/usr/sbin/smbd Samba server

/usr/sbin/nmbd NetBIOS name server

/usr/bin/smbmount Mounts a Windows share from Linux

29.1.1. Basic Configuration File

The Samba configuration file, /etc/samba/smb.conf, is similar to most other Linux configuration files
in that it is a plain ASCII file that can be edited with any text editor. The other features it shares
with most other Linux configuration files is its relatively free-form syntax and the huge number of
options that are available. Fortunately, the manual page for this file is very well done, explaining all
available options and giving many good examples. The manual page can be accessed by typing man
smb.conf from the command line.

The smb.conf file is broken down into two sections: the global section and the shares section (in
Windows terminology, every directory shared to other systems is called a share). The global section
defines settings that apply to the Samba server itself or are valid across all shares. This section is
defined by the [global] directive, and all settings are in the format variable = value. Let's look at a

global section from a default installation of Samba:

[global]
 workgroup = WORKGROUP
 server string = My File Server
 printcap name = /etc/printcap
 printing = lprng
 load printers = yes
 security = user
 encrypt passwords = yes
 smb passwd file = /etc/samba/smbpasswd
 domain logons = yes
 logon script = login.bat

This is, of course, not a complete list of options available in the global section, but it is enough to
get you started. The workgroup variable defines the Windows workgroup that this Samba server will
belong to. Think of workgroups as an informal association of Windows PCs. There are no
authentication or membership details. Membership in a workgroup simply means that your computer
will show up in a Windows browse list with other workgroup members.

The server string variable can be any text that describes your server. The next three lines all deal
with how Samba interacts with the underlying printing subsystem. If printing is already correctly
configured on your Linux server, Samba can interact with it without much configuration. The only
important variable is printing, which tells Samba what kind of printing subsystem your version of
Linux uses. Popular choices are lprng and CUPS.

The security variable is one of the most important variables in the smb.conf file, and the one that
generates the most confusion in people new to Samba. The options for this variable are share,
user, and domain.

Share-level security means that Windows users connecting to shared resources on the Linux server

/usr/sbin/smbd Samba server

/usr/sbin/nmbd NetBIOS name server

/usr/bin/smbmount Mounts a Windows share from Linux

29.1.1. Basic Configuration File

The Samba configuration file, /etc/samba/smb.conf, is similar to most other Linux configuration files
in that it is a plain ASCII file that can be edited with any text editor. The other features it shares
with most other Linux configuration files is its relatively free-form syntax and the huge number of
options that are available. Fortunately, the manual page for this file is very well done, explaining all
available options and giving many good examples. The manual page can be accessed by typing man
smb.conf from the command line.

The smb.conf file is broken down into two sections: the global section and the shares section (in
Windows terminology, every directory shared to other systems is called a share). The global section
defines settings that apply to the Samba server itself or are valid across all shares. This section is
defined by the [global] directive, and all settings are in the format variable = value. Let's look at a

global section from a default installation of Samba:

[global]
 workgroup = WORKGROUP
 server string = My File Server
 printcap name = /etc/printcap
 printing = lprng
 load printers = yes
 security = user
 encrypt passwords = yes
 smb passwd file = /etc/samba/smbpasswd
 domain logons = yes
 logon script = login.bat

This is, of course, not a complete list of options available in the global section, but it is enough to
get you started. The workgroup variable defines the Windows workgroup that this Samba server will
belong to. Think of workgroups as an informal association of Windows PCs. There are no
authentication or membership details. Membership in a workgroup simply means that your computer
will show up in a Windows browse list with other workgroup members.

The server string variable can be any text that describes your server. The next three lines all deal
with how Samba interacts with the underlying printing subsystem. If printing is already correctly
configured on your Linux server, Samba can interact with it without much configuration. The only
important variable is printing, which tells Samba what kind of printing subsystem your version of
Linux uses. Popular choices are lprng and CUPS.

The security variable is one of the most important variables in the smb.conf file, and the one that
generates the most confusion in people new to Samba. The options for this variable are share,
user, and domain.

Share-level security means that Windows users connecting to shared resources on the Linux server

do not necessarily have to be valid Linux users. This situation is common when you want to set up a
"guest" share or some other kind of no-privilege or anonymous access.

User-level security is the most common (and is the default in Samba 2.2 and later) and requires that
Windows users connecting to the Samba server successfully authenticate themselves against the
server. This can be done in a number of ways, but the point is that the Windows user identifies who
he is, and Samba decides what access level to apply to him.

Finally, domain-level security assumes that the Samba server is a member of an existing Windows
domain (much different from the aforementioned Windows workgroup). If domain-level security is in
place, every attempted connection to the Samba server by a Windows PC prompts the Samba server
to pass the authentication of the Windows user to the primary domain controller for that domain. In
this way, Samba is still requiring authentication to access the shared resources but is acting as a
gateway for that authentication process.

If your Samba server is acting as a file server for a relatively small set of users, security = user is
probably the correct choice for you.

29.1.2. Windows Passwords

The encrypt passwords variable brings to light an important configuration issue with Samba and one
that often confuses people new to Samba. With the advent of Windows 95OSR2 in 1996, Microsoft
defaulted to encrypting the passwords that were exchanged between Windows systems when they
authenticated to access shared resources. Before this date, these passwords were sent in plain text
over the network, which posed serious security risks. In order to understand how this affected
Samba, we must first understand how the standard Linux login process works.

Each Linux user has an entry in the /etc/passwd file that defines important details about her user
account, such as UID, GID, home directory, and shell. The user's entry in /etc/shadow contains the
user's encrypted password. This password is encrypted with a one-way hash for security reasons.
When a user logs into a Linux system, the password she provides is encrypted with the standard
encryption libraries, and the resulting encrypted string is compared with the encrypted string in
/etc/shadow. If they match, the user is authenticated and allowed into the system. There is no easy
way to derive a user's password from the encrypted string in /etc/shadow; the encryption algorithm
is one-way only.

Windows (starting with Windows95OSR2) uses a similar scheme to store encrypted passwords.
When one Windows machine authenticates against another in order to access shared resources, it's
the encrypted password that is sent over the network. In order for Samba to communicate with
Windows machines in this way, it has to be able to authenticate Windows users using the given
encrypted password.

Now, you may be thinking that this should be easy, because we know that Linux users already have
an encrypted password in /etc/shadow on the Linux server. So Samba should just be able to
compare the proffered Windows encrypted password with the string in /etc/shadow and authenticate
a Windows user, right? Unfortunately, that is not the case. Windows and Linux use different
password encryption algorithms, so although the password might be the same for a Linux user and a
Windows user, the encrypted string will not be. This means that if your Samba server is using user-
level access to share resources with Windows systems running Windows 95OSR2 or later, you must
maintain a list of Windows users and their encrypted Windows passwords on your Linux server, in
addition to the list of users you already have in /etc/shadow. Because this has been a default of
Microsoft Windows for so long, encrypt passwords = yes is the default in the smb.conf file. The smb
passwd file variable defines where this list of Windows users and their passwords resides, and it
defaults to /etc/samba/smbpasswd.

An example line for user joe from /etc/shadow is:

joe:1xDTY3.yX$l9R4lCBFr0fDr0SQds1NA0:13159:0:99999:7:::

An example line for the sane user from /etc/samba/smbpasswd is:

joe:504:2D09ECB6715E94F6D9243782117C7417:3ADBA9C02F6A67701B419BFFF31A21F2:
[U]:LCT-43C571F8:

While normal Linux user accounts are maintained through commands such as useradd and passwd,
the /etc/samba/smbpasswd entries are maintained by the program smbpasswd. Some common
options to smbpasswd are:

-a

Add a user.

-x

Delete a user.

-d

Disable a user.

-e

Enable a user.

29.1.3. Acting as a PDC

If you want your Samba server to act as a primary domain controller for Windows PCs, set domain
logons = yes. The primary advantages of having your Windows PCs be a part of a domain managed
by your Samba server are more client-level security options, more logging options, the ability to
maintain client PCs through login scripts, and the ability to implement domain policies on client
machines.

On Windows machines running Windows95OSR2, Windows 98, or Windows ME, joining a domain is
as simple as configuring the domain name on the Windows client and authenticating against the
Samba server with a valid username and password. On clients running Windows NT, 2000, XP, or
2003, there is another step involved. You must first create a machine account for each workstation
that will be a member of the domain. This is accomplished by running smbpasswd with the -m and -
a options. Machine accounts look like normal accounts in the /etc/passwd file, but the username
must be the same as the computer name of the Windows client. The smbpasswd program will

automatically add a $ character to the end of the username, identifying it as a special machine
account. No actual password is required for these accounts; they just must be present in the
password database in order for these Windows machines to connect to your domain.

If your Samba server is operating as a domain controller, you must configure a netlogon share. This
can be any physical directory on your Linux server. A netlogon section in smb.conf looks something
like this:

[netlogon]
 comment = Network Logon Service
 path = /home/netlogon
 guest ok = yes
 writable = no

This section creates a sharename called netlogon that offers the physical directory /home/netlogon
as a Samba share. Guests are allowed to connect, and the share is read-only. The netlogon share is
a default share on Windows domain controllers, and Windows PCs that belong to a domain will
expect to find it. Two important files that belong in the netlogon directory are the login script and
the group policy file.

29.1.4. Login Settings

Login scripts are simply Windows batch files that run every time a user logs into a Windows PC that
is a member of a domain. The most common use for a login script is to restore drive mapping to
network resources. Here is a sample login script, called login.cmd, that maps the user's home
directory to H: and the share public to P::

net use h: /home
net use p: \\server\public

You do not have to include a sharename when specifying /home because the server can figure out
what the users' home directories are via their usernames.

Windows ships with a program called the Group Policy Editor that can be used to specify registry
settings that are applied to each workstation every time a user logs into the domain. Use the Group
Policy Editor to create a policy file, name it config.pol, and save it to the netlogon share to ensure
that it is executed on every client when a user authenticates against the domain.

29.1.5. Shares

Once you have a global section defined and some user accounts created with smbpasswd, you're
ready to define some resources to share.

We've already seen the basic setup for a share with the netlogon share. Other shares are configured
the same way. All share sections in smb.conf start with [sharename] followed by any options you

want to enable for the share. The only required option is path, which indicates what directory on

your Linux server you're actually assigning to this share. Here is a share section example from the
default smb.conf file:

[public]
 comment = Public Stuff
 path = /home/samba
 public = yes
 read only = yes
 write list = @staff

Most of these options are relatively self-explanatory, and the smb.conf manual page goes into great
detail on every available option. The comment directive defines a line of text that will appear next to
each folder in the network browse view on a Windows PC. The path directive defines the directory
that is being shared. The public directive is a synonym for guest ok, meaning that guest users can
connect to this share. The read only directive means that this share is not writable by default by
users on remote systems, and write list defines a Linux group that does have write access to this
share (in this case, any user in the staff group).

29.1.6. Startup

Like most other Linux server applications, any change to the configuration file requires a restart of
Samba before the change will take effect. Samba is restarted the standard way:

/etc/init.d/smb restart

This will restart the two Samba processes, smbd and nmbd. smbd is the main daemon that shares
directories from the Linux system, while nmbd is the NetBIOS name server. This server provides
name service for NetBIOS clients over TCP/IP. The NetBIOS name service is similar to the DNS
service, which translates hostnames to IP addresses. nmbd translates Windows machine names to IP
addresses. This ability is usually handled by Windows machines that run WINS (Windows Internet
Name Service). If you want your Samba server to act as a WINS server, you must enable the global
option wins support = yes. Then you must configure each Windows client to register with the WINS
service. Once this is done, you will be able to browse for available Windows PCs using NetBIOS over
TCP/IP and do IP address-to-Windows machine name mapping.

Use the Linux command nmblookup to query a WINS server and return the IP address of a given
Windows machine name. Here is an example:

nmblookup client1
querying client1 on 192.168.1.255
192.168.1.10 client1<00>

This tells us that client1 has the IP address 192.168.1.10. The subnet with a broadcast address of
192.168.1.255 was searched in order to return this information.

There is a special share section that is unique among shares: the [printers] share. If this section is
included in smb.conf, Windows clients can spool print jobs to any printer defined on your Linux
server. Here is a sample [printers] share:

[printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = no
 guest ok = no
 writable = no
 printable = yes

This section looks very similar to the other share sections we've seen, with the exception of the
printable directive. This defines this share as a special printer share, and the directory
/var/spool/samba becomes the local Linux directory to which Windows print jobs are spooled. You
can assign the same level of security to the printers share as you would any other share. As long as
your underlying Linux printing subsystem is set up correctly, this is all you need to do to enable
Windows clients to print to your Linux printers.

29.1.7. Troubleshooting

Now that we've seen how to perform a basic Samba setup, allowing Windows machines to connect to
shared Linux resources, we must address the next stage of any server setup: troubleshooting. The
Samba suite includes a number of useful tools that allow you to identify possible problems with your
Samba configuration.

The testparm program parses your smb.conf file and notifies you of any syntax errors or other
potential mistakes. It's a good idea to get into the habit of running testparm after you make any
change to smb.conf, but before you restart Samba.

The smbstatus program with a -V option gives you an overview of a currently running smbd process,
including the version of Samba that is running, the username and machine name of all currently
connected clients, and a list of all resources that are currently in use.

Samba also has extensive logging capability. By default, Samba logs everything to the directory
/var/log/samba. The smbd.log and nmbd.log files contain events specific to those services. By
default, every connecting client machine gets its own log in /var/log/samba, named after the
Windows machine name. These logs are useful for identifying when certain machines attempted
connections and if any errors occurred during the communication process. Samba's log level can be
increased in the global section of smb.conf to high enough levels that every action performed by any
Samba service is logged. This is very useful for debugging any connection issues that may arise.

We have so far talked mostly about using the Samba suite to enable a Linux computer to act as a
server for Windows PCs. However, Samba also gives us the ability to have a Linux computer act as a
client on a Windows network, accessing shared Windows resources. In order to access these
resources, they must be mounted into the Linux filesystem, just like any other shared network
resource. The command to accomplish this is smbmount.

For example, if I wish to mount the shared directory public that is shared from the Windows server
named server1 on my Linux machine, I would type this command as root:

smbmount //server1/public /mnt/public -o username=adamh,password=mypassword

This command assumes that the directory /mnt/public exists on the local Linux system and that the
user adamh with password mypassword is a valid user account on the Windows machine server1. If
the authentication is successful, I will be able to change to the directory /mnt/public and see the files
that reside in the public directory on server1. The manpage for smbmount contains other command-
line options that are useful in this context, such as Kerberos settings for connecting to an Active
Directory share and specifying the UID and GID that will "own" the mount point.

Samba is a very powerful tool, and a useful one, especially in today's heterogeneous networks. This
basic overview should give you enough information to get started using it.

29.2. Objective 2: Configuring an NFS Server

The Network File System (NFS) is the standard method for sharing files between Unix (and Unix-
like) systems. Linux can be both an NFS server (offering its directories to other systems) and an NFS
client (offering its own users access to directories on other systems).

29.2.1. The NFS Server

The NFS server can be installed by default during your distribution's installation process, but if NFS
was not installed, you can install it from your distribution's installation media or FTP site. In addition
to the NFS packages, you will need the following daemons and utilities.

Portmap

The NFS server system must be running the portmap daemon, a server for the RPC service
directory.

The NFS-related RPC daemons

These are typically started automatically at boot time through /etc/init.d/nfs start and consist
of:

rpc.nfsd

Handles file serving

rpc.statd and rpc.lockd

Handle lock management

rpc.rpquotad

Manages quotas

rpc.mountd

Checks mount requests and hands out access handles

29.2.2. Configuring NFS Server Exports

The server uses /etc/exports to configure NFS filesystems that it offers to remote systems. The
format of the file entries is typically:

/path/to/export [host](options)

The first field, /path/to/export, is the path that you want to make available via NFS. An example
would be /mnt/cdrom. The second field, host, is the hostname, specified by name or IP address

(with an optional netmask), to which you want the filesystem to be made available. If nothing is
supplied for host, the filesystem is exported to everyone. The last field, options, is a comma-

separated list of export options. Some standard examples are ro for read-only and rw for read/write.

The following is an example of an /etc/exports file:

/mnt/cdrom (ro)
/tmp (rw)
/home 192.168.0.0/255.255.255.0(rw)

The first line exports /mnt/cdrom read-only to the world. The second line exports /tmp read-write to
the world. The third line exports /home read/write to only the 192.168.0.0 network.

Be very careful to not have any spaces between the host specification and the export options. The
following are very different:

host (options)
host(options)

For more information about the format and options of /etc/exports, view the exports manpage (man
5 exports).

Directories can also be exported based on hostname, wildcarded domain name (*.example.com), or
NIS netgroups. If you use NIS, you can use @netgroup to specify the hosts defined in the given
netgroup.

To initially add all your entries in /etc/exports to the list of exported filesystems (assuming mountd
is already running), run exportfs -av. The -a option tells exportfs to add the entries and the -v
option to print the output verbosely.

After you make any change to /etc/exports, you must update the NFS server using exportfs -rv. This
command reexports all directories in /etc/exports, syncing the server's list of exports (maintained by
mountd in /var/lib/nfs/xtab) with /etc/exports.

To remove a filesystem from mountd's list of exportable filesystems, use exportfs -u. More
information about exportfs may be found in the exportfs(8) manpage.

29.2.3. NFS Server Security

NFS was ingenious when it was created, but it has been plagued by many security problems.
Therefore, the Linux implementation has integrated TCP wrappers support. TCP wrappers is a
somewhat paranoid IP access control mechanism that is more fully documented in Chapter 40.
Suffice it to say here that all hosts that should be able to access your NFS server must be allowed to
do so. To secure your NFS server, put a statement like the following in your /etc/hosts.deny file:

portmap,lockd,mountd,rquotad,statd: ALL

This disables access to all the NFS-related services altogether. To reenable NFS for your legitimate
clients, put lines like the following in your /etc/hosts.allow file:

portmap,lockd,mountd,rquotad,statd: 192.168.0.0/255.255.0.0

This means that, even if your /etc/exports file exports your /mnt/cdrom and /tmp directories to the
world, no one outside the 192.168.0.0/255.255.0.0 network will be able to contact the servers.

This mechanism does not allow netgroups to be used, but it does allow hostnames and domains
(.example.com).

Even though the portmapper is, strictly speaking, not an NFS service, it too has been subject to
security problems and access to it should also be restricted.

The /etc/hosts.allow and /etc/hosts.deny files also apply to your NFS client . It should be secured in
the same way.

A server may not want to trust the remote root users. Trusting a remote root user would mean that
the remote root can read all files, create device files with unhealthy permissions, and create setuid
root scripts on the server. All these are bad things unless you are sure that the clients are all as
secure as the server. Otherwise, add root_squash to the export option list in order to deny root
accessor, more accurately, to change the UID of root requests to the nobody user before they go to
the filesystem. The opposite of root_squash is no_root_squash. If you trust no one on the client, but
still want them to have some access, you can use all_squash to squash all users down to nobodies.
There are also the two options anonuid=n and anongid=n, which control exactly which account the

squash options apply to. They used to be useful for PC/NFS, but that is obsolete now. They are
perhaps useful if you want to share a public disk, such as an FTP server disk. If the FTP server user
has UID 95 and GID 95, you can export relatively safely to the world through:

/home/ftp (ro,all_squash,anonuid=95,anongid=95)

29.2.4. The NFS Client

The NFS client software on Linux consists of several parts: portmap, rpc.statd, and rpc.lockd.
Commands such as mount, showmount, and rpcinfo are the tools you use.

The NFS client requires a specific set of kernel modules: nfs, lockd, and sunrpc. These kernel
modules will be automatically loaded by the kernel module loader when you mount a remote

filesystem.

The NFS client (as well as the server) require the system to be running the portmapper, the portmap
daemon. To start it, run /etc/init.d/portmap start (or on some systems, /etc/rc.d/init.d/portmap
start).

The utility required to get access to an NFS filesystem is mount. It is used to mount remote NFS
filesystems as well as local filesystems. Generally, mount is used like this:

mount -o options remotehost:/remote/path /local/path

Table 29-2 lists the most common mount options used on NFS.

Table 29-2. NFS mount options

Mount
option Description

bg When this is specified, if a mount times out, it will be backgrounded so as to not block
the boot process and to give the user his command prompt back. That is the theory
anyway; it has never worked on Linux for us.

hard If a timeout occurs, send a "Server not responding" message to the console and
continue to retry. (This is the default behavior.)

intr For a hard mount that has timed out, allow I/O to be interrupted with a signal to the
calling program. (The default is to not allow I/O on a hard mount to be interrupted.)
This allows users that get hung due to NFS server downtime to free themselves from
the lockup by pressing Ctrl-C.

nolock Disable locking on this mount.

rsize=num Read num bytes at a time (instead of the default 1024 bytes); 8192 should be used in

most cases.

soft If a timeout occurs, return an I/O error to the calling program. There is a definite risk
that the program does not handle this error correctly and that the file will be
incomplete or corrupted without warning.

wsize=num Write num bytes at a time (instead of the default 1024 bytes); 8192 should be used in

most cases.

When mounting NFS shares, always include the options hard,intr. It is absolutely reckless to use
soft. A good example mount command for mounting the filesystem /export on the NFS server
linux.example.com with an 8-K block size on /mnt/nfs is the following:

mount -o rsize=8192,wsize=8192,hard,intr linux.example.com:/export /mnt/nfs

29.2.5. NFS Tools

In addition to using the mount command to mount NFS filesystems, a few other useful NFS tools can
help you use and administer them. In particular, the showmount and rpcinfo commands are
regularly used.

Syntax

nfsstat [options]

Description

Display NFS server and client statistics. This command displays the number of times each RPC
procedure in the NFS servers and clients have been called. This is mostly uninteresting,
although the counters can be used to graph loads and in some situations to do
troubleshooting. By default, the command displays both server and client statistics and both
NFS and RPC statistics.

Options

-c

Show client-side statistics only, not server-side statistics

-n

Show NFS statistics only, not RPC statistics

-r

Show RPC statistics only, not NFS statistics

-s

Show server-side statistics only, not client-side statistics

Syntax

rpcinfo -p [host]

rpcinfo -n [portnum] [-t | -tu] [host] program [version]

Description

Show RPC services for host.

Options

-p [host]

Probe the portmapper on host and list registered RPC programs. If no host is specified,

the system's hostname is used.

-n [portnum]

Use portnum as the port number for the -t or -u option instead of the port number

supplied by portmapper.

-t [host] program [version]

-u [host] program [version]

Make an RPC call to program on host and report the response. The version of the service

can optionally be specified. If the -t option is used, the call is done by TCP, whereas the
-u option does it by UDP. This can be used as a RPC ping command. Thus, the following
command pings the NFS service, all versions:

rpcinfo -u fileserver nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting

Syntax

showmount [options] host

Description

Show export mount information for host.

Options

-a, all

List the client hostname and the mounted directory in host:dir format.

-d, directories

List only the directories mounted by a client.

-e, exports

Show the NFS server's export list.

--no-headers

Suppress the descriptive headings from the output.

Chapter 30. System Maintenance (Topic
2.211)
This Topic is a small part of the 201 exams, but it's key for all system administrators. It represents
an advance in sophistication over several topics in the Level 1 exams:

In Exam 102, you learned to configure system logs for your server. For Exam 201, you are
expected to implement these custom system logs on a central logging server for your network.

In Exam 101, you prepared to use package management for either RPM or Debian systems.
Exam 201 requires you to build your own system packages for either RPM or Debian systems.

The Level 1 Exams also discussed methods for creating your system backups. This 201 Topic
expects you to implement backup storage plans for mission-critical data.

This Topic contains three Objectives:

Objective 1: System Logging

The candidate should be able to configure syslogd to act as a central network log server. This
Objective also includes configuring syslogd to send log output to a central log server, logging
remote connections, and using grep and other text utilities to automate log analysis. Weight:
1.

Objective 2: Packaging Software

The candidate should be able to build a package. This objective includes building (or
rebuilding) both RPM- and deb-packaged software. Weight: 1.

Objective 3: Backup Operations

The candidate should be able to create an off-site backup storage plan. Weight: 2.

30.1. Objective 1: System Logging

System logging on Linux (and Unix) is done via the syslog service. One of the strong points of this
service is that it can log over a network, so you can set up a central logging server. Events from
many systems are then logged in chronological order and important messages can be checked in
one place instead of on each of your hosts.

Warning: The weak point about using syslog over a network is that there is no security. Your central syslog server has no way to authenticate

who sent a given message. In addition, messages are sent by UDP, which means that a message can be lost. UDP further weakens security,

because it is easily the victim of IP spoofing. On top of that, the message is transported in plain text.

Warning: In other words, your remote logging is about as secure as your network. You can trust your central syslog as far as you can trust all

the users that have access to your network. If you need more security than this, you should look at alternative syslog implementations, such as

syslog-ng (see http://www.balabit.hu/products/syslog-ng/ for more information).

30.1.1. Setting Up a syslog Server

The default configuration of the Linux system log daemon, syslogd , is secure because it does not
listen on the network. To enable network listening, you have to customize your syslog init script, and
syslogd must be started with the -r option.

In Debian, write directly into /etc/init.d/sysklogd to insert the -r into the SYSLOGD variable. On Red
Hat and many other distributions, edit /etc/sysconfig/syslog , and change the SYSLOGD_OPTIONS
variable. After changing the initialization script, restart the service. On Red Hat, the rc filename is
/etc/init.d/syslog .

You can verify that syslogd listens on the network by running the following command. It should
produce at least one line exactly like the one shown. The 0.0.0.0:514 means that your syslogd
listens to the "any" interface at port 514.

$ netstat -an | grep 514
udp 0 0 0.0.0.0:514 0.0.0.0:*

Tip: You can restrict which hosts your syslogd will log from by specifying the -l option and a colon-separated list of simple hostnames (not

FQDNs). An informed enemy can defeat this check trivially due to the inherent insecurity of UDP. You should have this in the back of your

head before trusting logged data.

You should increase the security using some firewall rules such as these:

iptables -P INPUT DROP
iptables -A INPUT -p udp --dport 514 -j ACCEPT

On a host dedicated to being a log server, these commands restrict it to accepting only packets
addressed to the 514 UDP port and dropping all other incoming traffic.

30.1.2. Setting Up syslog Clients

Setting up a client for your central syslog server is a simple matter of adding one line, similar to the
following, to your /etc/syslogd.conf file. This line logs messages from all syslog facilities with priority
debug and higher to the host roke.langfeldt.net .

*.debug @roke.langfeldt.net

Both facility and priority are syslog concepts. Recognized facilities are authpriv, cron, daemon,
kern, lpr, mail, mark, news, security or auth, syslog, user, uucp , and local0 through local7
. An asterix (*) is allowed as a wildcard to cover all facilities.

Priorities are a hierarchy, at the bottom of which is debug . When you specify a priority, all priorities
from that level up are sent to the log destination. Recognized priorities in ascending order are info,
notice, warning or warn, err or error, crit, alert , and emerg or panic .

The syntax of the syslogd.conf file is quite rich and flexible. You can also have it both ways: logging
remotely does not exclude logging locally.

With your configuration file prepared, restart the syslog service on the client by using the
initialization script or by just typing:

kill -HUP 'cat /var/run/syslogd.pid'

which forces the daemon to reread the configuration file. If you now look at /var/log/messages (on
most distributions), you should see the same message as is logged on the client at restart:

...
Jan 12 12:30:00 roke CROND[3580]: (root) CMD (/sbin/rmmod -as)
Jan 12 12:37:45 roke -- MARK --
Jan 12 12:37:47 10.0.0.5 syslogd 1.4.1: restart.

The restart message shows that communication is established. If no message is received, check your
setup and firewalls. You can send messages from the command line with the logger program. It lets
you specify the priority and the prefix or label on the message. The following command:

$ logger -p notice -t logspam 'hello world'

results in a log message such as the following on the server:

Jan 12 12:59:51 10.0.0.5 logspam: hello world

30.1.3. Using the Central Logs

The great thing about central logs is that they are much easier to manage than logs scattered about
individual hosts, and it becomes very simple to search for interesting events in them.

Exactly what constitutes an interesting event is for you to decide. Some syslog analysis packages on
the Net offer good ideas of many different kinds of interesting events; these packages might make
the job a whole lot easier for you.

For the sake of example, we'll assume that all log lines containing the strings error and warning are
interesting. The grep command can be used to extract lines matching a pattern (regular expression)
from a file or stream. The straightforward approach to a log extraction command is something like
this:

grep -i warning /var/log/messages# grep -i error /var/log/messages

As you add new strings to search, for this will tend to become tedious, because each command has
to read through the whole file. A good alternative is to use egrep with a more complex regular
expression:

egrep -i '(warning|error)' /var/log/messages

This at least will make only one pass of the logs. But the command line will become unruly as you
add strings. As luck would have it, someone has already thought about this and all the commands of
the grep family accept a -f file option. This causes them to read the regular expressions in from a

file, which is much neater and easier to maintain. Just put the things you're interested in into
/etc/interesting-in-logs and the command line to invoke the search stays simple.

Another problem in searching for short and simple patterns is that you usually get back a lot of log
messages you just know will never turn out to be interesting. On an IDE system that runs smartd ,
for example, you will get a lot of messages saying Raw_Read_Error_Rate changed , which is probably
not very interesting and which certainly can be worrisome for someone who does not understand
what's going on. They can be removed by a negative grep command such as grep -v
Raw_Read_Error_Rate . This negative search expression should be as specific as possible, so as to
not eliminate error messages that really are important. Thinking you know about all your problems
can be quite a bit worse than knowing that you don't know about them. Here, too, you will quickly
run into the problem of too many strings to remove. The solution again is the -f option.

A complete example command therefore is:

grep -f /etc/interesting-in-logs /var/log/messages | \
> grep -v -f /etc/interesting-in-logs-not

Remember that Linux also creates several other log files, such as the security or auth log files that
contains events about logins, failed logins , and other security-related issues. A failed login, for
example, results in "Failed password for" messages. Occasional failed logins are to be expected
because users mistype their names and passwords, but repeated messages of that sort can indicate
an attack. So let's consider how to tell when you're being inundated with failed login attempts.

The full message looks like this:

Jan 12 08:07:07 roke sshd[1935]: Failed password for root from 10.0.0.5 port 37370 ssh2

If you remove the timestamp and the process ID at the beginning of the message, as well as the
port number on the end, you get lines that can be counted and presented as a failed logins
summary. The cut command was introduced in Chapter 5 , in the section "Process Text Streams
Using Text-Processing Filters ," and is suited for this task.

grep 'Failed password' secure | cut -d' ' -f 4,6-11
roke Failed password for root from 10.0.0.5
roke Failed password for root from 10.0.0.5
roke Failed password for janl from 10.0.0.5
roke Failed password for janl from 10.0.0.5

If you add some more plumbing to this, you get a summary that's easily readable:

grep 'Failed password' secure | cut -d' ' -f 4,6-11 | sort | uniq -c | \
 sort -n
 2 roke Failed password for janl from 10.0.0.5
 2 roke Failed password for root from 10.0.0.5

And this may well be the sort of activity summary that can alert you to security problems. This
illustrates another great thing about a central logging server: as long as an intruder does not
compromise the server itself, your logs are out of reach for an intruder on one of your other hosts,
and she cannot modify the logs to hide her activities. For this reason, a central log server is even
better if it is well secured.

30.2. Objective 2: Packaging Software

Many package formats are used on Linux. The two main ones are Debian's deb format and Red Hat's
RPM format. Debian has a package called alien that is able to assimilate and transform foreign
package formats, specifically RPM, so they can be installed. The alien tool can be used to exchange
.rpm, .tgz, and .deb package formats.

The general methodology when building a package is to set down a build process for the source that
is as close as possible to what someone would do by hand, but then to pack the files into their own
directory hierarchy that contains only the files that belong in the package. The contents of the
hierarchy are then packaged. A lot of the magical things happen in the build process to put files into
this dummy hierarchy in such a way that they will still work when the user installs them in the / and
/usr directory hierachies.

30.2.1. Building RPM Packages

Building RPM packages from an SRPM (source RPM) package is pretty straightforward. First, of
course, you must find and download the source package. These are typically stored in src.rpm files.

There are two ways of building an RPM source package. If the package is satisfactory to you and you
only want to recompile it for your system (for example, because you use SUSE while the binary
package was built for Red Hat), you can simply enter:

rpmbuild --rebuild package.src.rpm

This builds a binary package from the source package and places the result in the RPMS directory
discussed later.

The other way of building a source RPM package involves installing it with the ordinary rpm
command. This is what you should do if you want to modify a package. When you use rpm -ivh to
install a source package, the contents are distributed among different directories under
/usr/src/redhat on Red Hat and Fedora systems or under something similar, such as /usr/src/RPM,
in other RPM-based distributions. The directories are:

BUILD

Used for the build process. If you need to troubleshoot a build process, its leftovers are here.

RPMS

Where finished packages are placed. There are subdirectories for the different available
architectures such as athlon, i386, i486, and so on. These are ready-to-install binary

packages.

SOURCES

Contains untouched source files and the patches needed for them.

SPECS

Contains package build recipes. These are comparatively small text files that specify the
complete build process for a package.

SRPMS

Where finished source packages are placed. These are source packages that are ready for
rebuilding into binary packages.

When you are done with a specific package, remove the build tree and accompanying files. If you
build any significant number of packages, the amount of space used can grow quite a bit.

Once the package is installed, change to the SPECS directory. There you should find a file called
package.spec. This is the build recipe for the package. The contents of this will be explained in the

next section. To build a package, enter:

rpmbuild --bb package.spec

Once the package is built, the resulting files are dropped into the SRPMS and appropriate RPMS
subdirectories. The exact locations are printed at the end of the build process, such as:

...
Wrote: /usr/src/redhat/SRPMS/gzip-1.3.3-11.src.rpm
Wrote: /usr/src/redhat/RPMS/i386/gzip-1.3.3-11.i386.rpm
...

Syntax

rpmbuild {-ba|-bb|-bp|-bc|-bi|-bl|-bs} [rpmbuild-options] specfile

rpmbuild {-ta|-tb|-tp|-tc|-ti|-tl|-ts} [rpmbuild-options] tarbal

rpmbuild {--rebuild|--recompile} sourcepkg

Description

rpmbuild builds RPM binary or source packages based on .spec files, tarballs containing a
.spec file, or a source RPM package. The -b? options build from .spec, and the -t files from

tarfiles that have been compressed through gzip or bzip2.

Frequently used options

-ba, -ta

Build binary and source packages (a=all).

-bb, -tb

Build binary packages.

-bs, -ts

Build source package.

--target {arch-vendor-os|arch}

For packages that understand this option, it sets the compilation target. The most likely
use is to specify an optimization, such as --target i686.

--recompile

Build binary packages directly from a source RPM.

30.2.2. Modifying RPM Packages

You are already familiar with a typical build process from Chapter 4. The process for a particular
package is laid out in a spec file in the package's source RPM package; by altering the spec file you
can change subsequent builds. We'll show a typical spec file here, using the Fedora Core 1 gzip
package as an example. Modifying a package is quite simple, but there is a bit of magical syntax in
the spec file.

Tip: A good, if somewhat dated, introduction to the RPM format is available in the book Maximum RPM. It is still available in print and also

available on the Web at http://www.rpm.org/max-rpm.

The gzip spec file begins:

 1 Summary: The GNU data compression program.
 2 Name: gzip
 3 Version: 1.3.3
 4 Release: 11
 5 License: GPL
 6 Group: Applications/File
 7 Source: ftp://alpha.gnu.org/gnu/gzip/gzip-%{version}.tar.gz

http://www.rpm.org/max-rpm

The opening lines offer various formalities. Name, Version, and Release, are important; the others
less so.

 8 Patch0: gzip-1.3-openbsd-owl-tmp.diff
 9 Patch1: gzip-1.2.4-zforce.patch
 10 Patch2: gzip-1.2.4a-dirinfo.patch
 11 Patch3: gzip-1.3-stderr.patch
 12 Patch4: gzip-1.3.1-zgreppipe.patch
 13 Patch5: gzip-1.3-rsync.patch
 14 Patch6: gzip-1.3.3-window-size.patch

The preceding lines enumerate the patches in the package. They are referred to by number rather
than name later in the file when the time comes to apply them.

 15 URL: http://www.gzip.org/
 16 Prereq: /sbin/install-info
 17 Requires: mktemp less
 18 Buildroot: %{_tmppath}/gzip-%{version}-root

The URL tag is not very important, but the Prereq and Requires tags are. They define the
prerequisites for installing the package. Requires is now a synonym for Prereq. They used to be
different, Prereq specifying components that had to be installed before the package itself was
installed and Requires specifying components that were needed only for the execution of the
package after installation.

 20 %description
 21 The gzip package contains the popular GNU gzip data compression
 22 program. Gzipped files have a .gz extension.
 23
 24 Gzip should be installed on your Red Hat Linux system, because it is a
 25 very commonly used data compression program.
 26

Some descriptive paragraphs. These should try to include recommendations about when the
package may be needed or useful. This section is ended by the next % section heading, which in this
spec file is:

 27 %prep
 28 %setup -q
 29 %patch0 -p1
 30 %patch1 -p1
 31 #patch2 -p1
 32 %patch3 -p1
 33 %patch4 -p1 -b .nixi
 34 %patch5 -p1 -b .rsync

 35 %patch6 -p1 -b .window-size
 36

These steps prepare the source for compilation. Note that patch number 2 is commented out. All the
lines shown in this section are macros.

%setup -q unpacks the source. Each %patchn line applies the numbered patch, giving the options

specified, such as -p1, to the patch command.

 37 %build
 38 export DEFS="-DNO_ASM"
 39 export CPPFLAGS="-DHAVE_LSTAT"
 40 %configure --bindir=/bin
 41
 42 make
 43 make gzip.info
 44

These are all the steps needed to build the package. Not too bad. %configure is a macro that invokes
a GNU-style configure script with all the right options for placement, optimization, and so on. The
environment variables set before invoking the macro modify the behavior of the script.

 45 %install
 46 rm -rf ${RPM_BUILD_ROOT}
 47 %makeinstall bindir=${RPM_BUILD_ROOT}/bin
 48 mkdir -p ${RPM_BUILD_ROOT}%{_bindir}
 49 ln -sf ../../bin/gzip ${RPM_BUILD_ROOT}%{_bindir}/gzip
 50 ln -sf ../../bin/gunzip ${RPM_BUILD_ROOT}%{_bindir}/gunzip
 51
 52 for i in zcmp zegrep zforce zless znew gzexe zdiff zfgrep zgrep zmore
 ; do
 53 mv ${RPM_BUILD_ROOT}/bin/$i ${RPM_BUILD_ROOT}%{_bindir}/$i
 54 done
 55
 56 gzip -9nf ${RPM_BUILD_ROOT}%{_infodir}/gzip.info*
 57
 58
 59 cat > ${RPM_BUILD_ROOT}%{_bindir}/zless <<EOF
 60 #!/bin/sh
 61 /bin/zcat "\$@" | /usr/bin/less
 62 EOF
 63 chmod 755 ${RPM_BUILD_ROOT}%{_bindir}/zless
 64
 65 # we don't ship it, so let's remove it from ${RPM_BUILD_ROOT}
 66 rm -f ${RPM_BUILD_ROOT}%{_infodir}/dir
 67

While the build process wasn't too complex, the install process on the preceding lines is quite a

mouthful. On line 46, the target directory for the installation is emptied of any old contents. Line 47
is another macro, this one calling make install with the right options for a GNU-style Makefile and
overriding the directory where the binaries should be installed. Lines 4966 are devoted to
symlinking, moving, compressing, creating the zless command, and then removing one file we don't
want distributed, the dir file that should already exist on the host where the installation is taking
place.

 68 %clean
 69 rm -rf ${RPM_BUILD_ROOT}
 70

The preceding lines remove some of the leftovers after the build process.

 71 %post
 72 /sbin/install-info %{_infodir}/gzip.info.gz %{_infodir}/dir
 73

%post is a postinstall script used when installing the binary package. This script modifies the dir on
the install subject to include the gzip info pages.

 74 %preun
 75 if [$1 = 0]; then
 76 /sbin/install-info --delete %{_infodir}/gzip.info.gz %{_infodir}/dir
 77 fi
 78

The %preun, or preuninstall script is run right before uninstalling the binary package. If a package
installs services, this is a good place to stop the service so that it's not left running after the software
is installed.

 79 %files
 80 %defattr(-,root,root)
 81 %doc NEWS README AUTHORS ChangeLog THANKS TODO
 82 /bin/*
 83 %{_bindir}/*
 84 %{_mandir}/*/*
 85 %{_infodir}/gzip.info*
 86

The file list enumerates all the files that are to be packaged. The list should be complete and
exhaustive if some file is forgotten, rpmbuild will complain. If the file is not needed, remove it in the
build step. Otherwise, make sure it gets on the list. The files installed here are enumerated in lines
82 through 85. Line 80 sets the default attributes: the permissions, owner, and group of the files
installed. The permissions is an octal number such as you would use with chmod. Line 81 declares

which files are documentation, so that they can be specially handled when needed.

 87 %changelog
 88 * Tue Oct 28 2003 Jeff Johnson <jbj@redhat.com> 1.3.3-11
 89 - rebuilt.
 90
 ...
 241
 242 * Tue Apr 22 1997 Marc Ewing <marc@redhat.com>
 243 - (Entry added for Marc by Erik) fixed gzexe to use /bin/gzip

The final section is simply documentation for the build itself.

After all that verbiage, it's good to know that you don't need a deep understanding of it all to modify
a package. Modifying a package mostly consists of adding a patch, removing a patch, or perhaps
adding or removing an option from a build or install command. How this is done should be obvious
from the preceding example and comments. If you ever find old packages that you want to compile
for your newer installation, they may contain things that are now obsolete, or they may fail to
enumerate some file in the %files section. In most cases, this can be dealt with by intuition, web
searches, or looking through the documentation files in the RPM package itself.

30.2.3. Building Deb Packages

Debian source packages are documented, among other places, in
http://www.tldp.org/HOWTO/Debian-Binary-Package-Building-HOWTO and
http://www.debian.org/doc/maint-guide.

Debian packages are usually fetched and installed by apt-get. Sources can be fetched using apt-get
source package. The Debian repository system tells apt-get what is needed. It fetches the files and

creates a source directory, named after the package and suitable to build from, with the help of
dpkg-source. If you make any unfortunate changes in the source directories, they can be
regenerated with dpkg-source -x package.dsc.

During the build process, the package files are generated and are available in the directory above
the source directory. The build process shows this step like this:

dpkg-deb: building package 'gzip' in '../gzip_1.3.2-3woody1_i386.deb'.

These packages can be installed normally with dpkg or uploaded to a Debian repository. If you
maintain more than a few Debian packages for more than a few machines, it will probably save time
if you build a private package repository to use with apt-get.

30.2.3.1. Signing the package

Debian requires that packages are signed with gpg. Because you probably do not have the package
maintainers' cryptography keys, you need your own. If you do not already have one, you can easily

http://www.tldp.org/HOWTO/Debian-Binary-Package-Building-HOWTO
http://www.debian.org/doc/maint-guide

create one, as illustrated here:

$ gpg --gen-key
pg (GnuPG) 1.2.1; Copyright (C) 2002 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

gpg: keyring '/home/joe/.gnupg/secring.gpg' created
gpg: keyring '/home/joe/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)Your selection? 5What keysize do you want? (1024) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n yearsKey is valid for? (0) 3y
Key expires at Fri Jan 12 00:23:00 2007 CETIs this correct (y/n)? y

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"
Real name: Joe Doe
Email address: joe@example.com
Comment: <nothing>
You selected this USER-ID:
 "Joe Doe <joe@example.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
Enter passphrase: <passphrase>
Repeat passphrase: <passphrase>

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
..+++++
+++++
public and secret key created and signed.
key marked as ultimately trusted.

pub 2048R/97DAFDB2 2004-01-12 Joe Doe <joe@example.com>
 Key fingerprint = 85B2 0933 AC51 430B 3A38 D673 3437 9CAC 97DA FDB2

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a secondary key for this purpose.

30.2.3.2. Building the package

There are two main commands for building packages. dpkg-buildpackage and debuild. You may find
cases where one works and the other does not.

Syntax

dpkg-buildpackage [options]

Description

This command is roughly the same as running the following shell commands, except that
dpkg-buildpackage also signs the package files and does a whole lot of other things to check
the package.

debian/rules build# debian/rules binary

Frequently used options

-r/usr/bin/fakeroot

If you run the build as a user, use this option to fake being root for the Debian build
scripts.

-ksigning-address

Sign the package with this key, instead of any key that may be specified in the package.

Example

To build a package while not being root, signing with the key belonging to Joe Doe, enter:

dpkg-buildpackage -kjoe@example.com -r/usr/bin/fakeroot

Syntax

debuild [options]

Description

debuild is a fully automatic script that generates Debian package files in a form that is ready
for upload to a repository. It detects when to use fakeroot, but that option may also be
specified on the command line. The command takes dpkg-buildpackage options, so to sign the
package with your own key, use -k.

Frequently used options

-rootcmd=/usr/bin/fakeroot

If you run the build as a user, use this option to fake being root for the Debian build
scripts.

-ksigning-address

Sign the package with this key, instead of any key that may be specified in the package.

30.2.4. Modifying Deb Packages

The Debian build process is controlled by two files inside the source directory: debian/control and
debian/rules. The control file defines formalities such as the package name, version, and
dependencies, in addition to documenting the package. As explained in the previous sections on the
dpkg-buildpackage command, the rules file controls building.

30.2.4.1. control

In this section we'll take a look at the control file in the package for gzip.

Source: gzip
Section: base
Priority: required
Maintainer: Bdale Garbee <bdale@gag.com>
Build-Depends: debhelper, automake, autoconf (>= 2.52)
Standards-Version: 3.5.6.0

Package: gzip
Architecture: any
Pre-Depends: ${shlibs:Depends}
Depends: debianutils (>= 1.6)
Essential: yes
Description: The GNU compression utility.
 This is the standard GNU file compression utility, which is also the default
 compression tool for Debian. It typically operates on files with names
 ending in '.gz'.
 .
 This package can also decompress '.Z' files created with 'compress'.

The file has two main sections, one for the source package and one for the binary package that will

be built from it. Building the package requires more than just having it installed, as illustrated by
comparing Build-Depends: and Depends:. The one bit of magic here is the value of the Pre-Depends:
field. ${shlibs:Depends} will cause the building helper dh_shlibdeps to find shared library
dependencies and dh_gencontrol to fill in the binary package control file with the actual values.
debhelper is a package that assists in the build process of this package.

30.2.4.2. rules

The rules file usually starts out as a automatically generated template file that does all the right
things.

 1 #!/usr/bin/make -f
 2 # Debian rules file for gzip, requires the debhelper package.
 3 # Crafted by Bdale Garbee, bdale@gag.com, 5 November 2000
 4

The rules file is a Makefile.

 5 # Comment this to turn off debhelper verbose mode.
 6 export DH_VERBOSE=1
 7
 8 # This is the debhelper compatibility version to use.
 9 export DH_COMPAT=3
 10
 11 CFLAGS="-g -O2 -Wall"
 12

The DH_ variables modify the behavior of the debhelper programs. They are documented in the
debhelper manpage, and we will skip them here as they are outside our scope. CFLAGS is the
standard Makefile variable that stores options for the C compiler.

 13 configure: configure-stamp
 14 configure-stamp:
 15 dh_testdir
 16 CFLAGS=$(CFLAGS) ./configure \
 17 --prefix=/usr \
 18 --infodir='pwd'/debian/gzip/usr/share/info \
 19 --mandir='pwd'/debian/gzip/usr/share/man
 20 touch configure-stamp
 21

Note the infodir and mandir settings and the difference between them and the prefix setting in the
configure command. The prefix must be correct so that the program will find itself and its libraries
after it is installed. After the configuration is done, the file configure-stamp is created to mark the
event. The dh_ programs called during the different steps in this process are debhelper programs

that do various bits of setup and work. We'll just take them for granted in this book.

 22 build: configure-stamp build-stamp
 23 build-stamp:
 24 dh_testdir
 25 $(MAKE)
 26 touch build-stamp
 27
 28 clean:
 29 dh_testdir
 30 dh_testroot
 31 -rm -f build-stamp configure-stamp
 32 make distclean || exit 0
 33 dh_clean
 34

Not much to say, because the operations are commonplace and are mostly stored in dh_ programs.
The setup was done in the configure target.

 35 install: build
 36 dh_testdir
 37 dh_testroot
 38 dh_clean -k
 39 dh_installdirs
 40
 41 make install prefix=debian/gzip/usr bindir=debian/gzip/bin \
 42 scriptdir=debian/gzip/usr/bin
 43 ln debian/gzip/bin/gzip debian/gzip/bin/uncompress
 44

The make install command overrides a lot of variables to ensure that the files end up in the
packaging directory hierarchy. The ln was added by the package maintainer to make sure there is an
uncompress program in the package.

 45 binary-indep: build install
 46
 47 binary-arch: build install
 48 dh_testdir
 49 dh_testroot
 50 dh_installdocs README* TODO
 51 dh_installmanpages
 52 dh_installinfo gzip.info
 53 dh_installchangelogs
 54 dh_link
 55 dh_strip
 56 dh_compress
 57 ln -s gunzip.1.gz debian/gzip/usr/share/man/man1/uncompress.1.gz
 58 ln -s zgrep.1.gz debian/gzip/usr/share/man/man1/zegrep.1.gz
 59 ln -s zgrep.1.gz debian/gzip/usr/share/man/man1/zfgrep.1.gz

 60 dh_fixperms
 61 # You may want to make some executables suid here.
 62 dh_makeshlibs
 63 dh_installdeb
 64 dh_shlibdeps
 65 dh_gencontrol
 66 dh_md5sums
 67 dh_builddeb
 68
 69 binary: binary-indep binary-arch

This is the whole build process. As you see, the maintainer has put some ln commands here too.
Other than those, the commands just follow a templated schema to build the package.

 70 .PHONY: build clean binary-indep binary-arch binary install configure
 71

This just tells make that the enumerated targets are phonythat is, that they do not refer to files that
are meant to be built. The line is not important unless somebody is ornery enough to actually create
a file with the name of one of the targets.

30.3. Objective 3: Backup Operations

This Objective is restricted to creating an off-site backup plan. Offsite backups could be considered
backup backups. They can be used if the main backup burns or breaks in some way, but the main
use of off-site backup is to perform disaster recovery (e.g., to get a backup site running if the
primary production site collapses in an earthquake, floods, or becomes inoperational or unavailable
in some other way).

The important question as a senior administrator is: what will I do if my production machine room
burns down? If the answer is satisfactory to yourself and your management, you're fine. It's likely
that your company would be out of business if it lacked computers for too long. If your current plans
cannot cope with a disaster, it may well be the senior system administrator's job to point this out to
management and help plan for disaster recovery. To prepare for the worst, one of the first and
easiest things to do is create an off-site backup scheme. This at least enables you to install software
and databases when you get hardware to install it on.

You should consider three classifications of threats for disaster and recovery planning :

Natural

Hurricane, tornado, flood, and fire

Human

Operator error, sabotage, implant of malicious code, and terrorist attacks

Environmental

Equipment failure, software error, telecommunications network outage, and electric power
failure

After studying and defining the initial potential threats, you need to mantain an analysis risk review
cycle, because the environment is dynamic, as are the risks.

You should consider the following criteria when selecting an off-site storage plan:

Geographic area

Distance from the organization and the probability of the storage site being affected by the
same disaster as the organization

Accessibility

Length of time necessary to retrieve the data from storage and the storage facility's operating
hours

Security

Security capabilities of the storage facility and employee confidentiality, which must meet the
data's sensitivity and security requirements

Environment

Structural and environmental conditions of the storage facility (i.e., temperature, humidity,
fire prevention, and power management controls)

Cost

Cost of shipping, operational fees, and disaster response/recovery services

All these list items can directly affect your backup method.

Tip: It is important also to retrieve media on a regular basis from off-site storage and test them to ensure that the backups are being performed

correctly.

There are many ways to do off-site backups: everything from guards or couriers collecting tapes and
storing them in a huge hole in a mountain to the more dot-com way of doing it: "Just rsync the
whole thing over the Internet and we will put it on tapes for you."

Because it's likely that your data is sensitive in some manner and you're not going to give it away to
strangers, it is probably a good idea to practice some "due diligence" on the storage company. This
can be anything from asking some simple questions to see whether they're security-conscious to
detailed questionnaires and site visits or even a periodic security evaluation done by a professional
auditor. If your company is large enough to have an audit department, they might have input on
what to look for, though data security audits are very different from auditing ledgers and accounts.

An off-site backup plan should often support a company disaster recovery plan. This should be
defined by the business side of the company. It may also provide the business case you need to
justify the cost involved.

To create an off-site backup plan, you need to answer all the same questions as with normal
backups, the most important of which is: exactly what are you protecting yourselves against and
what do you need to get back when restoring?

Once that has been determined, it's merely a question of setting up any additional backup schedules
of full, incremental, cumulative, or whatever backups reflect the stated needs.

Chapter 31. System Customization and
Automation (Topic 2.213)
This LPI Objective covers the writing of scripts and focuses on the Bash shell and Perl because they
provide a balance among ease of use, popularity, and expressive power.

It is very important for senior sysadmins to be efficient with their time and their systems. For this
reason, admins typically automate tasks by implementing system scripts. Recording and rerunning a
common procedure can also prevent errors that come about in manual procedures because an
administrator happens to mistype or forget a step.

This Topic contains only one Objective:

Objective 1: Automating Tasks Using Scripts

The candidate should be able to write simple Perl scripts that make use of modules when
appropriate, use the Perl taint mode to secure data, and install Perl modules from CPAN. This
Objective includes using sed and awk in scripts and using scripts to check for process
execution and to generate alerts by email or pager if a process dies. Candidates should be
able to write and schedule automatic execution of scripts to parse logs for alerts and email
them to administrators, synchronize files across machines using rsync, monitor files for
changes and generate email alerts, and write a script that notifies administrators when
specified users log in or out. Weight: 3.

31.1. Objective 1: Automating Tasks Using Scripts

Scripting is one of the oldest and most powerful tools in the Unix environment. Understanding
scripts is also one of the most useful administrator skills when it comes to analyzing system
problems, because setting down a procedure in a script, and testing it, forces the administrator to
decide exactly what should be done.

The most common scripting languages in Linux are Perl and the Unix shells sh and bash . Perl is a
complete scripting environment in itself. On most Linux installations, sh and bash are the same
interpreter, but this is not the case on Unix in general. sh and bash adhere to the old toolbox
philosophy of Unix: lots of little programs that do one task well. Among the subordinate tools they
invoke are sed and awk .

Thus, using sed and awk is considered an integral part of shell scripting. One thing to note about
Bash and shell scripting in general is that in an unfriendly environment it is quite easy for an
intruder to subvert the scripts and turn them to their own uses.

To take this exam, you should already know scripting on the level described in the Objective so that
you understand all the examples shown here. This book will not teach you to program. Scripting is
complex enough that there are whole books devoted to the subject. We will only scratch the surface.
The scripts shown in this chapter illustrate system administration tasks more than they help you
learn programming.

Shell scripting is best suited for checking things and then executing something in response. For text
processing and scripting that require more than 10 to 100 lines of bash , you will most often find
Perl to be a better tool.

Learning Shell and Perl Programming

There are a plethora of excellent books on both these subjects. Learning Perl is a good text for a
non-programmer to learn Perl from. Programming Perl is a good reference and introduction for
programmers. For Bash scripting, take a look at Learning the Bash Shell . (All three books are
published by O'Reilly.)

On your system, you will find that Perl has about 30 manpages divided into subject areas, with
much basic and tutorial material. Bash has a gigantic manpage and built-in help for all its
commands showing all options and syntax.

31.1.1. Scripting with Bash and Friends

Bash is the standard shell on Linux. One reference for it is the manpage; the info page (invoked at
the command line through info bash) is probably even better. You'll learn much from reading other
people's scripts, because there are quite a few clever tricks you can use.

Unix and Linux scripts start with a magic line such as:

#!/bin/bash

When the first 2 bytes of an executable file are #! Unix and Linux know that the file is a script and
should be interpreted by a program. The name of the program follows. In our case it is /bin/bash ,
the standard path to Bash on Linux. You may include exactly one word, or cluster, of arguments as
wellfor example -xv to trace script execution.

31.1.1.1. Variables

When a script is invoked with arguments or options, these are stored in numbered variables $1, $2,
$3 , and so on. In $0 you will find the command name under which the script was started. The
complete list of arguments can also be referred to as "$@" , with the quotes. The often seen, older
form $* should not be used because it does not preserve quoting and word separation. A short
example of a script displaying its arguments:

#!/bin/bash
echo $0 $1 $2 $3 $4
echo $@

And the output from one sample invocation:

$./arg.sh 1st 2nd 3rd 4th
./arg.sh 1st 2nd 3th 4th
1st 2nd 3th 4th

User variables in shell scripts are, by tradition, in all uppercase characters. They are always
referenced with a leading dollar sign but always assigned without the dollar sign. Thus, an
assignment and a reference look like this:

#!/bin/bash
FOO="hello world"
echo "$FOO"

As shown in this example, it is a good idea to use double quotes (") a lot in shell scripts. In the case
of the assignment, double quotes are also required; otherwise, FOO would be only hello , and world
would be assumed to be a command to execute.

31.1.1.2. Checking process status and sending alerts

Suppose you want to write and run a script that checks whether your web server is running. In
Linux, if the command you want to check is in your PATH , check it with the pidof command:

#!/bin/bash

if pidof httpd >/dev/null; then
 echo We have Apache servers
else
 echo There is no Apache server
fi

Because pidof prints pids, and you don't want to see those in this particular setting, the >/dev/null
redirects the output to the special file /dev/null , where it will disappear.

It's probably not very helpful to just print something in a window if you want to learn that an Apache
server is not running. An email is far better. On most systems you will find the executable
/usr/sbin/sendmail , even if the systems have another MTA such as Exim or Postfix instead of
Sendmail, and using this executable directly is the safest way of sending email from scripts :

#!/bin/bash
if pidof apache >/dev/null; then
 :; # That's OK then
else
 /usr/sbin/sendmail -t <<EOM
To: admin@example.com
Subject: Apache is not running

Apache is not running on $(uname -n)

Regards,
 The Apache posse
.
EOM
fi

When using sendmail , you should not start any lines with From because that is the envelope From
header used to separate mails in standard mail spool files. Also, avoid lines containing only a single
dot (.) because mail programs use such lines to denote the last line in the input.

You will often find scripts using mail (or mailx or Mail) to send email. This is, in general, insecure,
because they tend to interpret ~ (tilde) as a command character, and if someone tricks your script
into outputing a ~ sequence, he can easily compromise your system. Also, the options to these
commands vary among Unixes and even among Linuxes.

There are two other things to note in the sample script shown earlier. The <<EOM construct causes
the shell to set up sendmail 's standard input to read from the next line up to (but not including) the
line that consists only of EOM . The $(uname -n) construct executes the parenthesized command and
inserts its output instead. The old way of writing this is 'uname -n' (i.e., a command quoted in single
backquote or backticks). The newer $() notation has more structured logic for quoting, which
handles several levels of quoting without causing insanity.

Sending pager or SMS alerts is not supported by Linux out of the box. You need to use an Internet
email-to-pager or email-to-SMS gateway or install some combination of software and hardware
locally that is capable of sending out such an alert.

Tip: It is, of course, also perfectly possible to use ps with suitable options in combination with grep or awk to determine whether a specific

process is alive, e.g.: ps -ef | grep apache . A thorny problem with that approach, for example, is that the grep command tends to find itself,

because it obviously contains the string apache . This can be especially bad if the pipe continues and ends in a kill command that then kills the

grep command before it found all the Apache processes. Using some regular expression mangling such as: ps -ef | grep ap[a]che avoids

showing the unwanted grep command.

31.1.1.3. Monitoring users and using awk

Warning: Monitoring users may be subject to legal restrictions where you live and work.

User logging is done in two system files. These are most easily read in a shell script by the
commands w, who , and last . If you want to monitor the use of the root account, look at the output
of w :

$ w
 15:44:48 up 9 days, 3:44, 14 users, load average: 0,00, 0,00, 0,00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
annen pts/10 10.0.0.2 Sun 5pm 1:43m 16:10 0.01s -bash
janl pts/9 selidor.langfeld 3:34pm 0.00s 0.01s 0.01s w

This is helpful, but contains an oddity that can make parsing with awk difficult. awk tends to work
by extracting fields separated by spaces. In the w , as one often sees in Unix utilities, the login time
here is not always a single string of characters. If a login took place long enough ago, the date is
printed with a space in the middle. If you count the fields of the output, such as awk does, the
results are corrupted. You could use the cut command, but that is not in this Objective.

If we look at the output of who , on the other hand, we see it has a fixed number and syntax of
fields:

annen pts/10 Jan 4 17:21 (10.0.0.2)
janl pts/9 Jan 5 15:34 (selidor.langfeldt.net)

User auditing and report generation can be done efficiently with last :

last root
root pts/6 pargo.un-bc.petr Tue Jul 19 16:57 still logged in
root pts/4 nbctr36591.bc.ep Tue Jul 12 11:20 - 11:26 (00:06)
root vc/1 Wed Jul 6 10:13 - down (2+08:46)
root vc/1 Wed Jul 6 10:01 - 10:02 (00:00)
root pts/1 pargo.un-bc.petr Thu Jun 30 15:58 - 16:53 (00:55)
root pts/1 pargo.un-bc.petr Thu Jun 30 14:59 - 15:51 (00:51)
root pts/6 cherne.un-bc.pet Tue Jun 21 01:39 still logged in
root pts/6 cherne.un-bc.pet Tue Jun 21 01:03 - 01:39 (00:35)
root pts/11 10.185.4.14 Fri Jun 17 09:31 - 10:16 (00:44)
root pts/11 Thu Jun 16 19:40 - 19:40 (00:00)
root pts/6 pargo.un-bc.petr Thu Jun 16 10:28 - 11:05 (00:36)
root pts/6 pargo.un-bc.petr Thu Jun 16 10:23 - 10:23 (00:00)

awk is a quite complete programming language in itself, and you may well find yourself starting a
script with #!/usr/bin/awk -f sometime. It was made to process files and produce some kind of
report, much like Perl, but is not as powerful. There are a few things particularly handy to know
about awk , and most of them are in the following example:

#!/bin/bash

who | awk '
BEGIN { root=0; users=0; }
 { FROM="localy"; users++; }
/^root.*\)$/ { FROM="from "$6; }
/^root/ { print "Root is logged in at "$3" "$4" "$5" "FROM; root++; }
END { print "Root was logged in "root" times. ";
 print "A total of "users" users seen."; }

This yields:

Root is logged in at Jan 5 16:02 locally
Root was logged in 1 times.
A total of 2 users seen.

The basic form of directives in an awk program is:

pattern { statements; }

Usually, pattern begins and ends with slash characters (/) and represents a regular expression that

awk is supposed to search for in each line. awk goes line by line through the input in order and
checks each line for each pattern, executing the statements each time a pattern matches a line.

If the pattern is BEGIN , the statements are executed at startup. Here the variables root and user are
assigned starting values. That is actually superfluous in this script, because awk assumes that new
variables start with values of zero or empty strings, but it served to illustrate the use of BEGIN .

Likewise, if the pattern is END , the statements are executed at the end of the program.

If the pattern is skipped, such as on the second line of the awk script, the statements are executed
once for each line. Here the variable FROM is set, and the variable users is incremented. users++ is
C-style notation for users = users + 1 .

Tip: awk has language elements for conditional execution, loops, and functions for searching, substitution and all sorts of other things. If you

want to learn any more about awk for the test, study how to use its if statement and substring matching and substitution.

Advanced Regular Expressions

The regular expressions used in the Level 1 LPI Exam are not the whole story. There are two more
levels. awk and sed (as well as egrep) implement a more advanced syntax, while remaining mostly
compatible with the simpler ones. Look in the info pages for sed and awk for an explanation of
these. The standard for these are determined by the POSIX Unix standards.

Perl takes sed and awk regular expressions up several steps. Perl is fairly POSIX-compatible, but
extends the syntax significantly. Please refer to the perlre manpage for further material.

The only frequently used option to awk is -F ; it is used to specify the field separator. In most cases,
the default is good, but sometimes it helps a lot, as when processing a passwd file where -F:
indicates that fields are separated by colons. Another inportant option is -f file , which causes awk to
take the named file as input patterns and statements to execute.

31.1.1.4. Detecting changes

The previously shown scripts detect everything that matches in the input files, whenever they were
added to those files. When checking system logs and doing other system monitoring, it's more useful
to detect changes and then look at what changed. Two programs help do this: cmp , which just
checks whether files are the same, and diff , which compares and reports differences between two
text files (or directories of text files). cmp is faster if you simply want to see whether two files are
different and is more appropriate for binary files. diff does complex computations to find out what
changed and report it in an intelligent manner.

Both cmp and diff need a file showing how things were and another file that shows how things are .
If you have a directory hierarchy (for example, an incoming hierarchy on an FTP server) that you
want to monitor for changes, you may use something like this shell function:

lslrdir=/var/lslR

ifupdated () {
 dir=$1; shift || exit 1
 cd $dir || exit 1
 # Make a slashless name to obtain a suitable filename
 name=$lslrdir/$(echo $dir | tr '/' '-')-ls-lR
 rm -f $name.new
 # Create a new snapshot
 /bin/ls -lR >$name.new || exit 1
 # Compare with old snapshot
 cmp $name $name.new >/dev/null || {
 rm -f $name || exit 1
 mv $name.new $name
 eval "$2"
 }
}

The script could be invoked in a manner such as:

ifupdated /var/ftp/incoming /usr/local/bin/processincoming

With an understanding of shell $ variables and the commands being invoked, you should be able to
understand how the script does its job, which is to detect whether any files have been added,
deleted, or altered in /var/ftp/incoming and to execute /usr/local/bin/process incoming if any have.

One useful feature shown in the script is how to check for errors: a nonzero status from each
command leads to the execution of the exit 1 command after the || double bar. Thus, the script
exits in case of error, which is a crude way of handling the error, but better than continuing and
potentially making things worse.

In order to monitor users, you might create a snapshot with w, who , or even last . Using diff , you
can see which users have appeared since the most recent execution.

$ who >who.txt...5 minutes pass...$ who >who.txt.new$ diff who.txt who.txt.new
0a1
> root vc/1 Jan 5 16:02

The lines matching the regular expression /^>/ are new. Any lines matching /^</ have
disappeared. It's therefore quite easy to look for interesting new users and report on them with
something like the awk script shown earlier.

Monitoring files can be a different problem. If a file is huge, it may not be practical to copy it and
then cmp the new and old versions. If so, it may be suitable to use a checksumming program. On
Linux, md5sum is present everywhere and used by a lot of software to detect changes in files. The
downside with it is that it's computationally heavy. In contrast, two similar commands, cksum and
sum , which should be part of all Linux installations, are fast. If you want to monitor system files
throughout your machines to see if your security has been broken, there are better tools. Check, for
example, aide , which is very configurable and is used by some as an intrusion detection system
(IDS) tool. There is also a module in CPAN (described later) called mon , which underpins many
kinds of monitoring .

31.1.1.5. Log munging with sed

Let's say you have an email server and want to see who the top recipients of email are. The log
format of the postfix MTA is like this:

pickup[13422]: 7B11119: uid=0 from=<root>
cleanup[13538]: 7B11119: message-id=<20040105113325.7B11119@lorbanery.langfeldt.net>
qmgr[13423]: 7B11119: from=<root@langfeldt.net>, size=753, nrcpt=1 (queue active)
smtp[13540]: 7B11119: to=<janl@linpro.no>, relay=smtp.chello.no[213.46.243.2],
delay=27, status=sent (250 Message received: \
 20040105113347.CIQY15111.amsfep12-int.chello.nl@lorbanery.langfeldt.net)
smtpd[13541]: connect from head.linpro.no[80.232.36.1]
smtpd[13541]: TLS connection established from head.linpro.no[80.232.36.1]: TLSv1 with
cipher EDH-RSA-DES-CBC3-SHA (168/168 bits)
smtpd[13541]: C4B3D19: client=head.linpro.no[80.232.36.1]
cleanup[13542]: C4B3D19: message-id=<E1AdT1l-0005sS-00@sc8-sf-web1.sourceforge.net>
smtpd[13541]: disconnect from head.linpro.no[80.232.36.1]
qmgr[13423]: C4B3D19: from=<janl@linpro.no>, size=6009, nrcpt=1 (queue active)
smtp[13544]: C4B3D19: to=<janl@langfeldt.net>, relay=10.0.0.4[10.0.0.4], delay=8,
status=sent (250 OK id=1AdT3l-0000Bp-00)

The interesting bits here are the lines that start with smtp . No other lines are interesting, including
the lines containing smtpd , so they must be avoided. The sed regular expression for removing
nonmatching lines is /smtp\[/!d , which means "delete all lines except those containing smtp ." This
yields:

$ sed -e '/smtp\[/!d' mail.log
smtp[13540]: 7B11119: to=<janl@linpro.no>, relay=smtp.chello.no[213.46.243.2],
delay=27, status=sent (250 Message \
 received: 20040105113347.CIQY15111.amsfep12-int.chello.nl@lorbanery.langfeldt.net)
...

Next, you have to pick out the part of the line with the email address. This can be done by removing
the other parts. Start by removing the front part with s/^.*to=<// , yielding:

$ sed -e '/smtp\[/!d' -e 's/^.*to=<//' mail.log
janl@linpro.no>, relay=smtp.chello.no[213.46.243.2], delay=27, status=sent
(250 Message received: \
 20040105113347.CIQY15111.amsfep12-int.chello.nl@lorbanery.langfeldt.net)
...

Now remove the end of the line with s/>,.*$. This yields:

$ sed -e '/smtp\[/!d' -e 's/^.*to=<//' -e 's/>,.*$//' mail.log
janl@linpro.no
...

Now you want to make sure all addresses are cased the same, and do some plumbing to get the
count of individual different addresses:

$ sed -e '/smtp\[/!d' -e 's/^.*to=<//' -e 's/>,.*$//' mail.log |>
 tr '[A-Z]' '[a-z]' | sort | uniq -c | sort -nr
 330 janl@langfeldt.net
 2 andyo@oreilly.com
 1 yngve@linpro.no
 1 steve@kspei.com
 1 nicolai@langfeldt.net
 1 machine-registration@counter.li.org
 1 janl@linpro.no
 1 ftp-drift@uio.no

The sed expression got a bit ugly. Another property of the email addresses is that they're bracketed

in <...>. If you replace the complete line by the bracketed contents, that would have the same effect
as the longer command shown before:

$ sed -e '/smtp\[/!d' -e 's/^.*<\([^>]*\)>.*$/\1/' mail.log |> /
 tr '[A-Z]' '[a-z]' | sort | uniq -c | sort -nr
 330 janl@langfeldt.net
 2 andyo@oreilly.com
 1 yngve@linpro.no
 1 steve@kspei.com
 1 nicolai@langfeldt.net
 1 machine-registration@counter.li.org
 1 janl@linpro.no
 1 ftp-drift@uio.no

Not that the command is a lot prettier. Here the \(...\) marks a subexpression. The string
matching the first subexpression is placed in \1 . So the \1 in the replacement text refers to the
email address on the line. Here it replaces the whole line. You may refer to up to nine
subexpressions with the \ n syntax.

31.1.2. Scripting with Perl

It has been said that Perl, rather than being a Swiss Army knife, is a Swiss Army chain saw. Perl is a
very powerful file-processing tool and a complete programming language with object-oriented
features besides. Perl has always been at the forefront of advanced support for regular expressions,
which makes it a tool for easy log processing.

Since Perl Version 5 arrived on the scene, the second big thing about Perl is the Comprehensive Perl
Archive Network (CPAN), where you will find a Perl module and related documentation for almost
any conceivable use ready to download and install.

31.1.2.1. Using CPAN

Recent Perl versions come with a module called CPAN that provides a complete interface to
retrieving and installing more modules from CPAN. The first time the CPAN module is run, it wants
all manner of configuration, but answering its questions is far from rocket science. Most questions
can usually be answered by accepting the defaults. But if you are behind an authenticated proxy,
you should configure your proxy settings before running the CPAN module, because all the -MCPAN
requests are done over the Internet. Use the following shell commands to export these two
environment variables:

$ export ftp_proxy=http:// user : password @ proxy_addr : port

$ export http_proxy=http:// user : password @ proxy_addr : port

Once configured, CPAN is ready to use. If you're looking for a module to support making DNS
requests in Perl, for instance, try:

perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.76)
ReadLine support enabledcpan> i /DNS/
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
 Database was generated on Fri, 26 Sep 2003 22:50:31 GMT
CPAN: LWP::UserAgent loaded ok
Fetching with LWP:
 ftp://ftp.uninett.no/pub/languages/perl/CPAN/authors/01mailrc.txt.gz
Going to read /root/.cpan/sources/authors/01mailrc.txt.gz
CPAN: Compress::Zlib loaded ok
Fetching with LWP:
ftp://ftp.uninett.no/pub/languages/perl/CPAN/modules/02packages.details.txt.gz
Going to read /root/.cpan/sources/modules/02packages.details.txt.gz
 Database was generated on Mon, 05 Jan 2004 22:51:56 GMT
Fetching with LWP:
 ftp://ftp.uninett.no/pub/languages/perl/CPAN/modules/03modlist.data.gz
Going to read /root/.cpan/sources/modules/03modlist.data.gz
Going to write /root/.cpan/Metadata
Distribution A/AN/ANARION/DNS-TinyDNS-0.20.1.tar.gz
...
Module Tie::DNS (D/DI/DIEDERICH/Tie-DNS-0.41.tar.gz)
131 items found

A bit overwhelming perhaps. As you may deduce from the use of slashes in the search expression,
you have Perl 's full regular expression syntax at your service. A better way to search is to use
http://search.cpan.org . It lets you search and browse by various parameters (author, category,
etc.), select interesting modules, and look at the documentation to see if they meet your needs.
Somewhere in there you will find a module called Net::DNS. Now you can install it as follows:

cpan> install Net::DNS
Running install for module Net::DNS
Running make for C/CR/CREIN/Net-DNS-0.44.tar.gz
Fetching with LWP:
 ftp://ftp.uninett.no/pub/languages/perl/CPAN
/authors/id/C/CR/CREIN/Net-DNS-0.44.tar.gz
...
Warning: prerequisite Digest::HMAC_MD5 1 not found.
Writing Makefile for Net::DNS
---- Unsatisfied dependencies detected during [C/CR/CREIN/Net-DNS-0.44.tar.gz] -----
 Digest::HMAC_MD5Shall I follow them and prepend them to the queue
...
Warning: prerequisite Digest::SHA1 1 not found.
Writing Makefile for Digest::HMAC
---- Unsatisfied dependencies detected during [G/GA/GAAS/Digest-HMAC-1.01.tar.gz] -----
 Digest::SHA1Shall I follow them and prepend them to the queue
...
Writing /usr/lib/perl5/site_perl/5.8.0/powerpc-linux/auto/Net/DNS/.packlist
Appending installation info to /usr/lib/perl5/5.8.0/powerpc-linux/perllocal.pod
 /usr/bin/make install -- OK

The shell does everything needed. It fetches the package, along with the packages it depends

http://search.cpan.org

onrecursivelyand it unpacks, processes, tests, and installs each package.

A straightforward and noninteractive way to install modules can be done with the Perl -e option:

perl -MCPAN -e 'install SSH::Bundle'

Thus, Perl packages have a way to detect dependencies, just as the Linux package managers do.
They are detected during installation, whereupon the CPAN shell stops and asks whether you want to
get the package (if so configured). After you say yes (as you generally should), CPAN goes and
fetches and installs the package.

Two things are known to go wrong in the CPAN shell. Sometimes it stumbles when following
dependencies and fails to install something properly. Then you must break the process and install
these packages manually. It may be as simple as just issuing another install command in the CPAN
shell. More rarely, CPAN will start fetching and installing a new Perl for you. You almost never want
that. Your Perl package is usually under the control of a Linux package system, which should be
managing your Perl executable, not the CPAN shell.

A corollary problem arises because all this CPAN downloading takes place outside your distribution's
package system. When you upgrade your Linux distribution later, it will know nothing about what
CPAN installed and will not reinstall the CPAN modules. You will have to reinstall them yourself, with
or without the aid of the CPAN shell.

Tip: For deb and RPM packages, there are ways to download CPAN modules within the package system, but this is probably a win for you only

if you manage more than a handful of computers that need the same packages. For RPM, you will find scripts such as cpanflute or cpan2rpm ,

and deb provides dh-make-perl . But this still does not solve the problem of upgrading Perl. You now have to make the upgraded Perl modules

yourself when upgrading a distribution.

31.1.2.2. Log watching with Perl

There are plenty of log-watching scripts out there; just do a web search for them. The purpose of
these is to watch system logs for interesting events and extract or even summarize them into a web
page or an email. But you can also do simple log extractions easily with awk or Perl. For security
purposes, it makes sense to look for things in /var/log/auth.log . This can be done quite simply with
a grep command, but it would quickly turn ugly as you add things to watch for. There are just a
huge number of things that might be interesting to know: all kinds of errors and warnings of course,
but also login failures. In other logs, one should look for symptoms of hardware failurefor example,
excessive messages about anything having to do with hda or sda if you have SCSI. A very simple log
watcher would go like this:

#!/usr/bin/perl -w

use strict;

open(LOG,"</var/log/auth.log") or die;

while (<LOG>) {
 /failure/ && do { print; next; };
 /error/ && do { print; next; };
 /warning/ && do { print; next; };
}

If you're more in a tool-maker mind frame, you can find CPAN modules that make it trivial to read
configuration files. All you have to do then is write an engine to watch the logs based on an external
configuration file.

31.1.2.3. Fetching and processing web logs

It is fairly common to keep external web servers out in a firewall DMZ, semi-unavailable. They are
also usually hardened and have next to no software installed. And they are probably not the place
you want to publish access statistics. Therefore, you need to transfer the log files into your internal
network and generate the statistics there.

For the sake of speed, web servers do not resolve the client IP address to its DNS name. This makes
the statistics a bit less useful. Statistics tool such as webalizer may do DNS resolving, but they are
typically as slow as molasses at it because they send one DNS query at a time. Even sending 10 DNS
queries at a time does not help much with logs of many tens or hundred thousands of lines. With the
Net::DNS module in Perl, you can do much better: it supports completely asynchronous name
resolultion without any forking or other complications.

Getting logs from a secure machine these days mostly requires scp or rsync over ssh . For example,
one of these commands copies the file:

$ scp -c blowfish www.linux.no:/var/log/apache/www.linux.no-access_log* .
$ rsync -avPe 'ssh -c blowfish' \
> www.linux.no:/var/log/apache/www.linux.no-access_log*.

The ssh suite is covered more in Chapter 40 . rsync is discussed later in this chapter.

After copying the log file, it's time to resolve it with Perl and Net::DNS. Here is a script to do that:

#!/usr/bin/perl -w

logdoc - log-doctor
modify http logs for log processing/statistical purposes
#
Written by Nicolai Langfeldt, Linpro AS. Distribute under same terms as
Perl itself. Based on a script in the Net::DNS distribution.

use strict;
use IO::Select;
use Net::DNS;
use Getopt::Std;

my $default_timeout = 15; # Seconds

Fallback to this if no nameservers are configured.
my $default_nameserver = "127.0.0.1";

#--
Get the timeout or use a reasonable default.

#--

my $progname = $0;
$progname =~ s!.*/!!;

my %opt;
getopts("t:", \%opt);

The thing with zcat handles gz log files.
my @files=map { $_="zcat $_ |" if /\.gz$/; $_; } @ARGV;

my $timeout = defined($opt{"t"}) ? $opt{"t"} : $default_timeout;
die "$progname: invalid timeout: $timeout\n" if $timeout < 0;

#--
Create a socket pointing at the default nameserver.
#--

my $res = Net::DNS::Resolver->new;
my $ns = $res->nameservers ? ($res->nameservers)[0] : $default_nameserver;
warn "Using $ns as nameserver\n";
my $sock = IO::Socket::INET->new(PeerAddr => $ns,
 PeerPort => "dns(53)",
 Proto => "udp");
die "couldn't create socket: $!" unless $sock;

my $sel = IO::Select->new;
$sel->add($sock);

#--
Read IP addresses and send queries.
#--

my %cache=();
my $pending = 0;
my $max=0;

my ($fwip, $rest, $ip, @a, @line, $url);

This loop resolves.

@ARGV=@files;

warn "Resolving names\n";

while(<>) {
 chomp;
 ($fwip,$rest)=split(' ',$_,2);

 @a=split('\.',$fwip);

 $ip = join(".",,reverse(@a),"in-addr.arpa");

 next if exists($cache{$ip}); # Already know it
 $cache{$ip}=['unresolved']; # Insert place holder

 my $packet = Net::DNS::Packet->new($ip, "PTR");
 $sock->send($packet->data) or die "send: $ip: $!";

 ++$pending;
 $max = $pending if $pending>$max;

 # Collect answers received until now.
 while ($sel->can_read(0)) { accept_answer(); }
}

warn "Waiting for outstanding answers, Pending: $pending, maxpending: $max\n";

while ($pending > 0 && $sel->can_read($timeout)) {
 accept_answer();
}

#--
Output resolved log files
#--

@ARGV=@files;

warn "Rewriting logs\n";

while (<>) {
 chomp;

 @line=split(' ',$_,11);
 $line[0] = getname($line[0]);
 $url = $line[6];

 # Skip some lines
 next if
 $#line < 9 or # Bogus REQUEST prolly
 $line[8] eq '"-"' or #
 $line[8] ne '200' or # Only 200s are interesting
 $url eq '408' or # Bogus REQUEST
 $url eq '/' or # Results in redirect, not interesting
 # Different unintersting files and directories
 index($url,'.gif')>=0 or
 index($url,'.swf')>=0 or
 index($url,'.css')>=0 or
 index($url,'.js')>=0 or
 index($url,'/share/')>=0 or
 index($url,'/usage/')>=0 or
 index($url,'/cgi-bin/')>=0;

 print join(' ',@line),"\n";
}

sub getname {
 # Resolve names from the cache, resolving CNAMEs as we go
 my($from)=shift;
 my $type;
 my $i=0;
 # print "Looking for $from\n";

 do {

 return $from
 if (!exists($cache{$from}) or
 $cache{$from}[0] eq 'unresolved' or
 $i++>10);

 ($type,$from)=@{$cache{$from}};

 } while $type != 'PTR';
 return $from;
}

Accept DNS query answers off the wire.

sub accept_answer {
 --$pending;
 my $buf = "";
 $sock->recv($buf, 512) or die "recv: $!";
 next unless $buf;

 my $ans = Net::DNS::Packet->new(\$buf);
 next unless $ans;

 foreach my $rr ($ans->answer) {
 if ($rr->type eq 'PTR') {
 $cache{$rr->name}=['PTR',$rr->ptrdname];
 } elsif ($rr->type eq 'CNAME') {
 my $cname = $rr->cname;
 $cache{$rr->name}=['CNAME',$cname];
 my $packet = Net::DNS::Packet->new($cname, "PTR");
 $sock->send($packet->data) or die "send: $cname: $!";
 ++$pending;
 } else {
 die "What do I do with a ",$rr->type,"record?\n";
 }
 }
}

After this processing, your logs are ready for webalizer or whatever log processor you favor. The
whole point here is that there are Perl modules for almost anything you can imagine: from math and
string manipulation to generating HTML, XML, and MIME mail with attachments to full-blown web
servers and web proxies. You will also find modules not only to interface with almost any database,
but also to perform SQL queries on flat text files and to write Excel spreadsheets so anyone in the
organization can easily generate usage reports. Or the monitor module mentioned earlier in this
chapter. You name it, look for it on CPAN first. Perl is an ideal tool to automate and accelerate any of
the numerous tasks a sysadmin has and shell scripting can't quite manage.

31.1.2.4. Using Perl to add new disks attached to an HBA controller

This example shows how Perl can provide solutions to many kind of daily tasks. The example detects
new external disks (SAN storage) attached to the system without requiring a reboot. Without
automated help like this, you could certainly pass a few hours handling the task.

#!/usr/bin/perl -w

use IO::File;

sub catch_zap {
 my $signame = shift;
 our $shucks++;
 die "Somebody sent me a SIG$signame!";
 }
 $shucks = 0;
 $SIG{INT} = 'catch_zap';
 $SIG{INT} = \&catch_zap;
 $SIG{QUIT} = \&catch_zap;

print "Disk Probe 1.0 for Emulex HBA's\n";
print "Probing...\n";

my @lun = 0..255;
my @id = 0.15;
my %seen;
my $scsi_path = '/proc/scsi/scsi';
my $host = 0;
my $target = 0;
my $part = 0;

system "echo '/usr/sbin/lpfc/dfc << !
set board $host
lip
exit
!' > /dev/null";

$input = IO::File->new("> $scsi_path")
 or die "Couldn't open $scsi_path for writing: $!\n";

for (my $i = 0; $i <= 15; $i++) {
foreach (@lun) {
 print $input "scsi add-single-device 1 0 $i $_\n";
 }
}

$input->close();

print "...done!\n";

First, we set the script to work with file handles using the IO::File module previously installed
through CPAN:

use IO::File;

It's recomended to add error handling code. Just to put all in order in case.

sub catch_zap {
 my $signame = shift;
 our $shucks++;
 die "Somebody sent me a SIG$signame!";
 }
 $shucks = 0;
 $SIG{INT} = 'catch_zap';
 $SIG{INT} = \&catch_zap;
 $SIG{QUIT} = \&catch_zap;

Next, declare some variables:

my @lun = 0..255;
my @id = 0.15;
my %seen;
my $scsi_path = '/proc/scsi/scsi';
my $host = 0;
my $target = 0;
my $part = 0;

You will be able to interact with external programs if needed:

system "echo '/usr/sbin/lpfc/dfc << !
set board $host
lip
exit
!' > /dev/null";

The next lines illustrate some file handling: creating a file, appending output to it, and closing it.
Looping constructs (for and foreach) save a lot of time.

$input = IO::File->new("> $scsi_path")
 or die "Couldn't open $scsi_path for writing: $!\n";

for (my $i = 0; $i <= 15; $i++) {
foreach (@lun) {
 print $input "scsi add-single-device 1 0 $i $_\n";
 }
}

$input->close();

Perl is very flexible and modular, providing easy methods to create automated system procedures.

31.1.2.5. Perl in adverse environments

Perl scripts (or any software at all) that execute within sudo , that are SUID root, or that execute in
environments such as web servers should be extra careful with what they do.

A little careless programming and suddenly the script is a cracker's best friend. An adversary can
change a script's behavior in two ways: by changing the execution environment and by changing the
input. To help avoid careless mistakes, Perl has a mode of operation that helps you be careful about
your execution environment and inputs. If a script starts with a -T option Perl, will do extra
bookkeeping to track which data is tainted by the user and which data is not. Thus, this silly little
script may look innocent:

#!/usr/bin/perl -wT
use strict;
system("date");

but when run it reveals:

$./taint.pl
Insecure $ENV{PATH} while running with -T switch at ./taint.pl line 5.

This is because the PATH variable, which is used by the system call, was inherited from the
environment of the user. The user may have inserted a malevolent date program earlier in the PATH
than the system command date , and suddenly the easy little SUID-root script is used to break root
on your machine. The fix for this is to set the PATH yourself: $ENV{PATH}='/usr/bin:/bin'; . More
generally, you need either to not use tainted data or to untaint it by scrubbing it. The scrubbing
procedure should remove any unsafe characters or constructions from the input so that it is in fact
safe to pass it on.

For example, if a CGI script takes a date as an argument and then simply passes that to system("cal
$date") and if the web user inputs a $date containing 2 2004; rm -rf / , you're out of luck and
quite big parts of your web server will be wiped out, if not the whole system. A date for cal should
probably be allowed to contain only the characters [0-9] or something like that. If it has other
characters, they should be removed at the very least or, perhaps better, be logged as an abuse
attempt. Security in Perl scripts is explained extensively in the manpage perlsec .

Advancing Your Perl Skills

After you learn Perl from any of the great number of tutorial texts suited for anyone from
programming beginners to senior programmers, a good book to have on the shelf is The Perl
Cookbook (O'Reilly). It has hundreds of examples and solutions for Perl programmers to use and
learn from.

31.1.3. Synchronizing Files Across Machines

There are many tools to copy files among machines. Among the more pedestrian ones are rcp and
scp . Toward the high end is rdist , which is very nice for synchronizing client machines from a

master machine. But rsync is the steamroller among these.

rsync is, along with the SSH suite, one of the new utilities that have gained almost universal
acceptance in the Unix world. It is used to synchronize files and/or directories over a network
connection. It also works locally. The downside of rsync is a quite high startup penalty when you
want to synchronize a large amount of files or data. On the other hand, it has a checksum algorithm
that helps it uncover how files have changed since the last run and transfer only the difference.
Especially over slow lines, this is a boon, but whenever you transfer nontrivial amounts of data,
rsync should be faster than a complete copy with any of the other candidates.

rsync has its own client/server protocol. To employ that, you need to set up a server, and we're not
going to do that in this book. The alternative is to let rsync tunnel over rsh . This is quite efficient,
but it's as insecure as the rsh protocol itself. For the more security-conscious, using ssh is a good
alternative. But the SSH protocol encrypts all its traffic, and encryption can be quite slow. If you use
the blowfish encryption algorithm instead of the default one, things will be a bit faster. The example
in the Perl scripting section is a good example of this:

$ rsync -avPe 'ssh -c blowfish' \
> www.linux.no:/var/log/apache/www.linux.no-access_log*.

This form of the command is like rcp except that it supports user@ in front of hostnames as scp
does. The most common options to rsync are:

-a, --archive

Equivalent to -rlptgoD . It mimics the -a option of the Linux cp command, attempting to
preserve all important attributes of the files and directories copied. The -r means that the
command is also recursive, able to copy entire directories with all their subdirectories. The -l
copies symlinks as symlinks, -p preserves permissions, -t preserves timestamps, -go preserves
file group and owner, and -D copies device files as device files. The -goD options are valid only
if you are root on the target system.

-H, --hard-links

If you ever mirror Linux distributions, you probably want this to preserve hard links. There are
often quite a lot of them.

-P

Shorthand for --partial and --progress . This keeps partially transferred files so the copy can
be restarted later without transferring the whole file again. Progress enables progress
reporting. It's more meaningful if it is combined with -v .

-v, --verbose

Increase the amount of information printed while working. Using just one instance of this
option is useful to give you a count while rsync prepares its worklist, and then the names of
transferred files as it progresses.

-S, --sparse

If you use rsync to make backups of operating system disks, you will find that this option helps
your disk usage. Executables and libraries often contain less data than they declare as their
size, and this option keeps them that way.

-x, --one-file-system

This is handy for backups, if you want to restrict them to one partition at a time.

-e COMMAND , --rsh=COMMAND

Replace rsh with something else, such as ssh .

--rsync-path= PATH

If the rsync on the opposite side is not in the default PATH of the account you are using on that
side, you will need to specify the full path with this option.

--delete

By default, rsync does not delete target-side files that have disappeared from the originating
site. --delete makes sure that files that have disappeared from the originating side are also
deleted on the target side.

-z, --compress

Compress file data. Good if you have more CPU capacity than bandwidth.

31.1.4. Scheduled execution

Linux offers two systems to schedule program execution: cron and at . Both are present on most
systems and considered standard, but they have quite different uses.

31.1.4.1. cron

The way to execute something periodically is through cron. cron is run by a system daemon named
crond , and its operation is driven by crontab files. Each user can have a crontab file (unless the
system administrator disables user access to cron), and the system provides a number of its own
files to do routine, behind-the-scenes maintenance such as cleaning up old logfiles so disks don't
become filled.

There are two formats for crontab files in a standard Linux system. One is found in normal users'
files, as well as in /etc/crontab and related system crontab files. It goes like this:

minute hour day-of-month month day-of-week command

The five first fields are numbers, although the Linux version of cron allows three-letter names in the

fourth (month) and fifth (day-of-week) fields. The command field is a shell command.

The other format is found in the files in /etc/cron.d . The format has an additional field before the
command fieldthe username of the user the command should run as. The files in the /etc/cron.d
directory can have any user's cron commands. But only root should be allowed to put files into that
directory.

Additionally you will find on most Linux systems a battery of directories in /etc called cron.hourly,
cron.daily, cron.weekly , and cron.monthly . The contents of these are normally run out of
/etc/crontab , but the exact details, including when they are run, differ from distribution to
distribution and among versions. If you look in these directories, you may also find references to
anacron . This is asynchronous companion to cron and is very useful for laptops and other systems
that are not on 24/7. It is also outside our scope.

Normal users have their crontabs stored in /var/spool/cron/crontabs . Users invoke the crontab
command to view and edit the files there and to include the commands they want to run regularly.
The crontab files should not be manipulated any other way. In this directory, root is a normal user,
but on Linux systems root almost never has files in /var/spool/cron/crontabs . There are too many
other places that are easier for root to use.

As system administrator, it's most often best to use /etc/crontab and drop files into the different
directories under /etc . As a user, you can use the crontab command only to replace, list, remove,
and edit your crontab. Be sure to use the -l option to list crontabs; otherwise, you may just replace
your crontab with an empty one.

Any jobs that monitor Apache or the use of the root account should, of course, be run quite oftenif
not every minute, then every five minutes. If you put something like the following in
/etc/cron.d/watchapache , you'll run the desired script every five minutes:

*/5 * * * * root /usr/local/sbin/monitor-apache

This can quickly turn into a nuisance, of course. Getting a page, SMS, or email every five minutes
can be a bit rough, not to mention expensive. The program should perhaps send an alert only every
hour after initially reporting a problem. It can also be restricted to working hours, if the hour field
(the second field) is changed to 8-17 . Then it will run for only those nine hours of the day.

cron requires hours to be specified in European or "military" time, 023; AM and PM are not allowed.
The n/m syntax gives an increment value of m , not a division by m . Thus, 4/5 means starting at the
fourth minute, then every five minutes (or hour or day and so on). */5 means starting at the 0th
minute. You can also enumerate like this: 0,5,10,15,20,... but that's both boring and error-prone.

It is what is required on many other Unix cron systems, though.

If a cron job produces output, the cron daemon catches this and emails the cron - job owner. This
also happens if the job sets its exit status to a nonzero value. This is nice for debugging but not for
regular use. The subject line of cron mail is generic, so it is hard to determine what is wrong. If, for
example, an Apache checking script just prints something instead of mailing it with a good subject
line, it will look like all the other cron mails you receive.

One thing regularly goes wrong with cron jobs. The PATH and other environment variables read by
crond may be different from those you use with your interactive shell. So executing a well-tested
script in cron may well fail. To fix this, you need to set PATH and any other environment variables
explicitly in the script. Running printenv inside the script may help you figure this out. Some people
use absolute pathnames for commands in crontab files so that it doesn't matter what their PATH is,
but this is cumbersome.

One other thing that theoretically goes wrong in a well-tested script but is much rarer and more
obscure: signal and session handling in cron are a bit different than in a shell. So if a job uses
signals, it may fail in odd ways. There is no easy advice to handle that.

Tip: Linux crontab files can optionally contain variables such as MAILTO . While that is not an objective in this Topic, it's good to know at work.

31.1.4.2. Using at

at is very useful for one-off execution of jobs, mostly the kinds of jobs you want done later but can't
be bothered to remember or because you're not going to be there at the time.

To use at , you need first to make sure the atd daemon is running. This is the process that runs all
the jobs queued by the at command.

/etc/init.d/atd start
pgrep -fl atd
5486 /usr/sbin/atd

If you've gotten a huge 300-page PDF file that you want to print, but not during hours, so as not to
hold up the printer for 2030 minutes when your coworkers want to use it, you can employ at . First,
convert the file to PostScript or some other format your print-spooling system likes, then do
something like this:

$ at 23:00
warning: commands will be executed using /bin/shat
> lpr DNS-HOWTO.psat
> <EOT>
job 2 at 2004-01-05 23:00

Two things of note: as the output says, it will execute the script with /bin/sh . In Linux, that's
usually the same as bash . Second, use Ctrl-D (the end-of-file character in your shell) to end the
input. This is shown as <EOT> in the shell. A period (.) will not work, as it does for some other
utilities. With the returned job number, you can list the job: at -c 2 (be prepared to be amazed at
the output) and remove it with atrm 2 . To find your job numbers later, use atq . To experiment with
at , use at now , which runs your commands at once. at also understands English times with <AM>
and PM e.g., 11PM .

Syntax

at [-V] [-q queue] [-f file] [-mldbv] TIME at -c job [job...]

Description

ueue, delete, and list at jobs for later execution.

Options

-m

Send mail to the user when the job has completed.

-c

List detailed information about the queued job.

-l

List jobs.

-d

Delete jobs.

Chapter 32. Troubleshooting (Topic 2.214)
This Topic is the largest section forExam 201. This Topic's breadth is expansive and requires that
you're fluent in almost every Topic area from both Levels 1 and 2. For this Topic, you are expected
to troubleshoot your systems from boot stages and system recovery to system resources and the
system's shell configuration. This chapter will not cover any network-related troubleshooting , as
that is covered in Topic 2.205, Network Troubleshooting.

This Topic contains six Objectives:

Objective 1: Creating Recovery Disks

Candidates should be able to create boot disks for system entrance and recovery disks for
system repair. Weight: 1.

Objective 2: Identifying Boot Stages

Candidates should be able to determine, from bootup text, the four stages of the boot
sequence and distinguish between each. Weight: 1.

Objective 3: Troubleshooting Bootloaders

Candidates should be able to determine specific stage failures and corrective techniques.
Weight: 1.

Objective 4: General Troubleshooting

Candidates should be able to recognize and identify boot loader- and kernel-specific stages
and utilize kernel boot messages to diagnose kernel errors. This Objective includes being able
to identify and correct common hardware issues and be able to determine if a problem is in
hardware or software. Weight: 1.

Objective 5: Troubleshooting System Resources

Candidates should be able to identify, diagnose, and repair local system issues when using
software from the command line. Weight: 1.

Objective 6: Troubleshooting Environment Configurations

Candidates should be able to identify, diagnose, and repair local system issues when using
software from the command line. Weight: 1.

32.1. Objective 1: Creating Recovery Disks

If the boot floppy is not included with your installation media, you can create it by using dd. To do
so, first mount the CD-ROM. Next, type the command:

dd if=/mnt/cdrom/images/boot.img of=/dev/fd0

replacing /mnt/cdrom with the mount directory of your CD-ROM. You may also need to replace
/dev/fd0 with the appropriate mount point of your floppy.

If you have only a Windows machine available, the dd command won't do you any good. In that
case, use the rawrite.exe command to do the same job.

Some distributions provide utilities to create boot disks after the fact. On Red Hat-based systems,
there is mkbootdisk. You must supply the kernel version for which you want to crate a boot disk. For
example, if you have kernel versions 2.6.9-1.667, 2.6.9-1.667smp, and 2.4.1 installed on your
system, you can create a boot disk for the second kernel with the following command:

mkbootdisk 2.6.9-1.667smp

This command prompts you to insert a floppy disk (use --noprompt if you do not wish to be asked)
into device /dev/fd0 (change it with the --device option). The command will then write a boot sector,
kernel images, and initial ramdisk to the device.

Debian has a similar command, mkboot, but unlike mkbootdisk, you supply the filename of the
kernel that you want to boot, such as:

mkboot vmlinux

A boot disk itself is not sufficient to boot the system. After loading the boot loader and then the
kernel, the boot disk will look for the root partition on the hard drive (pulled from /etc/fstab when
you created the boot disk). This means if there is something wrong with your hard drive or root
partitions, you will still not be able to boot your system. In those cases, you will need a rescue disk
such as the first CD of a Red Hat installation or a self-contained Linux system such as Knoppix.

If you need to make a custom boot disk, refer to the Bootdisk HOWTO located at
http://www.tldp.org/HOWTO/Bootdisk-HOWTO.

http://www.tldp.org/HOWTO/Bootdisk-HOWTO

32.2. Objective 2: Identifying Boot Stages

Chapter 14 covered the boot process of a Linux system. This section discusses how to identify which
step of the boot process has caused a problem.

Typically, a failure at any given stage of the boot process looks like the following:

Failure to read and load the boot sector

A failure at this stage occurs after the BIOS screen disappears and before any part of the
operating system is run. A failure here means that the boot sector was not found or did not
load. Typically, you will see a blank screen with just a flashing prompt or a message similar to
"No operating system found.". Possible problems include:

The boot sector is trashed and must be reinstalled.

The partition listed as the active partition has no boot sector.

The wrong partition has been marked as "active."

Failure to load the boot loader

What you see will depend on which boot loader you have.

If you're using LILO, the LILO prompt itself will lead you to the problem (see the next section).
If you're using GRUB, an error may appear, followed by the initial GRUB screen.

Failure to load the kernel

This can have several causes, including a bad hard drive sector, inability to find a particular
kernel module, or inability to find the root device. Typically, any of these errors will result in a
"kernel panic." At this point, you need to review the on-screen data to determine where the
problem lies.

Failure to run the init daemon and enter a specific run level

If you get past the kernel load, the next step is running the init daemon (which almost always
succeeds). Problems here are usually configuration errors in /etc/inittab such as setting the
default run level to 0 (which halts the system) or 6 (which reboots the system).

Failure to start the processes in said run level

Failures at this level are usually in the applications themselves. For example, the Apache httpd
daemon may fail to start because of a misconfigured httpd.conf file.

If a network process, such as Sendmail, takes several minutes to start up, it is almost

invariably caused by a problem with name resolution.

Failure to present a login prompt

Depending on how your system is configured, this problem basically means the login program
(such as gd,getty,kdm, or xdm) can't run for some reason.

32.3. Objective 3: Troubleshooting Boot Loaders

In this section we cover the problems you might come across in the boot stages. Both LILO and
GRUB are covered, because you'll need both for the test.

One of the most common installation problems outside of hardware support relates to LILO, the
LInux LOader. Occasionally, a disk sector is bad and LILO doesn't install to it properly. Other times,
it doesn't work because it was misconfigured.

One of the best ways to troubleshoot your LILO problems is to watch the output of LILO itself. Watch
for your LILO prompt. If you don't see any part of the LILO prompt, LILO didn't load. Otherwise, the
characters in the prompt tell you how far LILO got:

L

The first-stage boot loader is loaded and started.

LI

The second-stage boot loader is loaded.

LIL

The second-stage boot loader is started.

LIL?

The second-stage boot loader was loaded at an incorrect address.

LIL-

The descriptor table is corrupt.

LILO

All of LILO has been loaded correctly.

A very common problem LILO users run into is forgetting to rerun /sbin/lilo whenever a change is
made to /etc/lilo.conf. This problem, along with the cryptic error messages of LILO, was a major
factor in the design of GRUB.

GRUB, the GRand Unified Bootloader, is a user-friendly replacement for LILO. GRUB boots in three
stages: Stage 1, Stage 1.5, and Stage 2.

Stage 1 errors are typically errors in reading Stage 1.5 or Stage 2 from the disk. Pressing Ctrl-Alt-

Del will reboot the system.

A Stage 2 error prints an error message and continues or waits for the user to fix the problem. There
are 34 error messages, listed in detail in Chapter 14 of the GRUB manual, which can be found at
http://www.gnu.org/software/grub/manual/html_node/Stage2-errors.html#Stage2-errors.

A Stage 1.5 error prints an error number corresponding to one of the 34 error messages from Stage
2.

http://www.gnu.org/software/grub/manual/html_node/Stage2-errors.html#Stage2-errors

32.4. Objective 4: General Troubleshooting

Troubleshooting is one of the most difficult but satisfying administration tasks. Few things feel better
for a professional administrator than being posed with a problem and finding a solution for it.
Successful troubleshooting requires an in-depth knowledge of the system being shot at and a few
rules of conduct. In this section we'll go over a few tips on how to troubleshoot and suggest places
for you to look for information.

The first rule of troubleshooting is: don't jump to conclusions! Just because someone says "foo
stopped working," don't start adjusting the parameters for whatever "foo" is without gathering more
information. Initial problem descriptions (especially from nontechnical users) are notoriously
misleading.

This leads to rule number two: get a complete and accurate description of the problem. Foo may
have very well stopped working, but it could be a side effect of bar being misconfigured.

Rule number three: reproduce the problem. It's very difficult to shoot at a problem you can't see.
The hardest problems are intermittent, but luckily, most aren't. Most intermittent problems show a
pattern over time.

So, you've followed the Three Rules of Troubleshooting. Where do you look to gather more
information?

If you suspect hardware problems, dmesg and its associated log file /var/log/dmesg are a good
place to start. dmesg shows you the kernel ring buffer, the buffer that the kernel writes messages
to. (It's called a "ring" buffer because old messages disappear over time to make room for new
ones.) We'll use these messages to troubleshoot a specific problem in the following example.

A partial listing of dmesg on my machine looks like this:

Linux version 2.6.9-1.667 (bhcompile@tweety.build.redhat.com) (gcc version
3.4.2 20041017 (Re
d Hat 3.4.2-6.fc3)) #1 Tue Nov 2 14:41:25 EST 2004
BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 00000000000a0000 (usable)
 BIOS-e820: 00000000000f0000 - 0000000000100000 (reserved)
 BIOS-e820: 0000000000100000 - 000000005fe88c00 (usable)
 BIOS-e820: 000000005fe88c00 - 000000005fe8ac00 (ACPI NVS)
 BIOS-e820: 000000005fe8ac00 - 000000005fe8cc00 (ACPI data)
 BIOS-e820: 000000005fe8cc00 - 0000000060000000 (reserved)
 BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved)
 BIOS-e820: 00000000fec00000 - 00000000fed00400 (reserved)
 BIOS-e820: 00000000fed20000 - 00000000feda0000 (reserved)
 BIOS-e820: 00000000fee00000 - 00000000fef00000 (reserved)
 BIOS-e820: 00000000ffb00000 - 0000000100000000 (reserved)
0MB HIGHMEM available.
1534MB LOWMEM available.
zapping low mappings.
On node 0 totalpages: 39284

Not much there that's useful to an everyday system administrator. But if we keep scrolling down,
we'll see:

Probing IDE interface ide0...
hda: GCR-8483B, ATAPI CD/DVD-ROM drive
hdb: PHILIPS DVD+/-RW DVD8631, ATAPI CD/DVD-ROM drive
Using cfq io scheduler
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
Probing IDE interface ide1...
ide1: Wait for ready failed before probe !
Probing IDE interface ide2...

Hmmm, I might have problems with my IDE bus. Looking even further . . .

hda: command error: status=0x51 { DriveReady SeekComplete Error }
hda: command error: error=0x54
ide: failed opcode was 100
end_request: I/O error, dev hda, sector 1309952
hda: command error: status=0x51 { DriveReady SeekComplete Error }
hda: command error: error=0x54
ide: failed opcode was 100

I seem to have problems with my /dev/hda device. Maybe that explains why I haven't been able to
read CDs in my CD-ROM drive!

If too many kernel messages are sent, the kernel ring buffer will overflow and you won't see the
initial boot message. In that case, take a look at /var/log/dmesg, which gets written over at each
boot.

If you attach a new USB device to your system and you're not sure which device it was assigned,
dmesg shows you the device:

dmesg | tail
scsi4 : SCSI emulation for USB Mass Storage devices
 Vendor: SanDisk Model: Cruzer Mini Rev: 0.1
 Type: Direct-Access ANSI SCSI revision: 02
SCSI device sdd: 501759 512-byte hdwr sectors (257 MB)
sdd: Write Protect is off
sdd: Mode Sense: 03 00 00 00
sdd: assuming drive cache: write through
 sdd: sdd1
Attached scsi removable disk sdd at scsi4, channel 0, id 0, lun 0
USB Mass Storage device found at 5

The USB stick I just plugged into my computer is assigned to /dev/sdd and has one partition.

Other hardware information can be found in the /proc subdirectory. Unlike other directories, /proc is
not really part of the filesystem; it is an interface to the running kernel. Most of what is in /proc is
read-only, but some entries can be written to. This lets you change some parameters of the running
kernel.

If you don't want to go searching through /proc for hardware information, the command lsdev will
gather up information from /proc/dma,/proc/interrupts, and /proc/ioports and present the data in a
combined format. Similarly, lspci will list the data for the PCI buses on your system and the devices
connected to them.

If the hardware seems correct (or you can't find anything wrong with the hardware), the issue may
be related to the kernel modules. You can list the currently loaded modules with lsmod, insert a new
module with insmod, or remove a running module with rmmod. If somebody says a feature is not
working, and you know that feature requires support in the kernel, one fruitful source of information
is to find out what modules that feature depends on, and to issue lsmod to see whether those
modules have been loaded. (Of course, the same feature could be compiled in, in which case lsmod
would not show the modules even though the functionality is there.)

Here is a partial listing of the output of lsmod:

Module Size Used by
vfat 17217 0
fat 55005 1 vfat
parport_pc 30981 1
lp 16713 0
parport 38793 2 parport_pc,lp

There is some danger with using the insmod and rmmod commands. Many modules rely on other
modules, so inserting or removing modules that rely on modules that aren't present can cause
instabilities or even outright crashes. In the previous sample output, we see the fat module (a
popular module supporting Windows filesystems) is used by the vfat module and that the parport
module is used by two other modules: parport_pc and lp. If we were to remove the fat module
without first removing the vfat module, unpredictable things most likely will happen. Depending on
the module you insert or remove, the results may be nothing more serious than losing your audio
capabilitiesbut in other cases, it could crash the system.

This is why the modprobe command was written; modprobe is designed to replace lsmod, insmod
and rmmod and to act more intelligently. The following table shows the equivalent modprobe
commands.

Table 32-1. Equivalent modprobe commands

command Is equivalent to

lsmod modprobe -l

insmod modprobe -a

rmmod modprobe -r

As an example of how modprobe is more intelligent than the three *mod commands, rmmod

removes a module without regard to the presence of other modules, whereas modprobe will remove
the entire stack of modules. In the example previously mentioned, the command modprobe -r fat
would have removed the vfat module before the fat module, reducing the possibility of crashes
(assuming that removing the fat module is a good thing in the first place!). Conversely, the
command modprobe -a vfat inserts the fat module first, then inserts the vfat module.

The modprobe command relies on an updated modules.dep file located in the modules directory.
modules.dep is updated by the depmod command. The modules directory can be found at
/lib/modules/'uname -r'.

If a problem lies with system applications such as the web server or email server, the first place to
look is in the /var/log directory. Most applications that use the syslog logging facility send their
logging information to /var/log unless configured differently in /etc/syslog.conf. A good idea when
you start troubleshooting is to look at /var/log/messages. From there, the software in question may
have specific log files (such as /var/log/maillog for Postfix) or a subdirectory (such as /var/log/httpd
for Apache) to search for further log information.

Sometimes executing the program itself is necessary to debug the problem. This is often the case
when the program segfaults or crashes with no error messages or log information. The programs
strace and ltrace will execute a given command name and display the system or library calls,
respectively, that the command makes. These commands show us precisely what the command is
doing and where it fails. While there are many useful options for strace and ltrace, two of the most
useful are -f to follow forking children and -o trace.out to write the voluminous output to the file
trace.out.

32.5. Objective 5: Troubleshooting System Resources

Sometimes the problems we need to troubleshoot aren't with hardware or with specific applications;
the problems are with the system itself. A console message of a garbled terminal console or a wrong
user home directory means there is something wrong with the system and not with an application
per se.

32.5.1. Environment Variables and Shells

Many applications use variables to modify their behavior. Some variables have local scope (meaning
they are visible only in the current instance of the shell), while others have global scope (meaning
they are visible in the current shell and in child shells). These latter variables are called environment
variables. A local variable can be made an environment variable via the export command.

To view your current variables and their settings, issue the set or env command.

Some common variables are shown in table Table 32-2.

Table 32-2. Common Variables Environment

Variable Purpose

EDITOR Determines which editor is invoked by programs requiring user interaction

LANG Determines which language to use (e.g., en_US.UTF-8, en_US, etc.)

PAGER Determines which program to use to page through files (e.g., more, less, etc.)

PATH Colon-separated list of directories to search for executable file names

PS1 Character(s) to use for the command prompt

SHELL Current shell

TERM Determines which terminal type is in use (e.g., vt100, linux, etc.)

UID Current user ID

USER Current username

While bash is the most popular login shell on most Linux systems, there are quite a few other shells
in use. The file /etc/shells lists the installed shells:

/bin/sh
/bin/bash
/sbin/nologin/bin/ash
/bin/bsh/bin/ksh
/usr/bin/ksh/usr/bin/pdksh/bin/tcsh

/bin/csh
/bin/zsh

Technically, /sbin/nologin is not a shell; it is used to stop users from being able to log in (/bin/false
is used on some systems for the same purpose). Why would you not want a user to log in? Not all
users are people; many applications set up a user account that does not need to log in but is
required to run the application; one example is the user apache that runs the httpd daemon.

32.5.2. Shell Environment

Even if your users log in graphically and never see a command line, they are still running inside of a
shell . The shell is configured via environment variables set in configuration files. There are two
types of configuration files: global and local. Generally, when the shell starts, it will read a global
configuration file and then read a local configuration file. Normally the settings in the local
configuration file override the settings from the global configuration file.

The global configuration that most shells read is /etc/profile. Variables set here apply to every user
on the system, although each user can override them; PATH and HOSTNAME are often set in
/etc/profile. Since many kinds of shells will be reading /etc/profile, the syntax of the commands has
to be Bourne shell-specific, e.g. you should never put a zsh-style command in /etc/profile because it
will cause an error when the bash shell attempts to read /etc/profile.

After the global configuration file is read, the local (usually shell-specific) configuration files are
read. The local files are located in the user's home directory. We will discuss the bash-related
configuration files since it is the most popular shell on Linux systems.

bash can be invoked in several different ways: as a login shell, an interactive nonlogin shell, a
noninteractive shell, or a Bourne shell. How it is invoked determines which files get read. If bash is
invoked as a login shell (e.g., the login command launches it), bash reads the following files in
order: ~/.bash_profile, ~/.bash_login, and ~/.profile. If bash is launched as an interactive, non-
login shell (e.g., from the command line or from a application such as KDE konsole or Gnome
Terminal), bash reads just the ~/.bashrc file. If bash is run non-interactively (e.g., to run a script),
bash reads the environment variable $BASH_ENV to determine which file to read. Finally, if bash is run
as sh, it reads the filename listed in the $ENV variable, if it is defined. Of course, this being Linux,
there are multiple command-line options to bash that change each of these behaviors. Fortunately,
they are not on the test.

So when the user complains that the terminal is acting "funny," you need to keep in mind which
shell she is using, how the shell was invoked, and which configuration files, if any, are being read.

32.5.3. Editors

Many editors are available in the Linux/Unix world. However, this world falls into two general camps
when it comes to editors: you are either a vi user or an Emacs user.

vi is a difficult editor to get used to, especially if you're used to dealing with modern-day word
processors. It has been around longer than Emacs, and it shows. Since it was invented in the days
before arrow keys, 64 MB of RAM, and other pleasantries, vi requires very little in the way of system
resources, doesn't require arrow keys to navigate, and lets you edit very efficiently. There are clones
of vi, such as popular VI Improved (http://www.vim.org), that add many nice features such as block

http://www.vim.org

copy/edit and integrated help, but you still need to know how to edit using basic vi.

Emacs , on the other hand, is a large, resource-hungry editor that can do the most amazing things.
Through its built-in ELISP programming language, Emacs can be coerced into doing things such as
fetching and reading newsgroups and running games. While you can do just about anything you
want within vi, you generally invoke more complex functions by running external programs within
the editor.

Whichever one you choose is based on what you like, but as a system administrator, you must be
comfortable with vi. vi is ubiquitous; it is installed on every Unix/Linux machine and even system
rescue disks. Since vi has been around for so long, it can run on machines with few resources, it can
run from a floppy, and during system recovery sessions, it will be the only editor available to you.

32.5.4. Kernel Parameters

One of the more interesting features of Linux is that you can modify the running kernel not only by
adding and removing modules, but also by changing the parameters of the kernel itself. Of course,
you can't change everything about the kernel, but you can change a number of parameters.
Examples range as far as whether the system uses IP Forwarding, the minimum and maximum
speed of your RAID drives, and whether to ignore ARP requests.

Assume our Linux box is set up as a router with two network interface cards and that it has stopped
routing packets for reasons unknown to us. One of the requirements for a Linux router is the ability
to forward packets from one NIC to another. This ability is turned off by default. How would we
troubleshoot this?

There are two ways of doing this research: via the /proc filesystem or the sysctl command. The
sysctl command is a front-end for /proc. You must have procfs compiled in your kernel for this to
work.

Most of the entries in /proc are read-only, but a few are read/write. Even though the entries look
like files, the only way to read them is by cat-ing the "file":

cat /proc/sys/net/ipv4/ip_forward
0

This shows us that IP Forwarding is turned off. We can turn it on by writing to the "file":

echo "1" > /proc/sys/net/ipv4/ip_forward
cat /proc/sys/net/ipv4/ip_forward
1

The value is good only until the next reboot, so to keep this setting, you would place the echo
command in rc.local and it will get run at every reboot.

How did we know to change the entry /proc/sys/net/ipv4/ip_forward? How you know which /proc
entries are writable? One way is to traverse the entire /proc directory looking for files with write
permissions.

An easier way to do all this is via the sysctl command. Typing sysctl -a or sysctl -A lists all of the
changeable entries:

sysctl -a | more
sunrpc.tcp_slot_table_entries = 16
sunrpc.udp_slot_table_entries = 16
sunrpc.nlm_debug = 0
sunrpc.nfsd_debug = 0
sunrpc.nfs_debug = 0
sunrpc.rpc_debug = 0
dev.parport.parport0.devices.lp.timeslice = 200
dev.parport.parport0.devices.active = none
dev.parport.parport0.modes = PCSPP,TRISTATE
dev.parport.parport0.dma = -1
--More--

If you go far enough down the list, you'll see the ip_forward entry we modified earlier:

net.ipv4.ip_forward = 1

Using sysctl to change or view the value, you would issue:

sysctl net.ipv4.ip_forward=0
sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0

Just as in the previous method, the value set with sysctl is good only until the next boot. If you want
to make the change permanent, place the key = value line in the file /etc/sysctl.conf.

32.6. Objective 6: Troubleshooting Environment
Configurations

In this section, we'll cover items not covered in previous sections.

32.6.1. Authorization Problems

Authorization problems are usually related to the /etc/passwd, /etc/shadow, and/or /etc/group files.
Modern Linux systems offer other security systems that may be involvednotably Pluggable
Authentication Modules (PAM) and SELInux, a series of patches made by the National Security
Agencybut those are special cases and haven't shown up on the tests (yet!).

Generally speaking, problems related to these files are caused by hand-editing the files instead of
using the system tools to modify them.

32.6.2. crontab Problems

The programs cron and at deal with scheduling jobs: cron continally reruns jobs according to
schedules in the config files; at will execute a job just once at some future time.

Every user has a crontab file. They are located in /var/spool/cron on Red Hat- and Debian-based
systems, On some systems, root's crontab file is considered personal to root and runs whatever root
wants to schedule, while on other systems, root's crontab file is considered the system crontab file
and is used to schedule system jobs.

There is also a global /etc/crontab on Red Hat systems that is used to schedule system jobs. This
crontab file simply runs scripts (not other crontab files!) located in the directories /etc/cron.daily,
/etc/cron.hourly, /etc/cron.weekly, and /etc/cron.monthly. The directory /etc/cron.d contains
crontab files (not scripts!) that are run by cron. There is a difference between the user crontab files
and the files in /etc/cron.d: the /etc/cron.d files require a user argument; otherwise, they will not
work.

Most problems with cron are not cron problems but rather permission or configuration problems .
Permission problems occur when the user doesn't have permission to run a program or a script, so
check the permissions, especially if the user wrote the script.

The configuration problem can occur because the environment that cron runs under is not the same
as the user's environment. The cron environment is rather sparse, containing SHELL (set to
/bin/shsee the discussion earlier in this chapter about how that affects the login files checked),
LOGNAME (which may not be changed), HOME, and MAILTO. Other variables will have to be set in
the crontab file or the scripts being executed.

Finally, if the file /etc/cron.allow exists and the user is not listed in the file, the user will not be
allowed to use cron. Similary, if the file /etc/cron.deny exists and the user is listed there, the user
will not be allowed to use cron.

32.6.3. Init Problems

init has been called "the mother of all processes" since every process on a Linux box can be traced
back to init. Few things go wrong with init. Anything that does is usually a misconfiguration in the
/etc/inittab file or related to the program that init is attemtping to run.

The configuration of /etc/inittab is pretty straightforward. The lines are of the form:

id:run-levels:action:process

where the fields are:

id

A unique one-to-four character string

run-levels

The runlevels that the process will run in

action

The action init should take with the process (see the manpage for all of the options)

process

The actual process to run

One common problem manifests itself by the following message appearing repeatedly on the
console:

init: 'ID "SV" respawning too fast : disabled for 5 minutes'

This means there is a problem with the process associated with ID SV. The process might be
segfaulting or even not exist on the machine. If you debug the process, you'll fix the "init problem."

32.6.4. Logging Problems

Most system applications send log messages to a file via the syslog facilty, which is controlled by
/etc/syslog.conf. The format of the configuration file is straightforward:

message_types log_destinations

Types of messages are listed by facility.priority (check the manpage or the section "Objective 1:

System Logging" in Chapter 30 for a complete listing), and the log destination can be a file, a
named pipe, a remote machine, the terminal, specific users, or everyone logged on.

Logging errors are generally a problem with the configuration in /etc/syslog.conf or, more likely,
with the program sending the messages to be logged.

When debugging syslog problems, remember that syslog may not write the log entry immediately.
There may be a lag of several seconds between the time syslog writes the log, the system flushes
the file to disk, and you see the changes.

Chapter 33. LPI Exam 201 Review
Questions and Exercises
This chapter is designed to help you learn more about the concepts, best practices, and commands
tested by the LPI 201 Exam. It is organized according to the LPI Objective Topics (e.g., Networking
Configuration, DNS, Network Client Management). Even advanced Linux users will find these
activities useful, because they are all based on the LPI's Objectives. The things you read about in
this chapter might help remind you how to do tasks that you may not have had to do in a while.

It is best if you use a live, nonproduction Linux system to conduct these exercises. This way, you can
apply your knowledge, but still not worry too much if your experiments cause the system to become
unstable or to no longer be as secure as before.

33.1. Linux Kernel (Topic 2.201)

33.1.1. Review Questions

You find that the make modules command fails repeatedly when trying to compile a new
kernel. What can you do to solve this problem?

1.

You need to know the CPU type on a system before updating the kernel. Which of the files in
the /proc directory can tell you what CPU you are using?

2.

You want to learn more about the PCI-based hardware in a typical Intel-based computer so
that you can update the kernel. What command can you use?

3.

The older computer you are using does not support the make bzImage command. What
commands can you execute if you want to create a smaller kernel?

4.

You have just compiled a new kernel, but it will not boot. You intend on booting a
kernel on the second partition of the first hard drive. Currently, the GRUB
configuration file reads as follows:

title Test Kernel (2.6.0)
 root (hd0,2)
 kernel /boot/bzImage-2.6.1 ro root=LABEL=/
 initrd /boot/initrd-2.6.1.img

What change needs to be made?

5.

When building and installing modules during the process of creating a new kernel, when do you
need to be root?

6.

33.1.2. Answers

Use the make mrproper command, then make clean. If these two commands do not solve the
problem, you are using the wrong configuration file for your CPU type. Go to the
/usr/src/linux/configs/kernelname directory and copy the correct file.

1.

/proc/cpuinfo.2.

/bin/lspci -vv.3.

Any of the following: make zImage, make zdisk, or make zlilo.4.

5.

6.

3.

4.

Change root (hd0,2) to read root (hd0,1). GRUB uses a zero-based counting system, so the
second partition of the system is indicated by a 1, not a 2.

5.

Only when installing the modules.6.

33.1.3. Exercise

Following is an exercise for creating a custom 2.6 kernel. It contains many separate steps.

Make sure that you know your hardware. Use the lspci command with the -vv option to
determine the type of hardware that you have. Then view the output of the /proc/cpuinfo
command to find the type of CPU your system is using.

1.

Verify that you have all of the software components installed that will help you build and install
a kernel. Components vary between the 2.4 series and 2.6 series of kernels. Components and
utilities include:

procps
module-init-tools
reiserfsprogs
jfsutils
binutils
pcmcia-cs
util-linux
module-init-tools
quota-tools
nfs-utils
Gnu C
Gnu make
e2fsprogs
xfsprogs
oprofile

2.

Once you have verified you have these components and utilities, you can obtain the source files
from http:www.kernel.org or from your system's distribution repositories. For example, you
can obtain the kernel files on a Red Hat or Fedora system using RPM. Novell SUSE systems
provide Yast (or RPM, if you wish), and you can use apt or Synaptic for Debian-based systems.

At this stage, you can also patch the kernel, if you wish. Once you have finished patching, you
can configure the kernel. During this stage of the process, you have to determine whether you
want a static kernel or a modular kernel. Most systems default to modular kernels.

3.

Once you have made this decision, find the Makefile and edit it to contain unique information
for your kernel. Change the EXTRAVERSION = -1 portion of the Makefile to a unique value.

4.

Then back up the hidden .config file that is in the ../linux file of your source tree. Do this by
copying the .config file to another location. Then type make mrproper to begin with a fresh
installation.

5.

Now you are ready to use the make command to create a 2.6 kernel. You have a choice
between the make config, make oldconfig, make menuconfig, and make xconfig commands. The

6.

make config command does not provide a menu. Rather, it runs a program that asks you a
long series of questions that you have to answer. make oldconfig reads the existing file and
makes the changes you have indicated. Use make oldconfig only if you have made minor
changes. The make menuconfig command presents an ncurses-based menu that is considerably
more user-friendly than the list of questions presented by the make config command. Finally,
the make xconfig command is the most user-friendly, but may not be available on your system.

6.

Choose the options that are best for your system. You will see that the choices are grouped into
several sections (e.g., General Setup, Loadable Module Support, Device Drivers). Go through
each option and choose the features you want. When you are finished configuring your options,
save them and exit the program.

7.

You are now ready to build the kernel. Type the following:

make bzImage

8.

If you have chosen to build a modular kernel (the most common choice), you must then build
the modules:

make modules

9.

Now, become root and install the modules:

su root
make modules_install

10.

Exit root.11.

Now you need to create an initial ramdisk image, so that the system can boot the hard drive
and begin initialization. If, for example, you are creating a kernel named 2.6.10-5-686, issue
the following command to create the accompanying ramdisk image:

mkinitrd /boot/2.6.10-5-686

12.

Now copy the new kernel and system.map file you have created to the /boot directory.
Following is an example:

$ cp arch/i686/boot/bzImage /boot/bzImageYOUR_KERNEL_VERSION
$ cp System.map /boot/System.map-YOUR_KERNEL_VERSION
$ ln -s /boot/System.map-YOUR_KERNEL_VERSION /boot/System.map

Notice how the final command creates a symbolic link from your new system.map file to the
/boot/System.map file.

13.

14.

After you are finished, edit your boot loader. If you are using GRUB, edit the
/boot/grub/menu.lst file or possibly the /etc/grub.conf file, which is usually a symbolic link to
the /boot/grub/menu.lst file. If, for example, you have created a new kernel named 2.6.10-5-
686, create the following entry for GRUB:

title New, kernel 2.6.10-5-686
root (hd0,1)
kernel /boot/vmlinuz-2.6.10-5-686 root=/dev/hda2 ro quiet splash
initrd /boot/initrd.img-2.6.10-5-686
savedefault
boot

You do not have to run any command to enable this file; GRUB will read the menu.lst or
grub.conf file automatically at boot time. If you experience any problems, you can edit the
configuration file on the fly at boot time, as described later in this chapter.

Alternatively, if you are using LILO to use the same kernel, alter your /etc/lilo.conf file as
follows:

boot=/dev/hda
 map=/boot/map
 install=/boot/boot.b
 default=new-2.6.10-5-686
 keytable=/boot/us.klt
 lba32
 prompt
 timeout=50
 message=/boot/message
 menu-scheme=wb:bw:wb:bw
 image=/boot/vmlinuz
 label=linux
 root=/dev/hda3
 append=" ide1=autotune ide0=autotune"
 read-only

 image=/boot/vmlinuz-2.6.10-5-686
 label=test-2.6.10-5-686
 root=/dev/hda1
 read-only

Then run the lilo command to update the boot sequence.

14.

33.2. System Startup (Topic 2.202)

33.2.1. Review Questions

Why are the files under the /etc/init.d directory executable?1.

Some systems, such as Red Hat, do not place startup scripts in the /etc/init.d directory. Where
do Red Hat and others put these scripts?

2.

What is the result of the following entry in the /etc/inittab file?

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

3.

You find scripts named K11anacron and S15bind9 in the /etc/rc2.d directory. Which script will
run first when the system starts up?

4.

You wish to run the fsck command on a partition named /dev/hda1 . What command should
you run first?

5.

What is the result of the following command?

fsck -a /dev/hda3

6.

33.2.2. Answers

Because these files are run by the init program and are used to start system daemons1.

In the /etc/rc.d/init.d directory2.

It traps the hardware-based command that normally shuts the system down, and runs the
Linux shutdown command. As a result, system shutdown is more orderly and causes fewer
problems.

3.

K11anacron , because K scripts are run first. Then S scripts are run. Alphabetical order is
followed. So K11anacron would run before K11bind , for example.

4.

umount /dev/hda15.

The command runs fsck on an IDE device and automatically repairs any problems found.6.

6.

33.2.3. Exercises

Review the contents of the /etc/inittab file. Consider adding the following line that adds a new getty command
(standard text-based login) for runlevels 2, 3, 4, and 5 on tty12 :

12:2345:respawn:/sbin/getty 38400 tty12

1.

Review the contents of the scripts at your particular runlevel. In some systems (Red Hat and Fedora), you can
find these scripts in the subdirectories of the /etc/rc.d directory. In other systems, you will find the files in the
/etc/rc N .d directory, where N is the number of the runlevel. For example, an Ubuntu system is Debian based

and defaults to runlevel 2. Therefore, the scripts that run at the default runlevel are in the /etc/rc2.d directory.
Review the scripts in this directory to see what is run. Notice that there are K scripts and S scripts. The K scripts
are run before the S scripts. Scripts are run first in numerical, then in alphabetical, order. Determine the order
in which scripts are run.

2.

Practice using the following commands as root :

init 0
init 6
init 2
init 5

Write down the results of each command for your particular system or systems.

3.

Review the contents of the /etc/mkinitrd/mkinitrd.conf file. Note the default settings for the initrd image that
would be created. They are usually 022. The DELAY option is usually set to 0 by default. You would increase this
value if you wished to give the system a chance to rest before running initialization scripts.

4.

As root , type init 1 . Notice what you have to do to enter maintenance mode. After you type the root password,
you will see that you can edit files, make necessary changes, and run programs such as fsck (as long as you
have unmounted the partition). You are now the root user.

5.

If you are using GRUB, reboot your system and then select the default boot option when the GRUB menu screen
appears. Press e . You will see that you can now edit the boot parameters for this particular session. Press the
Escape key to go back to the main menu.

6.

If you are using GRUB, reboot your system again. Once you see the GRUB menu screen, press c . You will be
sent to a GRUB prompt, where you can create your own boot sequence. Press the Escape key to return to the
menu and boot your system.

7.

If you are using GRUB, execute the following commands to store Stage 1 and Stage 2 on a floppy disk:

:Insert a floppy disk.a.

Change to the GRUB directory:b.

8.

cd /boot/grub/

b.

Copy the Stage 1 files and Stage 2 files to the floppy disk using the dd command:

dd if=stage1 of=/dev/fd0 bs=512 count=1
dd if=stage2 of=/dev/fd0 bs=512 seek=1

These commands create a valid boot floppy disk for your drive.

c.

If you do not have a floppy disk drive and want to create a GRUB boot CD, you need to use the file named
stage2_eltorito . This is a special Stage 2 file required by CD-ROM drives. You do not need to use the Stage 1 or
Stage 2 files. The stage2_eltorito file is often located in the /usr/lib/grub/i386-pc/ or /lib/grub/i386-pc directory.
The steps you take to create a bootable CD-ROM follow.

Create a directory structure to store the ISO image you are going to create. This structure must be stored
onto the CD-ROM as /boot/grub :

mkdir -p iso/boot/grub

a.

Copy the /usr/lib/grub/i386-pc/stage2_eltorito file to the directory you have just created:

cp /usr/lib/grub/i386-pc/stage2_eltorito ~/iso/boot/grub/

b.

Use the mkisofs command to create an ISO image:

mkisofs -R -b boot/grub/stage2_eltorito -no-emul-boot -boot-load-size 4 -boot-info-table
-o grub.iso iso

This command tells mkisofs to create Rock Ridge protocol files and also specifies the path of the boot
image used.

c.

You can then use any application you wish to burn the ISO image (grub.iso) onto the CD-ROM.d.

9.

If you are using LILO, add password protection to it using the instructions given in this book. Be sure to make a
backup copy of your original lilo.conf file before making any changes to it. Once you are finished making your
changes, be sure to install them as lilo.conf and then run lilo to make sure your changes are recognized.

10.

33.3. Filesystem (Topic 2.203)

33.3.1. Review Questions

What is the difference between the /etc/fstab and the /etc/mtab files?1.

What is the meaning of the sixth field in the /etc/fstab file?2.

Where would the following line appear, and what does it accomplish?

cdrom -fstype=iso9660,ro,sync,nodev,nosuid :/dev/cdrom

3.

What type of information is found in the /proc/mounts file?4.

For a device named /dev/sda1, you wish to learn the last mount time, the maximum count of
boot times that have occurred between checks by fsck, and the maximum mount counts. You
know that some of the output may not be understood by the dumpe2fs command. What
dumpe2fs option would you use to get this command to report all findings?

5.

What command flushes all data and writes it to disk?6.

How can you see that an attempted copy using the dd command failed?7.

You have tried to use the swapon command on a partition named /dev/hda3. This partition has
the following entry in /etc/fstab:

/dev/hda3 / ext3 defaults,noauto,errors=remount-ro 0

What information in this line can help you identify the most likely problem?

8.

33.3.2. Answers

The /etc/fstab file shows the filesystems that will be mounted. The /etc/mtab file lists the
filesystems that are mounted. In other words, /etc/fstab controls the behavior of the system,
whereas /etc/mtab reflects the results.

1.

The sixth field of /etc/fstab determines the order that partitions (that is, filesystems) are
checked when a system boots.

2.

3.

2.

The entry is part of the autofs configuration file. The entry automatically mounts the
/dev/cdrom drive as a read-only device when a disk is inserted. SUID files are not mounted,
and neither are device files. The filesystem type is iso9660, which is standard for CD-ROM
devices.

3.

The filesystems that are currently mounted and active.4.

dumpe2fs -f /dev/sda1.5.

sync.6.

The failed dd command issues an error code greater than 0 to standard error. An error
message such as "No space left on device" may also be displayed.

7.

The noauto option precludes the use of the /dev/hda3 device as a swap file.8.

33.3.3. Exercises

Use the cat command to view the contents of the /proc/mounts file. What do this file's contents
have in common with the contents of the /etc/mtab file?

1.

Review the /etc/fstab file and take note of the syntax. Be able to identify the following:

The filesystem used

The mount point

The filesystem type

The options: be able to describe each one

The dump value

The pass number

Familiarize yourself with each of the fields and their possible values.

2.

Use the less command to read the contents of the /etc/mtab file. Then use the badblocks
command to look for problems on one of the Linux filesystems. Make sure that you unmount
the partition first. For example, if you wanted to read the /dev/hda3 partition, you would issue
the following commands:

umount /dev/hda3
badblocks -o bad.txt /dev/hda3

The bad.txt file will contain a list of all bad blocks on the partition.

3.

Try out the dd command to copy the contents of a partition into a single file. Make sure that
you have a large amount of disk space in the destination directory. Suppose you have a
partition named /dev/hda3 that is 500 MB. You could write it to a single image (using a
different partition) as follows:

4.

dd if=/dev/hda3 of=hda3.img

The following copies the contents of bootdisk.img to a floppy disk:

dd if=bootdisk.img of=/dev/fd0

It is also important to know the options to dd. For instance, you can increase the block size to
make writing faster and more efficient. Or you can specify the block size to copy only the data
that you need. For example, to copy the boot sector from the /dev/hda device, you could tell
dd to perform this operation once on the first 512 bytes:

dd if=/boot/grub/stage1 of=/dev/fd0 bs=512 count=1

5.

You can then tell dd to write the second stage onto the same floppy. This time, you will use the
seek option, which tells dd to skip over the first 512 bytes, as specified in the bs option, and
continue writing on byte 513 of the floppy:

dd if=/boot/grub/stage2 of=/dev/fd0 bs=512 seek=1

Continue experimenting with the dd command, but be careful: a simple mistake can destroy all
data on your drive or partition.

6.

On a system that has sufficient unused space, create a new 500-MB partition. Use the fsck
command and create a type 82 partition. Next, use the mkswap command to make this space a
swap file, for instance:

mkswap -c /dev/hdb2

Now use the swapon command to activate the partition so that it can be used as RAM:

swapon /dev/hdb2

Issue the swapoff command for the /dev/hdb2 partition. Use fdisk to re-create the partition.
Then, use the mke2fs -j command to create an ext3 partition on it. Copy data to this new
partition. If you want to keep it, update the /etc/fstab file to automatically mount it. If you
wish, you can recreate the swap space and then update /etc/fstab to automatically mount it
with the following line:

7.

/dev/hdb2 none swap sw 0 0

33.4. Hardware (Topic 2.204)

33.4.1. Review Questions

You have just updated the /etc/raidtab file. What command should you run to create the RAID
array?

1.

What file can you read to determine which USB devices have been recognized on your system?2.

What three things can you do with the modprobe command?3.

You have just added a new device but do not know the interrupt that this device is using. What
file in the /proc directory can you query?

4.

A coworker has just added a new CD/DVD-RW drive via USB. You wish to verify its speed.
What command allows you to do this?

5.

33.4.2. Answers

mkraid.1.

/proc/bus/usb/devices.2.

You can add modules, delete modules, and list the modules that can be run on the system.3.

/proc/interrupts.4.

syctl -a.5.

33.4.3. Exercises

View the /proc/interrupts file and compare it to the output of the lspci -vv command. Notice
that you can get the same IRQ information from both. However, the lspci -vv command gives
you much more information about the devices themselves, as long as they are PCI based.

1.

Use the hdparm command to read the parameters on your devices. For example, if you have
an IDE drive as your first disk, issue the following command as root:

hdparm /dev/hda

2.

Review the output. Is DMA turned on or off? Be careful when enabling or disabling any
settings. Enable features using hdparm only if you are sure your hard disk supports them.
Similarly, disabling features might severely impact disk performance. If you wish, use the
sysctl command to discover the speed of your CD-ROM. Then use hdparm's -E option to specify
a lower speed. Return the speed back to its default using the -E option again.

As root, use the tune2fs command to list the filesystem parameters for your first hard drive:

tune2fs -l /dev/hda

3.

Use the -c option to specify how many times the system must be mounted before fsck is
automatically run. Use the -C option to tell the filesystem how many times the drive has been
mounted. Be careful when adjusting any other parameters, as doing so may cause you to lose
data.

4.

Use the sysctl command to view the settings for the following devices:

Ethernet card (wireless or standard)

CD-ROM drive

Whether or not the system is configured to ignore all ICMP packets

The kernel version and release

5.

If the setserial command is installed, use it to determine the default settings for your serial
devices. Then adjust those settings.

6.

If you have Xfree86 installed, use the following options to the XFree86 command:

-version

-scanpci

Then toggle between resolutions, if your X server supports them. Pressing Ctrl-Alt-Minus (using
the minus key on the keyboard) lowers the resolution. Pressing Ctrl-Alt-Plus (using the plus
key on the keyboard) increases the resolution. If multiple resolutions do not exist, use
XF86config to create them.

7.

33.5. File and Service Sharing (Topic 2.209)

33.5.1. Review Questions

You have verified that the smbd daemon is running, but remote users cannot seem to see your
Samba shares. What other daemon needs to be running?

1.

What is the purpose of the root_squash and ro=hostname.domainname.com options in the
/etc/exports file?

2.

An administrator has just updated the /etc/exports command. The NFS daemon is running.
What NFS command should be executed, and what separate daemon should be running, so
that remote users can access the share?

3.

What is the purpose of the following entries in an NFS configuration file?

uid 0-60 - # switch to nobody
uid 61-80 41 # map 61-80 into 41-60

4.

You have configured a Linux system as a client in an older WINS network. The name of the
Linux client is jerry. You wish to determine whether the WINS server is properly resolving your
client's IP address. The name of the WINS server is win1.garcia.com. What command would
you issue?

5.

You wish to mount a remote Samba share using the smbmount command. You have already
set up the /usr/local/zeppelin directory as the mount point. The hostname of the remote system
is jimmy. The name of the remote share is page. The username is robert. You want to specify
the password when prompted. What does the command look like?

6.

You wish to use the smbclient command to mount a remote directory. This command will be in
a script, so you want to specify the username and password. The remote hostname is pink, and
the share name is floyd. The username is david and the password is gilmour. What would the
command look like?

7.

33.5.2. Answers

The Samba NetBIOS name server, called nmbd.1.

The root_squash parameter forces the root user to have the same permissions as the nobody
account. It helps ensure that remote users cannot overwrite essential system configuration files
and other important files in the mounted directory.

2.

3.

4.

2.

The exportfs -a command must be executed and the portmapper daemon must be running.3.

The entries map remote users to local user accounts, to help ensure that user IDs are properly
processed.

4.

nmblookup -U win1.garcia.com -R jerry.5.

smbmount //jimmy/page /usr/local/zeppelin -U=robert.6.

smbclient //pink/floyd -U david%gilmour.7.

33.5.3. Exercises

Install NFS. Then configure the /etc/exports file to share a single directory read-only. Use the
exportfs -a command to inform NFS of your changes. You may also have to verify that the
portmapper is working properly. Use the nfsstat command to verify the status of the NFS
shares on your server.

1.

Now use the mount command on a remote system to mount the directory you have just shared
via NFS. Then unmount the directory. Reexport the directory on the server so that users can
write to it. You may have to adjust the permissions using chmod, as well as change the
contents of the /etc/exports file. Use the showmount command to verify that NFS mounts for
the client are working properly.

2.

Once you have NFS working, verify that your NFS system is capable of conducting soft and
hard retries. After making changes to your NFS server, restart the server. Then unplug the
system from the network. Plug the system back in. What kind of error messages did the client
receive?

3.

Configure user ID mapping for your NFS server. Verify that the mapping is working correctly by
using the nfsstat command.

4.

Configure access control for your NFS server. Make sure that only a specific system can access
your shares.

5.

Install Samba using the appropriate packaging utility for your system. Source files, should you
wish to install them by tarball, are available at http:www.samba.org. Then edit the
/etc/samba/smb.conf to:0

Enable user-level security.

Encrypt passwords sent between systems. This enables Samba to communicate with
Windows systems.

Specify the homes share, which allows all home directories to be shared to users that
specify the proper username and password.

6.

Use the smbpasswd -a command to create a user database, then add users that you wish to
access resources.

7.

Start Samba (both nmbd and smbd).8.

Mount a directory using the smbclient command. If you have a Windows system available, use
the Windows browser to open your share. Be sure to either log on with the username your

9.

8.

Linux server recognizes or specify the correct login credentials. If you encounter any problems,
use the smbstatus and nmblookup commands to verify that your Samba system is working
properly.

9.

Once you have configured Samba to work correctly, configure it as a WINS server. Be careful
that you do not specify the WINS server as a WINS client. Also, make sure that there is only
one WINS server on the network.

10.

Configure your Samba server so that it has access control. Edit the samba.conf file so that the
Samba server responds only to certain systems.

11.

Install a printer on the system. Now configure the samba.conf file so that the printer is shared.
Use either a Linux or Windows system to access the printer share.

12.

Use the smbmount command on a remote system to mount the Samba share you have created.13.

Use the smbtestparm command to verify current settings. See if there is anything that you
would like to change or whether you can find any unexpected settings.

14.

33.6. System Maintenance (Topic 2.211)

33.6.1. Review Questions

You want a central logging server to accept log entries from several remote systems. What
option in the syslogd or sysklogd file would you enter to enable the logging daemon to accept
remote log entries?

1.

What is the format of an entry in the /etc/syslogd file?2.

You wish to configure the /etc/hosts file so that remote logging always works, even if the DNS
server fails. Which should be specified first when creating a host entry: the host's IP address or
the host's name?

3.

What is the syntax of a log entry in the /var/log/messages file?4.

What command builds a Debian package?5.

What is the command used to build an RPM package?6.

33.6.2. Answers

The option is -r.1.

facility/priority.2.

The host's IP address is entered first.3.

The date, the time, the hostname, the daemon that prompted the log entry, and the message
from the daemon.

4.

The -b option tells dpkg to build a package. This option specifies the name of the directory that
contains the files necessary for building the package. Finally, you specify the name of the
package that you are building:

dpkg -b file_system_tree_directory name_of_package.deb

5.

Use the -ba option to tell the RPM facility to build binary and source packages. The command
also specifies the spec filename, not the name of the built package.

rpm -ba spec_file_name-1.0.spec

6.

33.6.3. Exercises

Go onto the Internet and read about the construction of an RPM spec file. When it comes to
understanding a spec file, be able to identify the purpose of the following:

Header

Describes the contents of the RPM, including the name of the RPM, the version, the
release date, and the URL of the source file.

Preparation

Gathers all of the files that will be used during the installation process.

Build

Used to build the software once it has been gathered together. This section does not
install files. An optional section, used mostly when dealing with source RPMs.

Installation

Contains the commands necessary for actually installing the application or service.

System cleaning

Macros that ensure that the spec file is built in a clean environment.

Pre- and postinstallation scripts

Where you can place instructions for scripts that run before and after the RPM is
installed.

Changelog

Describes the changes that have been made to an RPM.

You can then build the RPM using the following command:

rpm -ba foobar-1.0.spec

1.

Study the components of the files necessary for creating a Debian package. Use the dpkg
command to view the contents of a Debian package. For example, to read the file named xpdf,

2.

you might issue the following command:

dpkg -c xpdf-reader_3.00-11ubuntu3.7_i386.deb

You could, of course pipe the output into the less command, if the file listing goes off the
screen.

2.

Study the /var/log/messages file and make sure you understand each field of the log entry.
Make sure that you can tell the difference between locally generated log files and those that are
generated from remote systems.

3.

Use the tail command to view the last 10 lines of the /var/log/messages file. Notice that many
log facilities send messages to this file. You can create custom logs that contain less
information. Open the /etc/syslog.conf file using a text editor and create entries that send
critical (crit) messages for the following facilities:

Daemon

Mail

News

Make sure you restart syslogd after you have made your changes.

4.

Edit the /etc/syslog.conf file and configure syslogd to send logs to a remote system. You will
have to configure the remote system to accept log files. This is accomplished by using the -r
option in the syslogd configuration file (e.g., /etc/rc.d/init.d/syslogd in Red Hat/Fedora systems
and /etc/init.d/sysklogd in Debian-based systems). Consider creating custom logs that will be
sent to a remote system.

5.

Create a preliminary backup storage plan. When doing so, consider the following issues:

Backup method (differential versus incremental).

Medium to use (e.g., tape, CD/DVD).

Proper storage of backups. Consider ways to store an entire set of tapes remotely, as well
as to verify all backups to make sure data has not been corrupted during backup.

Study the difference between differential and incremental backups. For what situation or
situations is each method most suited? What are the drawbacks for each method?

6.

Sometimes, it is advisable to edit the /etc/hosts file and create entries for essential systems.
For example, if you have a central logging server, enter the hostname and IP address for that
server. This way, your system will be able to log to the central server even if DNS goes down.

7.

33.7. System Customization and Automation (Topic 2.213)

33.7.1. Review Questions

What is the function of the third field in a crontab entry?1.

Consider the following command:

at 4:00 9/13/08 -f command_file

What is another way to specify this time?

2.

You wish to use the rsync command to copy the local directory of /home/james/backup
directory to the /usr/remote/backup directory of the remote system named sandi. What would
this command look like?

3.

33.7.2. Answers

The day of the month.1.

at teatime 9/13/08 -f command_file.2.

rsync -avz /home/james/backup/ sandi:/usr/remote/backup.3.

33.7.3. Exercises

Create a user-based crontab using the crontab -e command. If you cannot think of any
particular command to use, have the command list your home directory and then print the
current date. Use the mail command to verify that the script has worked. If the script doesn't
work, edit it until you specify the correct commands.

1.

View the scripts in the /etc/cron.hourly, /etc/cron.d/daily, /etc/cron.weekly, and
/etc/cron.monthly directories. Notice that some scripts are quite simple, whereas others are
more ambitious.

2.

Create a script in the /etc/cron.hourly directory. Use the mail command to verify that the script
has worked.

3.

4.

5.

3.

Use the at command to have a command take place one hour from the current time. Issue the
atq command to view the status of the command.

4.

Consider the following use of awk:

sudo kill 'ps auxww | grep ethereal | egrep -v grep | awk '{print $2}''

Study how awk is used in this particular command. Then go on to the Internet and review
additional examples of awk usage.

5.

Consider the following rsync command:

rsync -avz james:/home/sandi/essential/ /backup/sandi

6.

This command copies all of the contents of the /home/sandi/essential on the remote system
named james to the /backup/sandi directory of the local system. Be able to explain each option
used in this command. The -a option enables archiving, which preserves all permissions,
symbolic links, and other file elements. The next part of the command specifies the remote
system name and the directory on the remote system, including a trailing slash. The final part
of the command specifies the destination where the directory is copied.

7.

33.8. Troubleshooting (Topic 2.214)

33.8.1. Review Questions

What is the last stage of the boot process?1.

You wish to configure your system to stop replying to all ICMP packets. What file in the /etc/
directory can you edit to accomplish this?

2.

You have been provided with a directory that contains all of the necessary files and libraries to
run the passwd command in a chroot environment. This directory is called /usr/local/chrootenv.
What command would you form to run the passwd command in a chroot environment?

3.

You wish to run the passwd command in a chroot environment. However, the command fails in
this environment. You suspect a problem with the libraries that the command requires. What
can you do to learn more about the libraries used by the passwd command?

4.

Your system currently does not create home directories for each user by default whenever you
use the useradd command. What file can you alter to change this default behavior?

5.

You have been using the dmesg command and examining the output, a cumbersome
procedure, to find out which kernel the system is currently using. Which command would give
this information?

6.

33.8.2. Answers

Initializing and setting up daemons.1.

/etc/sysctl.conf.2.

chroot /usr/local/chrootenv passwd.3.

Use the ldd command:

ldd /usr/bin/passwd

4.

/etc/login.defs.5.

uname -a.6.

33.8.3. Exercises

Study the LDP Bootdisk HOWTO at http://www.ibiblio.org/pub/Linux/docs/HOWTO/Bootdisk-
HOWTO. Make sure that you understand the boot process, how to create bootable CDs, and
how to troubleshoot problems.

1.

Boot your system and review the boot process. Notice when the four different stages occur.2.

View the contents of the /etc/login.defs file. Notice that this file allows you to customize various
login settings. Change the FAIL_DELAY value to 10. Notice the USERGROUPS_ENAB enTRy. In many
systems, this value is set to yes, which means that each time a user is deleted, the group will
be deleted, as well. Also, review the FAILLOG_ENAB and LOG_OK_LOGINS enTRies.

3.

As a normal user, try to view the contents of the /etc/shadow file. You will not be able to. List
the file's permissions. As root, view the contents of the /etc/shadow file. Notice that you can
view it now. Make sure you understand each field of the file.

4.

Many systems default to allowing the rm command to delete files without warning. If your
system does not have this setting already, add the following alias to the ~/.bashrc file (or to
the pertinent file for your shell):

alias rm='rm -i'

Once you have made this change, either log out and log back in or issue the following
command (both periods are necessary):

. .bashrc

Now, when you use rm to delete a file, you will be asked to confirm your choice.

5.

View the contents of the /etc/ld.so.conf file. Consider that making a change in the dynamic
linking libraries involves simply opening this file in a text editor to add a path to the valid
library, then running the ldconfig command to update the links. Using the -v option to ldconfig
helps you see the changes made.

6.

Use the strings command to view the contents of various files on the system. Start small by
viewing the /bin/ls command. Then, view other files to learn the text strings that they contain.

7.

Use the lsof command with grep to discover the following:

All open TCP connections

All open UDP connections

All processes associated with the bash shell (or whatever shell you are using

All regular processes (REG)

You may also want to pipe the output through the less command so that you can view the
content more easily. This exercise will require you not only to understand how to use lsof, grep,

8.

http://www.ibiblio.org/pub/Linux/docs/HOWTO/Bootdisk-

and less, but to understand each field in the output of the lsof command. You will see that the
command is listed and then its PID, the user, its file descriptor (name), its type (regular file,
FIFO, etc.), the device being used, its size in memory, and the node or filename being used.

View the /etc/bashrc or /etc/bash.bashrc file. Notice the settings, and see how this file is also
used to configure the look and feel of the prompt. Make any changes you like, but create a
backup file just in case.

9.

Make sure that you can ping your system. Use the cat command to view the contents of the
/proc/sys/net/ipv4/icmp_echo_ignore_all file. It should read 0.

10.

Suppose that you want to configure your system to ignore all pings. You can do this by editing
the /etc/sysctl.conf file or by manually changing the value of the
/proc/sys/net/ipv4/proc/sys/net/ipv4/icmp_echo_ignore_all file to 1. As root, open the
/etc/sysctl.conf file and the following entry:

net/ipv4/icmp_echo_ignore_all=1

Close the file, making sure to save your changes. Then, issue the following command to
process the /etc/sysctl.conf file:

sysctl -p /etc/sysctl.conf

Use the cat command to view the contents of the /proc/sys/net/ipv4/icmp_echo_ignore_all file.
It will now read 1. You can use the following command to change the value back to 0:

echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_all

11.

Chapter 34. Exam 201 Practice Test
The 201 exam is comprised of roughly 54 questions. You have 90 minutes to answer these questions
correctly. Most of the exam questions are multiple choice with one correct answer. The second most
common item type is multiple choice with multiple answers. Remaining questions require you to fill
in the blank, which can sometimes be daunting. No notes are allowed, and you are monitored in a
secure, high-stakes exam environment. For more information about the LPI 201 exam and all of
LPI's exam policies, go to http://www.lpi.org.

This chapter gives you some questions designed to help you learn about the LPI 201 Objectives.
These questions are designed to help you prepare for the questions in the actual exam. Once you
become familiar with these questions, work on a live system to truly learn the concepts and
practices discussed, these questions. While the questions are certainly useful, you will find that
applying your knowledge is the best way to prepare for the LPI 201 exam.

http://www.lpi.org

34.1. Questions

You have just finished creating a custom kernel. Which of the following is a valid next step for
creating the kernel image?

make depa.

make bzimageb.

make kernelc.

make imaged.

1.

Which of the following is a common name of a kernel image?

vmlinuz-2.6.10-5-686a.

minix_stage1_5b.

System.map-2.6.10-5-386c.

initrd.img-2.6.10-5-686d.

2.

Which of the following is the final stage of a kernel update?

Compile dependencies.a.

Create a RAM disk image.b.

Configure the boot loader (e.g., GRUB).c.

Copy the bzImage file to the kernel name in the /boot directory.d.

3.

What is the name of the file in GRUB that you need to edit in order to change the kernel that
will be booted by default?

boot.confa.

grub.confb.

img.confc.

vmlinux.confd.

4.

5.

c.

d.

Which of the following do you have to accomplish before you can use an initrd image on your
Debian system?

Install all necessary modules for initrd.a.

Switch from LILO to GRUB.b.

Compile cramfs support into the kernel.c.

Create a monolithic kernel.d.

5.

Which of the following commands allows you to easily inspect a compressed kernel patch?

lessa.

bzip2b.

bzmorec.

sourced.

6.

You discover that you need to remove two levels of path from a patch in order to proceed with
patching a kernel. Which of the following commands will work on a file named patch-
2.6.14.4.bz2?

bzip2 -dc patch-2.6.14.4.bz2 | patch -p2a.

patch -dc | bzip2 -dc patch-2.6.14.4.bz2b.

bzip2 -dc patch-2.6.14.4.bz2 | make -p2c.

patch -dc patch-2.6.14.4.bz2 | bzImage -m2d.

7.

Consider the following entry in /etc/inittab:

23:respawn:/sbin/getty 38400 tty2

You wish to add another entry to start a terminal (tty) that operates at runlevels 2, 3, 4, and 5
on tty1. Which of the following is the correct inittab entry?

0 2345:respawn:/sbin/tty01 38400 gettya.

/sbin/getty 38400 tty1 :1:2345b.

0:2,3,4,5:respawn:/sbin/getty 38400 tty0c.

1:2345:respawn:/sbin/getty 38400 tty1d.

8.

What is the name of the first startup script in a Debian-based system?

a.

9.

d.

/boot/grub.confa.

/etc/init.d/rc1b.

/etc/init.d/rcSc.

/etc/rc.sysinit/initd.

9.

Of the following options, which requireroot privileges? (Choose two.)

Using the make modules install commanda.

Running the make xconfig commandb.

Editing the boot loader file (e.g., grub.conf or lilo.conf)c.

Editing the Makefile that comes with the kerneld.

10.

You have decided to have Sendmail start automatically on levels 3 and 5 of your Linux system.
Which one of the following commands makes this change?

init sendmail 35a.

init 35 sendmail --onb.

chkconfig 35 sendmail onc.

chkconfig --level 35 sendmail ond.

11.

Write in the command that allows you to adjust the system so that a filesystem check is run
every 200 boots.

12.

You have just issued the following command:

mkisofs -T -r -L -l -J -o /var/tmp/image.iso /home/james/backup/

Which of the following describe the results of this command? (Choose two.)

mkisofs will generate a warning that it is creating a filesystem that is not ISO9660-
compatible.

a.

The command will fail because you are not creating a filesystem that is ISO9660-
compatible.

b.

mkisofs will generate the image in such a way that non-root users can mount it on any
Linux system.

c.

The command will create a filesystem that allows long filenames and Unix-style symbolicd.

13.

14.

c.

links.
d.

You have just added a SCSI disk to a production system. The new drive is recognized as
/dev/sdb. You wish to create the ReiserFS file system on the entire disk. Which of the following
commands will do this? (Choose two.)

mke2fs -j -L Disk_2 /dev/sdba.

mkfs.reiserfs --label Disk_2 /dev/sdbb.

mkreiserfs --label Disk_2 /dev/sdbc.

mke2fs -j -L Disk_2 /dev/sdb1d.

14.

You wish to learn about the last time boot information was written to the/dev/hda2 partition on
your Linux system. Which of the following commands do this? (Choose two.)

tune2fs -l /dev/hda2a.

fsck -l /dev/hda2b.

fdisk -l /dev/hda2c.

dumpe2fs -h /dev/hda2d.

15.

You have been asked to transfer the contents of a smaller hard disk (/dev/hdb) to a larger hard
disk (/dev/hdc). Which of the following commands allows you to do this most efficiently?

cp -s /dev/hdb /dev/hdca.

dd if=/dev/hdb of=/dev/hdcb.

dd bs=8k if=/dev/hdb of=/dev/hdcc.

dd bs=1k if=/dev/hdb of=/dev/hdd ln -s /dev/hdb /dev/hddd.

16.

Consider the following /etc/raidtab file:

 raiddev /dev/md0
 raid-level 1
 nr-raid-disks 2
 chunk-size 64k
 persistent-superblock 1
 nr-spare-disks 0
 device /dev/hda2
 raid-disk 0
 device /dev/hdc2
 raid-disk 1

Which of the following commands is necessary to activate this configuration?

a.

17.

mdadm /etc/md0a.

mkraid /etc/md0b.

mdadm /dev/md0c.

mkraid /dev/md0d.

A developer has called you and asked you to troubleshoot a device driver for a PCI card your
company has decided to support. He needs to know the IRQ that the device uses, as well as the
latency statistics. Which of the following commands should you issue in order to give him the
information he needs?

lspci-pa.

setserialb.

lspci -vvc.

lsdev -C /dev/d.

18.

You are having problems attaching a USB hard drive to your system. You wish to determine the
data transfer capabilities of the device, as well as the potential connection speed of the USB
controller. Write in the application that will help you determine this information in the space.

19.

You suspect that a hard drive's Direct Memory Access (DMA) ability is creating problems for
you as you troubleshoot problems on the system. Which of the following commands disables
direct memory access on your system?

hdparm -d1 /dev/hdaa.

sysctl dma=disable /dev/hdab.

hdparm -d0 /dev/hdac.

sysctl disable=dma /dev/hdad.

20.

A PCMCIA device on a laptop sometimes renders the system unstable if it is ejected without
warning. Which of the following commands informs the system that the card is going to be shut
down?

sudo cardctl suspenda.

sudo cardctl ejectb.

sudo cardctl configc.

sudo cardctl resetd.

21.

You wish to temporarily prohibit a user with the account name james from using a system's
Samba account. However, you still want to allow this user to log on to the system using the X

22.

d.

Window System and SSH. Which of the following solutions will accomplish this goal most
efficiently?

Edit the /etc/passwd file as root using a text editor and comment out the james account's
username.

a.

Enter sudo smbpasswd -x james.b.

Become root, edit the /etc/samba/smbusers file, and comment out the james account's
username.

c.

Enter sudo smbpasswd -d james.d.

22.

Which of the following is the suggested back-end database for a Samba server that does not
require LDAP or built-in database replication?

mysqlsama.

xmlsamb.

shadowc.

tdbsamd.

23.

Consider the following alternative entries in /etc/exports:

/home/james/ james.stangernet.com(rw)
/home/james/ james.stangernet.com (rw)

What is the result of these two entries?

The top entry shares the /home/james directory with read and write permissions to any
user from the james.stangernet.com DNS domain. The bottom entry shares the
/home/james directory with read-only permissions to any user in the
james.stangernet.com domain, but gives read and write permissions to all other users
anywhere.

a.

The top entry will be ignored because it has improper syntax. The bottom entry shares the
/home/james directory with anyone in the james.stangernet.com DNS domain with read
and write permissions. No one else will have access.

b.

The top entry shares the /home/james directory with read-only permissions to all users,
except for the james.stangernet.com domain. The bottom entry shares the /home/james
directory with read-only permissions to the james.stangernet.com domain, but with read
and write permissions to all other users.

c.

The top entry shares the /home/james directory with anyone in the james.stangernet.com
DNS domain with read and write access. The bottom entry will be ignored, because it is
not formatted properly.

d.

24.

25.

d.

What user account does NFS change root-owned files to, and why?

To the nfs account, to avoid allowing users to overwrite files essential to the operation of
the NFS daemon

a.

To the sys account, to avoid allowing users to overwrite files created by the root userb.

To the first non-root account listed in the /etc/passwd file, to avoid overwriting essential
system files

c.

To nfsnobody, to avoid allowing users to upload programs that have the setuid bit set to
root

d.

25.

Which of the following files contain real-time information that will help you troubleshoot NFS?
(Choose two.)

/proc/fs/exportsa.

/etc/fstabb.

/etc/exportsc.

/proc/fs/nfsdd.

26.

Complete the following line to configure syslog so that it sends log messages to a remote host
named backup.stangernet.com:

*.info;mail.none;authpriv.none;cron.none ___________________ .

27.

Which of the following lines sends all emergency messages to the file named /var/log/crit.log?

/var/log/crit.log emerg.*a.

*.emerg var/log/crit.logb.

/var/log/crit.log /dev/console:0:/var/log/crit.logc.

d.

28.

c.

emerg.* /var/log/crit.logd.

You have downloaded OpenOffice.org. You have just untarred the tarball and have discovered
that it contains all RPM files. You intend to use OpenOffice.org on a Debian-based system,
however. You are currently in the directory that contains the RPM files. Which of the following
commands converts the RPM files to a package format that Debian can use?

alien *a.

sudo alien *b.

dpkg -c *.rpmc.

alias -c *d.

29.

Consider the following code:

%files
%attr(0755, root, bin) /usr/bin/file
%attr(0644, root, bin) /usr/local/man/man2/manpage.1

What type of file is this code from?

A Debian filea.

A typical Makefileb.

The /etc/manpath.config filec.

An RPM spec filed.

30.

You need to install an update to Perl but are not sure of the exact name of the Perl module, due
to poor documentation. You need to navigate the update options in an interactive shell. Which
of the following is the correct command to begin interactive mode?

perl -e 'use interactive;'a.

b.

31.

a.

perl -a -s=/bin/bashb.

perl -MCPAN -e shellc.

perl --updated.

You need to execute a script named backup three hours from now, but do not plan on being in
front of your system, or at a terminal where you can access your system. Which of the
following commands allows you to execute this script?

at now + 3 hours <backupa.

crontab -e < 0 3 * * * backupb.

at now + 3 >backupc.

echo "0 3 * * * backup" >> /etc/crontabd.

32.

You have downloaded an ISO image and have burned it to a CD several times. However, the
CD never seems to work properly. You suspect a problem with the ISO image you have
downloaded. Which of the following commands can you issue to verify that this ISO image is
valid?

sudo mount -o loop -t iso9660 /home/james/image.isoa.

sudo mount -t loop -o iso9660 /home/james/image.iso /mnt/isob.

sudo mount -o loop -t iso9660 /home/james/image.iso /mnt/isoc.

sudo mount -loop -t iso9660 /home/james/image.iso /mnt/isod.

33.

34.

d.

List the rdev option that allows you to specify /dev/hda5 as the swap device. (Note: There is
more than one way to do this.)

34.

Consider the following line in /etc/fstab:

/dev/hda5 / ext3 defaults -ro 0 1

35.

What option would you add to this partition so that no files could be executed on it?

exec=0a.

noautob.

e0c.

noexecd.

Which of the following lists the four standard boot stages in the correct order?

The boot loader starts, the kernel loads, hardware initialization, service/daemon startupa.

The boot loader starts, service/daemon startup, hardware initialization, the kernel loadsb.

Hardware initialization, the boot loader starts, the kernel loads, service/daemon startupc.

The boot loader starts, hardware initialization, the kernel loads, service/daemon startupd.

36.

An older Linux system fails at boot time, displaying the following letters:

LIL

37.

Which of the following is the most plausible explanation for the error?

The second stage boot loader has loaded at an invalid address.a.

The second stage boot loader cannot start, but can find the descriptor table.b.

The second stage boot loader was able to start, but the descriptor table has not been
found.

c.

The second stage has been able to start, but the LILO boot loader has detected a problem
with the map installer.

d.

38.

You are trying to share a drive using NFS but are experiencing problems. You have tried
restarting the portmapper. You have verified network connectivity and that the /etc/exports file

39.

is formatted properly. You have properly usedroot privileges. Which of the following steps can
help you determine the exact point where nfsd and the portmapper encounter problems?

Use the following command: tail -f /var/log/messages.a.

Precede your commands with the strace command.b.

Restart the system to restart the networking scripts.c.

Verify that the nmbd daemon is running properly.d.

39.

Which of the following is the most plausible reason for a "Too many levels of symbolic links"
error message?

The symbolic links to the /boot/vmlinuz-2.6.10-5-686 file have become corrupt.a.

A symbolic link still exists, but the file it refers to has been deleted.b.

A series of symbolic links has led to a infinite loop.c.

A symbolic link has been made to a symbolic link.d.

40.

A command keeps failing, no matter what changes you make to its configuration file. You
suspect that the command makes a call to a missing dynamic library. Which of the following
can help you confirm your suspicions most effectively?

ltracea.

straceb.

paratracec.

mtraced.

41.

You have received a binary file from a coworker. You are not sure if the file is the correct one.
You would like to quickly inspect its plaintext contents. Which of the following commands will
help you view the human-readable contents of the file?

cata.

b.

42.

stringsb.

lessc.

mtraced.

Which of the following files contains instructions concerning the mail directory for each user?

/etc/sysctl.confa.

/etc/bashrcb.

/etc/login.defsc.

/etc/sysconf.confd.

43.

The size of the kernel ring buffer has been set to 17384, which is 1000 more than the default.
You wish to use the dmesg command to read the entire buffer. Write in the command that you
would issue.

44.

You wish to mail the results of a cron job to a remote account named james.stangernet.com.
The message is supposed to be sent every 20 minutes. You have created the following script:

*/20 * * * * /bin/security_program | mailx -s "Security report" user@gmail.com

However, the gmail.com account keeps bouncing the email. Which of the following can help you
solve this problem?

Use the mail program instead of mailx.a.

Change the subject line of the mailx command. No spaces can be included.b.

Fix the crontab file to have messages sent every 20 minutes, rather than every 20 days.c.

Configure the system sending the message to rewrite the message headers so that they
belong to a valid DNS domain.

d.

45.

46.

d.

A user has just gotten married. She complains that her old name appears in the From field
whenever she sends email using the mail command. Which of the following will likely solve this
problem?

Create an alias in the /etc/aliases file to map the user's account name to her real name.a.

Edit the /etc/passwd file and change the fourth field of the user's new name.b.

Edit the /etc/mail.conf file to reflect the user's new name.c.

Create an alias in the user's .bashrc file that maps the user's old name to the user's new
name.

d.

46.

A user cannot currently log in. You check the /etc/shadow file and notice that an asterisk
appears in the second field of that user's entry. Which of the following should you do to solve
this problem?

Edit the /etc/shadow file using a text editor and enter a default password.a.

Use the passwd command to create a new password for the user.b.

Use the shadowconfig command to create a new shadow file, because the existing file is
corrupt.

c.

Edit the /etc/shadow file to remove the asterisk.d.

47.

You need to use the lsof command to determine which program has caused a system to hang
for an unacceptably long time when it boots. You wish to direct lsof to avoid making any calls
to the kernel that would cause the kernel to block the function of the lsof command. Write in
the lsof command and option.

48.

You wish to determine whether a problem exists with the boot process of a system's second
IDE hard drive. Which of the following commands helps you read kernel messages concerning
the second drive?

lsof | grep hdba.

dmesg | grep hdbb.

strings /dev/hdbc.

modprobe -l | grep hdbd.

49.

You cannot get a Samba server to run. You view the /etc/samba.smb.conf file and notice that50.

the following lines have been uncommented:

wins support = yes
wins server = 192.168.2.33

From these lines, you can tell that the problem is:

Your Samba server is trying to access a nonfunctioning WINS server.a.

The WINS server is using a private IP address.b.

The wins support entry should read wins support = 1.c.

The Samba server is configured to be both a WINS client and a WINS server.d.

50.

A new application has been installed on a Linux web server to ensure more correct tracking of
user visits. This application has required the installation of several new shared libraries. A
system administrator has issued the following command:

ldconfig -NX

However, the new application still complains that the libraries are not to be found. Which of the
following will solve the problem?

Reinstall the libraries after running ldconfig -NX.a.

Specify the correct location of the libraries as an argument to ldconfig -NXb.

Run ldconfig without arguments.c.

Download the latest libraries from the developer.d.

51.

Which of the following commands measures the transfer rate of the first SCSI drive on a
system?

hdparm -Tt /dev/sdaa.

lsof -t /dev/sdab.

hdparm -X /dev/sdac.

d.

52.

lsof -X /dev/sd1d.

A coworker has installed a new IDE optical device on a Linux server. The drive has been
recognized as device /dev/hdc. You wish to verify its drive speed and whether DMA is enabled.
Which of the following commands allows you to do this?

cat /proc/ide/hdc/settingsa.

lsof | grep hdcb.

cat /etc/mtabc.

sysctl -ad.

53.

You have just downloaded the latest Linux kernel. Which of the following is a step you should
take before runningmake xconfig?

Type oldconfig -pa.

Type make restoreb.

Type make oldconfigc.

Type mrproperd.

54.

You wish to run fsck even though the system thinks that the filesystem is clean. You also want
fsck to automatically repair any problems, should they be encountered. What fsck options
would you choose? (Choose two.)

-ya.

-fb.

-nc.

-rd.

55.

d.

34.2. Answers

b. Once you have configured a custom kernel by using the make command (e.g.,make config or
make xconfig), you then create the image. You can do this by using the make bzimage
command. After this step, you would then compile modules.

1.

a. It is possible to give any name you wish to a kernel image. However, the standard pattern is
to use the following syntax: vmlinuz, kernel number, architecture. For example: vmlinuz-
2.6.10-5-686.

2.

c. When finishing a kernel update, the final step is updating the boot loader. Otherwise, you
have a new kernel, but no way to boot it.

3.

b. The grub.conf file contains the values you need to edit in order to boot a new kernel.4.

c. cramfs allows systems to create RAM disks. Creation of RAM disks is especially important at
boot time. The initrd command uses cramfs to create a disk at boot time in order to make the
process more stable. Without cramfs in Debian systems, it would not be possible to create an
initrd image, and the system may fail to boot.

5.

c. The bzmore application is specially designed to view files that have been compressed using
bzip2. It is also possible to use bzless. Not only can you use bzmore or bzless to view files, but
you can also use these commands to decompress a file to standard output, then back into a
file.

6.

a. Make sure that you understand the options to the patch command. It is not enough to know
that the patch command exists.

7.

d. Make sure that you understand entries in /etc/inittab. This includes how to edit existing lines
so that terminals are available at additional runlevels. Knowing the inittab file well includes
knowing the ramifications of seemingly trivial errors.

8.

c. The first startup script for Debian-based systems (including Knoppix and Ubuntu) is
/etc/init.d/rcS. But the /etc/init.d/rcS script is not the first process; the script is run by the first
process, which is init. Nevertheless, it is important to know that if the /etc/init.d/rcS script
encounters a problem, it will begin a sequence of additional problems. Thus, it is often a good
idea to troubleshoot problems as early as possible. The /etc/init.d/rcS script may be a good
place to start.

9.

a and c. The make modules install command installs the modules, and editing the boot loader
allows you to boot the kernel you have just created. These steps are the only ones in the
question that require root access.

10.

d. The chkconfig command is one of many that allow you to modify the runlevel scripts. You
can use chkconfig to list or change runlevel settings. To change run level settings, use the --
level option, and then finish the command with either on or off. In this question, you want
Sendmail to run automatically at run levels 3 and 5, so you use the on option.

11.

The correct entry is:12.

tune2fs -c 200

The tune2fs command can be used not only to specify the maximum number of mounts before
fsck is used, but also to change the mount count (i.e., the number of mounts the system thinks
has already occurred), as shown in the following example:

sudo tune2fs -C 199 /dev/hda2

This command tells the system that the mount count is now 199. If you have set the system to
run fsck at 200, the system will run fsck upon the next boot.

12.

a and d. The command found in the question is quite standard. However, the command will
generate a warning. This is because the -r option enables Rock Ridge extensions, which allow
Unix-style symbolic links. Rock Ridge is an extension to the ISO9660 standard, and thus the
warning. Similarly, the Joliet filesystem can generate warning messages because it is a
Microsoft-inspired extension to ISO9660. Joliet allows the preservation of long filenames, which
can get truncated during the CD burning process.

13.

b and c. The mkfs.reiserfs and mkreiserfs commands are essentially the same. You can also use
the mkfs command with the proper options to create various file systems, including ext2, ext3,
reiserfs, vfat, vfat32, and ntfs.

14.

a and d. The tune2fs and dumpe2fs commands allow you to determine the last time boot
information has been written to a hard drive. For tune2fs, you must use the -l option and
specify the partition (e.g., /dev/hda2). If using dumpe2fs, you need to specify the -e option
and the partition.

15.

c. When using dd on files and interdrive transfers, specifying the block size makes a significant
difference. The dd command is more efficent when you specify 8-KB blocks (e.g., bs=8k),
because writing in larger blocks increases speed.

16.

d The mkraid command is used to process instructions in files outside the /etc directory, in this
case /etc/md0.

17.

c. The lspci command allows you to scan the PCI bus of a computer. The -v option puts lspci
into verbose mode. The -vv option provides especially verbose information, which allows you to
obtain not only IRQ information, but also the latencies of all listed PCI devices.

18.

The usbview command provides an X Window System graphical interface that allows you to
determine the data transfer capabilities of the device, the potential connection speed of the
USB controller, and much other information. The interface updates in real time, so you can see
how the system reacts when you plug in and remove devices.

19.

c. If you wish to disable DMA on a particular device, issue the hdparm -d0 command against it.
If you wish to enable DMA on this device, issue the command:

hdparm -d1 /dev/hda

20.

b. The cardctl command can be used to inform the system that a PCMCIA card is going to be
ejected. In order to use the cardctl command in this way, you need to run it as root.

21.

22.

21.

d. You can use the smbpasswd command to add users, change passwords, and disable users.
You must run the command as root in order to add users, change passwords of other users,
and disable users.

22.

d. The tdbsam option in Samba is recommended if you are going to use a standalone server
that does not require LDAP or built-in database replication.

23.

a. NFS entries are very specific. One space can mean the difference between a secure system
that offers expected services and a system that provides all access to any user on the network.
In this case, a simple space between the FQDN and the permissions (rw) means that all users
outside of the james.stangernet.com domain get full access to the NFS share, and members of
the james.stangernet.com get read-only access. It is possible in this case that such permisions
are the exact opposite of what was intended.

24.

d. Modern NFS systems automatically set files owned by root to the nfsnobody account. This
step avoids the possibility of a user uploading an application that has the setuid bit set to root.

25.

d. The /proc/fs/exports and /proc/fs/nfsd files both provide real-time information concerning
NFS shares. The /etc/fstab file contains configuration information for mount. It does not reflect
real-time information. Similarly, the /etc/exports file contains configuration information for
NFS; it does not report real-time NFS share information.

26.

The correct answer is @backup.stangernet.com. syslog has the ability to log to remote
systems. You must use the ampersand (@) to inform syslog that you are going to log to a
remote system.

27.

b. If you want to have all emergency messages from all services/daemons sent to a specific
file, specify the wildcard (*), the .emerg syslog facility, and then the destination. Make sure that
you understand each of the syslog facilities and their respective priority levels.

28.

b. The alien command must be run as root. You do not have to use alien in any particular
sequence when converting files. If you have a directory full of RPM files, for example, you can
simply convert them using the wildcard (*).

29.

d. The information given in the sample for this question comes from an RPM spec file. A spec
file is essential when creating an RPM file.

30.

c, The perl -MCPAN -e shell command allows you to enter interactive mode, where you can
update, remove, and otherwise manage Perl modules.

31.

a. The at command allows you to plan a one-time execution of a command in the future. For
repeated command execution, use the cron or anacron facility. The at command is also capable
of reading from standard input. Make sure that you understand the many ways you can specify
time for the at command. For this question, the now + time syntax was used.

32.

c. In order to mount an ISO, you need to specify the -o loop option and argument. You also
need to be root. Finally, you need to specify the mount type, which in this case is iso9660.

33.

You could specify either rdev -s /dev/hda5 or rdev -swapdev /dev/hda5. Remember,with Linux
you can usually accomplish a goal in more than one way.

34.

d. The noexec option allows you to mount a partition in such a way that it forbids files to be
executed on it.

35.

a. Make sure you understand the boot sequence in Linux systems: The boot loader starts, the
kernel loads, hardware initialization, service/daemon startup.

36.

37.

36.

c. The LIL error message indicates that the second stage boot loader was able to start, but the
descriptor table has not been found. Make sure that you understand common LILO and GRUB
error messages, as well as the boot sequence for Linux systems.

37.

b. The strace command can help you identify exactly which calls are made by an application or
daemon, and when. Finding out this information can help you identify the cause of a particular
failure and resolve the problem.

38.

c. The error message that reads "Too many levels of symbolic links" almost always indicates an
infinite loop.

39.

a. The ltrace command is much like the strace command. However, ltrace is designed to look
for calls to dynamic libraries and therefore may be able to provide more specific information
than strace.

40.

b. The strings command allows you to view plain text within a binary file. Using strings, you
can learn more about the nature of a file, including notes and instructions that the programmer
plans to send to standard output.

41.

c. The /etc/login.defs file contains many different instructions, including where mailbox
information resides. Make sure that you are familiar with both the syntax of this file and its
general purpose.

42.

The -s option of the dmesg command allows you to specify the size of the buffer you wish to
read when it comes to reading kernel messages. In this case, dmesg -s17384 allows you to
read all of the contents of the buffer, as this particular system has had its buffer size changed.

43.

d. No matter whether you are using Sendmail, Postfix, or another MTA, remote systems may
reject your emails if the sending system does not use a recognized DNS domain. Email
administrators rewrite email message headers and other information to solve this problem. If
the email uses a valid DNS domain, the message will be received. For example, the
/etc/mail/genericstable file can help you rewrite addresses so that they are not rejected. If
applications such as Mozilla Thunderbird are used, you may not need to rewrite headers,
because Thunderbird, Outlook Express, and other graphical mail programs allow you to specify
email and DNS information more readily than the mailx and mail commands.

44.

b. One of the ways you can solve this problem is by editing the /etc/passwd file and changing
the name in the fourth field of the user's entry. You can also rewrite headers using
genericstable in Sendmail.

45.

b. Using the passwd command for the specific user will solve the problem. No additional editing
of the /etc/shadow file is necessary.

46.

The answer is lsof -b. This option is sometimes necessary, because certain kernel calls may
cause lsof to hang or report incorrect information.

47.

b. Simply using dmesg with the grep command will help you identify the nature of the
problem, as long as the kernel logger has recorded it.

48.

d. A Samba server cannot be configured to be a WINS client and server at the same time.49.

c. Using ldconfig without arguments reads all necessary files and configures all dynamic
libraries. The -X option tells ldconfig not to update links. The -N option tells ldconfig to omit
updating the cache. If you specify both options, libraries will not be updated.

50.

a. The hdparm -Tt command reads transfer rates for a hard drive.51.

a and d. The sysctl -a option allows you to display all values for a particular device. The52.

51.

information contained in the /proc/ide/hdc/settings file provides information about various
settings, including the drive speed and DMA information. The information in this file is not as
comprehensive as the output of the sysctl -a command, however.

52.

d. The make mrproper command erases any .config files and allows you to begin a clean
kernel-compilation session.

53.

a and b. The -y and -f options allow you to accomplish the goal, because the -y option tells
fsck to automatically solve problems, while the -f option tells fsck to conduct a check, even
though fsck thinks that no problems exist on the partition.,

54.

Part IV: General Linux Exam 202
Part IV covers the Topics and Objectives for the LPI's General Linux Certification for Exam 202
and includes the following chapters:

Chapter 35, Networking Configuration (Topic 2.205)

Chapter 36, Mail and News (Topic 2.206)

Chapter 37, DNS (Topic 2.207)

Chapter 38, Web Services (Apache and Squid, Topic 2.208)

Chapter 39, Network Client Management (Topic 2.210)

Chapter 40, System Security (Topic 2.212)y

Chapter 41, Network Troubleshooting (Topic 214)

Chapter 42, Exam 202 Review Questions and Exercises

Chapter 43, Exam 202 Practice Test

Chapter 35. Networking Configuration
(Topic 2.205)
Under the broad term "Networking Configuration," the LPI Level 2 tests group some advanced topics
that administrators should have under their belts, such as Virtual Private Networks (VPNs),
configuring multiple IP addresses, and dial-up and ISDN access. You should already know TCP/IP
fundamentals and basic network interface configuration issues discussed in Level 1. Chapter 19 of
this book is especially relevant, and as always, real experience with networking is valuable
preparation for the tests. LPI organizes the topic of networking into two objectives:

Objective 1, Basic Networking Configuration

The candidate should be able to configure network devices to connect to a local network and a
wide area network. This objective includes being able to communicate between various
subnets within a single network, configure dialup access using mgetty, configure dial-up
access using a modem or ISDN, configure authentication protocols such as PAP and CHAP, and
configure TCP/IP logging. Weight: 5.

Objective 2, Advanced Network Configuration and Troubleshooting

The candidate should be able to configure a network device to implement various network
authentication schemes. This Objective includes configuring a multihomed network device,
configuring a virtual private network (VPN), and resolving networking and communication
problems. Weight: 3.

Notice that Objective 1 is weighted quite heavily. This is to be expected. Computers wouldn't be
much good these days if they weren't network aware, and the same goes for Linux administrators.
So we recommend you spend a considerable amount of time understanding the commands and
protocols discussed in this chapter before trying to bring systems onto a production network. Your
boss, your end users, and your career will thank you.

35.1. Objective 1: Basic Networking Configuration

Notice how this Objective doesn't sound much more advanced than the Level 1 networking
Objectives. Don't be deceived. While the tasks may seem simple when put into black and white, the
LPI Level 2 Exam tends to assume that you've run into problems in your previous work and have
learned to troubleshoot networking issues. So, instead of simply thinking to yourself "Yes, I know
the route command or the ifconfig command," think to yourself, "How are these commands
commonly used in a production environment?" Think of the commands in context.

35.1.1. Network Configuration Utilities, and What Lies Beneath

Quite a few configuration tools exist for configuring a network card on a Linux system to be a part of
an IP network. Those tools vary widely between the Linux distributions and sometimes between the
different versions of the same distribution as well, but they generally do the same thing. For
instance, a tool called netconfig exists in both Red Hat/Fedora and Slackware but is not the exact
same utility. Fedora also has a curses -based tool called system-config-network-tui that lets you
configure the network connection on network interface cards, ISDN adapters, and modems. The
Novell/SuSE systems wanted administrators to use YAST/Yast2 (YAST is text based, Yast2 is GUI
based) to configure networking. Ubuntu Linux (www.ubuntu.org) currently contains a configuration
tool called the Network Administration Tool as part of the Gnome Desktop Environment.

This author never uses graphical or screen-based, distribution-specific tools for configurationnot to
look like the biggest alpha-geek in the room but because the tools often don't get the configuration
right. All the fancy networking applets and applications do is create or alter system network
configuration files, which are in simple text formats and have traditionally been created by hand. I
find I usually end up having to open my trusty text editor and fix the configuration files the old-
fashioned way anyway, so I may as well start out with the pure files.

Because the LPI Exam was put together by experts in the field, they, too, have found that the best
way to configure a system is to go in and start editing text files. So let's get down to it and discuss
the text files that your networking subsystem uses.

35.1.2. Common Network Configuration Files

Because network interface cards (NICs), with the exception of modems and ISDN adapters, are
usually activated at boot time, Linux distributions include configurations for the cards in system files.
Depending upon the system you use, you will find one of the following:

A file called /etc/network/interfaces

A series of files in the /etc/sysconfig/network-scripts directory

35.1.2.1. The /etc/network/interfaces file

This is found in Debian-based distributions, including such popular variants as Ubuntu and Knoppix.
It contains ifconfig parameters, such as broadcast and netmask addresses, and can optionally
specify commands to be run before or after a network card is brought up or down.

A sample /etc/network/interfaces file is:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
 address 192.168.0.20
 netmask 255.255.254.0
 broadcast 192.168.1.255
 gateway 192.168.0.1

The file must contain at least two entries for a network-aware system: one for the loopback interface
(lo) and one for another interface (in this case, eth0). To comment out an entry, simply put a #
character at the start of the line.

The syntax is relatively simple. The iface entry simply defines an interface (eth0). The entry
contains the word static , which means the interface is configured manually, not using DHCP. If you
wished this interface to use DHCP, you would change the line to read as follows:

iface eth0 inet dhcp

The four lines below the iface line correspond to typical ifconfig options. If you change the interface
to use DHCP, this invalidates the ifconfig options, but you do not need to comment the lines out.
Once your system reads dhcp in the configuration file, it ignores any other information in the file for
that particular interface.

The line before the iface entry, auto eth0 , means this particular interface will be activated
automatically at boot time.

My particular system is a laptop that (luckily enough) supports both my standard Ethernet card
(eth0), and my Atheros wireless A-G card (ath0). Don't get flustered in the LPI Exam if an interface
isn't called eth0 or eth1 . You will find that the underlying principles covered will remain the same,
even if some names are different. Following is an example of the information I use to configure my
wireless card:

auto ath0
iface ath0 inet static
 address 192.168.40.40
 netmask 255.255.255.0
 network 192.168.40.0
 broadcast 192.168.40.255
 gateway 192.168.40.1
 # wireless-* options are implemented by the wireless-tools package
 wireless-mode managed
 wireless-essid JAMESSTANGER
 wireless-key1 ee453fq449g0fg354wghgj12b4
 # dns-* options are implemented by the resolvconf package, if installed
 dns-nameservers 192.168.40.4

 wireless-key ee453fq449g0fg354wghgj12b4

This example shows that Debian systems can contain the access point's Secure Set Identifier (SSID),
as well as all necessary Wireless Equivalent Privacy (WEP) information. (WEP is an outmoded
protocol and is no longer considered to be secure, but some wireless cards have not yet adopted the
better WPA security.) Also, many Linux systems do not yet support WPA.

35.1.2.2. The /etc/sysconfig/network-scripts directory

Red Hat and Fedora systems store their interface configuration files in a directory named
/etc/sysconfig/network-scripts/ , where each network interface has a separate file. For example, the
directory in the old Red Hat system that I use as a router contains at least the files listed in Table
35-1 .

ifcfg-lo

Configures the loopback interface

ifcfg-eth0

Configures the first Ethernet interface

Ifcfg-eth1

Configures the second Ethernet interface

Ifcfg-eth2

In case the router had even a third Ethernet interface

ifup

Used to activate any interface you specify

ifdown

Dectivates any interface you specify

ifup-ppp

Used to activate Point-to-Point Protocol (PPP) dial-up connections

ifdown-ppp

Used to deactivate PPP connections

ifup-ipv6

Activates IPv6 on an interface

ifdown-ipv6

Deactivates an IPv6 interface

ifup-isdn

Activates an ISDN connection

ifdown-isdn

Deactivates an ISDN connection

Table 35-1. Sample network configuration files in
/etc/sysconfig/network-scripts

Filename Purpose

An example of a simple /etc/sysconfig/network-scripts/ifcfg-eth0 file follows:

DEVICE=eth0
ONBOOT=yes
BOOTPROTO=static
IPADDR=172.22.1.45
NETMASK=255.255.255.0
GATEWAY=172.22.1.1

The syntax for this file is quite simple; standard configuration options are specified as KEYWORD =
value pairs. One detail worth noting is the BOOTPROTO enTRy. static means that the eth0 interface

uses a manually entered IP address. To use DHCP, change the value to dhcp . If, for some reason,
you wish your system to use the old bootp protocol, you can also specify bootp . The ONBOOT enTRy
simply specifies whether you wish the device to be activated at boot time. If you do not wish to
activate the device, set the value to no .

However, tools and runlevel scripts are all wrappers around the two main network interface
configuration tools ifconfig and route . A Linux system administrator must know by heart how to use
those commands. ifconfig takes several parameters; the IP address itself is essential.

35.1.3. Using ifconfig

When the IP address is configured from DHCP, you won't usually need to use ifconfig directly. But
it's important to know how to check interfaces and bring them up if the system hasn't done so
automatically.

The ifconfig command may be used on any kind of network interface, not only physical Ethernet or
Token Ring network cards. PPP (dial-up) interfaces, loopback interfaces, and VPN tunnel endpoints
may all be configured with ifconfig . Even though ifconfig defaults to the IP (Version 4) address type,
it is also used when configuring other address families such as IPX, IPv6, and AppleTalk. Here is the
basic syntax of the command:

ifconfig [interface] [option] [address]

The interface is a device name, such as the familiar lo or eth0 . The network card represented by

the device must have been detected by the kernel before it can be configured by ifconfig . The
address is the IP address to and from which traffic will go through the interface.

Following are the most frequently used options. Note that the -a option contains a hyphen (because
it applies to the command in general) whereas the other options (which apply to the interface) do
not.

-a

Lists all interfaces, including down and unconfigured ones.

up

Enables the interface.

down

Disables the interface. After being disabled, the interface keeps any configured addresses, so if
you enable the interface later, it still is associated with the addresses.

hw class address

Reports address as the hardware address of the specified class (described in the text).

netmask
netmask

Sets the netmask on the given interface.

35.1.3.1. Virtual interfaces

ifconfig can configure virtual interfaces "on top of" the regular interface. For instance, based on the
eth0 interface, you could activate the virtual interfaces eth0:0 and eth0:1 . This kind of
configuration is often found on web servers hosting lots of web sites and domains (when SSL
certificates are in use, the IP address involved must belong to one and only one hostname) or on
shell servers offering hostnames to be used on IRC and similar services.

To use virtual interfaces on a 2.2.x kernel (or earlier), support for interface aliasing must be
explicitly enabled.

Following is an example of how to configure one interface to use multiple IP addresses:

ifconfig eth0:1 192.168.40.41 netmask 255.255.255.0

The resulting output of ifconfig is:

eth0 Link encap:Ethernet HWaddr 00:0B:5D:71:FE:D1

 inet addr:192.168.40.40 Bcast:255.255.255.0 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:140371 errors:0 dropped:0 overruns:0 frame:0
 TX packets:105052 errors:0 dropped:0 overruns:0 carrier:0
 collisions:7218 txqueuelen:1000
 RX bytes:93678761 (89.3 MiB) TX bytes:14520288 (13.8 MiB)
 Interrupt:19

eth0:1 Link encap:Ethernet HWaddr 00:0B:5D:71:FE:D1
 inet addr:192.168.40.41 Bcast:192.168.40.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 Interrupt:19

35.1.3.2. Other common uses for ifconfig

You can also use the ifconfig command to:

Activate or deactivate an interface. This can also be done through the ifup and ifdown
commands.

Set the subnet mask: useful when a system has been placed onto a different subnet, but
retains the same IP address.

Set the broadcast address. If you have to change the subnet mask, you may have to change
the broadcast address, as well.

Create a custom MAC address (also known as the Ethernet address).

The last task in the list is useful in some situations in which the ISP allows only a particular MAC
address to participate on the network. For example, many broadband users have had to register an
NIC with their ISP, but have then had to swap out their NIC or change the entire system. The
ifconfig command allows systems with a 2.4 kernel or newer to "spoof" a MAC address. To do this,
the device driver for the NIC must also support this feature.

To create a custom MAC address, you need to specify the hardware class. The most common class is
ether , which stands for Ethernet. Additional classes include ax25, ARCnet , and neTRom , but for the
LPI test, you need to know only about the ether class.

An example follows of how to use ifconfig to configure a system with the custom MAC address
1:02:03:04:05:06:

ifconfig eth0 192.168.40.40 netmask 255.255.255.0 broadcast 192.168.40.255 \
 hw ether 1:02:03:04:05:06

35.1.3.3. Examples

Here are some examples of how ifconfig is used in a production environment.

The following command sets the IP address of the eth0 NIC to 192.168.45.12. Because no netmask

is specified, the command uses the default (class C) broadcast address and network mask that apply

to addresses in the 192.x.x.x range.

ifconfig eth0 192.168.45.12

The following command explicitly specifies the IP address, network mask, and broadcast address:

ifconfig eth0 172.20.16.34 netmask 255.255.255.128 broadcast 172.20.16.127

The following deactivates the interface. Obviously, this is not a command you should use when doing
administration remotely on your system.

ifconfig eth0 down

The following activates a virtual network interface card based on the eth0 interface, which must
have been configured previously. The virtual address does not inherit any netmask or broadcast
properties from the main interface; defaults are used. ifconfig will not protest if you configure virtual
interfaces with different network properties from the main interface, but you may experience erratic
or inconsistent behavior.

ifconfig eth0:0 192.168.45.13

The following sequence of commands sets an IP address on a network interface card, then disables
and enables the network card. After each command affecting the interface, another command
displays the state of the interface. Note that the IP address is still there when the interface is down
and that the interface is explicitly shown as UP when it is enabled.

ifconfig eth0 10.20.30.4
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:60:97:16:4A:EF
 inet addr:10.20.30.4 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 ...
ifconfig eth0 down
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:60:97:16:4A:EF
 inet addr:10.20.30.4 Bcast:10.255.255.255 Mask:255.0.0.0
 BROADCAST MULTICAST MTU:1500 Metric:1
 ...
ifconfig eth0 up
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:60:97:16:4A:EF
 inet addr:10.20.30.4 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1

 ...

35.1.4. The route Command

The route command is capable of setting up complicated routing arrangements, but most sites use it
simply to set up the default gateway. You can use the command to set or delete static routes, as
well as to view the kernel routing table. Complicated routing arrangements nowadays are done
through routing protocols rather than manual configuration, although there are advanced manual
techniques you don't need to know for the LPI test.

Each host uses its default gateway to access resources outside the locally defined network, such as
the rest of the Internet. The host at the IP address you set to be the default gateway is usually a
router or routing firewall. This gateway must have an IP address within your network. Quite often,
the gateway is located at the first usable IP address in a network.

35.1.4.1. Syntax and frequently used options

The syntax for the route command is:

route [add | delete] [-net | -host] [address] \
 [netmask netmask] [gw address] [interface]

Each command can add a route to either an external network (-net) or a particular host (-host). A
gw gateway address can be specified without either a -net or a -host argument, in which case the
command specifies a default gateway to use for traffic from this host.

35.1.5. Common Uses

If your Linux system receives its IP address from a DHCP server, your system automatically sets the
default route and other network parameters. You won't usually need to manually configure the
default gateway using route . However, the LPI Exam expects you to be able to manually connect a
Linux system to a network.

The following example sets the default gateway, assuming that 192.168.40.1 is the address of the
hub on your local area network that accepts traffic from your host:

route add default gw 192.168.40.1

The keyword default is a built-in alias for the IP address 0.0.0.0, which means "any host." This
command uses the defaults for the network and netmask (0.0.0.0), and is therefore equivalent to:

route add -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.40.1

The default netmask of 0.0.0.0, similar to the 0.0.0.0 IP address, may be translated as "any host in
any IP network." Any other routes you specify are consulted first; if the address of your destination
can't be reached through those explicit routes, the system uses the default gateway.

During the exam, you'll likely be given a readout from the route command. Make sure that you can
read it and interpret it. Here is an example:

james@james:~ $ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 0 ath0
localnet * 255.255.255.0 U 0 0 0 eth0
default 192.168.40.1 0.0.0.0 UG 0 0 0 eth0
james@james:~ $

The keyword localnet means that ath0 and eth0 are local interfaces. The keyword default refers to
the default gateway. The other basic elements you should understand are the flags; U means the
route is up (usable) while G means the address represents a gateway.

In this example, the default gateway used by both eth0 and ath0 is 192.168.4.1. The zeros in the
first column of the final entry indicate the default gateway for these interfaces. Note that the
destination IP address (0.0.0.0), the netmask (0.0.0.0), and the gateway address (192.168.40.1)
are what was configured in the earlier route command.

The previous command included the -n option, which has the route command specify numerical
addresses instead of hostnames. Using this option guarantees that you receive all interface-specific
information, even if a name resolution problem occurs.

If you enter the command without the -n option, you see output such as:

james@james:~ $ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 0 ath0
localnet * 255.255.255.0 U 0 0 0 eth0
default 192.168.40.1 0.0.0.0 UG 0 0 0 eth0
james@james:~ $

The -C option causes route to display the complete routing cache stored on the local system; this
shows how traffic has been sent to and received from other systems recently.

To add an explicit host routing entry for the host 172.25.50.33, which will be reached through a
different gateway from the default one, enter:

route add -host 172.25.50.33 gw 192.168.45.2

To add a network to the routing table, routing traffic to it through the gateway found at address

192.168.45.3, enter:

route add -net 10.0.0.0 netmask 255.0.0.0 gw 192.168.45.3

To delete the default route, use either of the following commands:

route del default gw 192.168.45.1
route del -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.45.1

Finally, when it comes to using the route command in a production environment, remember the
following:

If a DNS problem occurs, the output of the route command might hang .

There might be other reasons for the output to hang, but name resolution is the most
common. This is why, on many commands shown in this chapter for troubleshooting, it is
sometimes useful to use the -n option. The attempt to contact a DNS server for name
resolution might cause the output to hang if the network is not functioning properly.

The netstat -r and netstat -nr commands give output similar to route and route -n commands,
respectively .

However, the route command allows you to add and delete routing table information, whereas
the netstat command allows you to only review settings.

35.1.6. ARP and Related Commands

The Internet Protocol (IP) is a Layer 3 protocol, and the NIC in the Linux system is a Layer 2 device.
On a local network, the nodes know each other only by the unique 6-byte MAC (Media Access
Control) address programmed into each NIC.

Because of this, devices that use IP require a protocol to map between the two layers. That protocol
is the Address Resolution Protocol (ARP). ARP creates a mapping between a given IP address and
the MAC address of the NIC where the IP address is configured. ARP does not map the other wayi.e.,
from MAC address to IP address. That is the task of the Reverse Address Resolution Protocol (RARP).

When two IP-enabled nodes need to communicate, the kernel on the originating node hands the IP
packet to the NIC and says, "This is a packet for the IP address aaa.bbb.ccc.ddd; please find the
recipient." The NIC then broadcasts a request to find out which network interface card (if any) has
the aaa.bbb.ccc.ddd address configured on its Layer 3. This request is called an ARP request.

Perhaps the best way to understand ARP is to view it in action. Below is a tcpdump session that
shows an ARP request and the resulting reply. This capture is of a ping packet that was sent from a
system with the IP address of 192.168.0.20 to a system with an IP address of 192.168.1.18; ping
uses an ICMP request and reply.

06:10:03.003044 arp who-has 192.168.1.18 tell 192.168.0.20
06:10:03.003092 arp reply 192.168.1.18 is-at 00:c0:f0:30:1d:5e
06:10:03.796840 IP 192.168.0.20 > 192.168.1.18: icmp 64: echo request seq 1
06:10:03.796992 IP 192.168.1.18 > 192.168.0.20: icmp 64: echo reply seq 1

In other words, the ARP request and reply had to execute successfully before the ping ICMP
messages could be sent.

ARP entries are cached on the hosts in the network for a period of time, which is defined by the
/proc/sys/net/ipv4/neigh/eth0/gc_stale_time file (assuming that the system's network interface is
eth0). By default, ARP entries are considered stale after 60 seconds.

The arp command shows the ARP cache. A typical display, run from the 192.168.0.20 system, might
be:

arp
Address HWtype HWaddress Flags Mask Iface
192.168.0.1 ether 08:00:20:77:2B:CB C eth0
192.168.1.101 ether 00:30:1B:B0:9F:A1 C eth0
192.168.1.203 ether 00:08:74:04:0A:D8 C eth0
192.168.1.18 ether 00:C0:F0:30:1D:5E C eth0

35.1.6.1. arp command syntax

Following is the synax and description for the arp command:

arp [options] [hostname]

Frequently used options include:

-d hostname

Remove hostname from ARP cache.

-f file

Statically map hostnames to MAC addresses based on entries in a file. The file format is
exactly like the parameters to the -s option: a hostname and MAC address separated by
whitespace, followed by any other applicable parameters.

-n

Do not resolve hostnames.

-s
hostname MAC_address

Statically map hostname to MAC_address . This option is often used for proxy ARP

configurations, in which one system may respond to ARP requests on behalf of another. When
used for proxy ARP, the parameter pub must be added:

arp -s hostname MAC_adress pub

If you are temporarily adding an ARP entry that should be flushed after the regular ARP timeout (60
seconds), add the parameter temp to the entry.

35.1.6.2. Example #1

This example performs some basic ARP manipulation.

Add a temporary ARP entry to a host's ARP cache:

arp -s 192.168.0.45 00:02:03:F6:7C:4B temp
arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.0.45 ether 00:02:03:F6:7C:4B C eth1
192.168.0.20 ether 00:01:02:F7:7C:4B C eth1

Add a static ARP entry to a host's ARP cache:

arp -s 192.168.0.45 00:02:03:F6:7C:4B
arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.0.45 ether 00:02:03:F6:7C:4B CM eth1
192.168.0.20 ether 00:01:02:F7:7C:4B C eth1

Remove a static ARP entry from a host's cache:

arp -d 192.168.0.45
arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.0.20 ether 00:01:02:F7:7C:4B C eth1

35.1.6.3. Example #2

This shows how ARP works behind the scenes.

Here, a connection to a nonexistent host is attempted:

ping 192.168.1.54
PING 192.168.1.54 (192.168.1.54) 56(84) bytes of data.

--- 192.168.1.54 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 1999ms

Running tcpdump on any host in the network shows ARP requests with no answers:

15:34:43.103544 arp who-has 192.168.1.54 tell 192.168.1.18
15:34:44.103292 arp who-has 192.168.1.54 tell 192.168.1.18
15:34:45.102982 arp who-has 192.168.1.54 tell 192.168.1.18
15:34:46.103620 arp who-has 192.168.1.54 tell 192.168.1.18
...

The ARP cache lists the host, but has no corresponding MAC address:

arp
Address HWtype HWaddress Flags Mask Iface
192.168.1.54 (incomplete) eth1
192.168.0.20 ether 00:01:02:F7:7C:4B C eth1

35.1.7. The arpwatch Command

Now that you understand how the arp command works, it is important to understand that you can
use ARP to help secure your systems. The arpwatch package is a set of tools that allows your system
to monitor ARP mappings on a network. You may need to install the package manually.

Many applications, including ettercap (http://ettercap.sourceforge.net), can engage in ARP spoofing
in order to appear to be a different system on your local area network. As you have seen earlier in
this chapter, an administrator can also use the ifconfig command on some systems to engage in
manual ARP spoofing. ARP spoofing can be a prelude to many attacks, including connection
hijacking and traffic sniffing.

The most useful conditions for running arpwatch are when the local area network is connected by a
hub or a switch on which monitoring has been enabled. If a system is connected to a standard
switch, the switch will not pass ARP traffic and all you can monitor is the traffic between the switch
and the system running arpwatch . Similarly, any remote system you want to monitor must be
connected to a hub on your network or to a switch on which monitoring has been enabled.

The purpose of arpwatch is to keep an eye on hosts that add themselves to your network and hosts
that suddenly change IP address and MAC address mappings.

Once installed, arpwatch runs as a daemon, keeping track of and reporting any changed or new
mappings. When a new node appears in the network, arpwatch sends a message to a defined email
address to report information on the new host. By default, this email address is the root account.
The message is usually sent via the system's email daemon. Sometimes, the messages are also

logged to the /var/log/messages or /var/log/syslog file. You can customize arpwatch behavior by
editing the /etc/arpwatch.conf file.

arpwatch reports the following problems:

Flip-flops, in which the MAC address has changed from one IP address to another

A new MAC address

arpwatch is a very useful tool, both as a daemon and as a standalone application, when you are
running a network to which no new computers should be connected without the system
administrator knowing it.

35.1.7.1. arpwatch

Syntax

arpwatch [options]

Description

Report unusual events related to the ARP cache.

Frequently used options

-f file

Specifies which file to use for storing the IP/MAC mappings.

-i interface

Specifies the interface on which to listen for ARP changes.

-m email_address

Sets the email address to which arpwatch should report changes.

-n [network/netmask]

Defines additional IP networks to watch. This is used when two or more different IP
networks share the same physical infrastructure.

35.1.7.2. Sample arpwatch results

Once running, arpwatch keeps track of new systems that come on the network. New systems

generate a "new station" email message, as shown in Figure 35-1 .

Figure 35-1. Viewing an arpwatch "new station" message

Notice in the example that the IP address and MAC address are given, along with the remote host's
name name, the remote host's interface name (in this case, eth0), and the NIC's vendor.

Figure 35-2 shows an example of a series of flip-flops brought on by the use of ettercap on a
switched network.

Figure 35-2. Flip-flop warnings generated by arpwatch in the
/var/log/messages file

The warning shown turned up while sniffing all the packets going between all the local network hosts
and a network router with IP address 192.168.2.1. The first entry, for instance, states that a flip-flop
has occurred where the system with the IP address of 192.168.2.1 had the original MAC address
00:60:97:75:0E:96, but now has the MAC address 0:b:5d:91:fe:d1. In this case, arpwatch has just
discovered a MAC address spoofing attack.

If you look at further entries in Figure 35-2 , you will see that several more flip-flops have occurred
for the same system. This implies active ARP spoofing from an application. It also suggests that
someone on the network is sniffing connections.

35.1.8. Dial-up Connections

Discussing dial-up access has become somewhat controversial in LPI circles. Why? Broadband
connections have become more available in many places of the world. More developed countries
boast multimegabit connections. I live about 10 miles out of Olympia, Washington, a small town in
the Pacific Northwest of the United States. Even though I live fairly far away from a pretty small
town, I regularly enjoy an inexpensive 2.5-MBps downstream connection. A few people who enjoy
this widespread form of bandwidth have approached me and fellow colleagues at LPI and rather
forcefully challenged us as to why the LPI even bothers talking about dial-up connections anymore.
The reason is simple: most of the world still uses dial-up. The LPI Exams are published worldwide,
and the LPI exams reflect how Linux is used.

Chances are, LPIC 2-certified professionals will at some time find themselves in a dial-up-only
environment. Personally, I would be embarrassed if someone handed me a telephone line, and I had
to say, "SorryI need an RJ-45. I can't network any other way." As someone who has been associated
with the LPI for some time, I would be embarrassed if someone who is LPIC Level 2-certified
couldn't use his system properly in a dial-up environment.

So, let's talk about what you need to know to configure a Linux system for dial-up access.

Connecting with dial-up is quite different from connecting to a LAN. A dial-up connection uses the
Point-to-Point Protocol (PPP), which effectively runs on a direct link between the user's computer
and the ISP. Each side runs a daemon called pppd . When connecting to an ISP through a modem or
an ISDN adapter, you need to configure some of the files in /etc/ppp .

Different tools exist to configure dial-up connections: Debian systems offer pppconfig , Slackware
systems offer pppsetup , and Fedora systems offer system-config-network-tui (or system-config-
network-gui for an X interface). On Red Hat systems, the different configuration tools are called
redhat-config instead of Fedora's system-config .

PPP is a Layer 2 protocol for connection over synchronous and asynchronous circuits. Often,
connections over analog devices such as modems are asynchrounous, while connections over digital
devices such as ISDN adapters are synchronous. Some cable modem and DSL providers also use
PPP over Ethernet (for which the PPP frames are encapsulated in Ethernet frames); this protocol is
called PPPoE.

Another protocol, Link Control Protocol (LCP), is provided by PPP. This protocol knows how to handle
situations such as varying packet sizes and network misconfigurations and is responsible for
establishing and terminating the connection. PPP also provides the Network Control Protocol (NCP),
which enables the transport of Layer 3 protocols such as IP and IPX. A separate protocol, Password
Authentication Protocol (PAP) or the newer Challenge Handshake Authentication Protocol (CHAP),
negotiates and sets up the session between the two endpoints.

35.1.8.1. Connecting with a modem

Some distributions include the tools pon (PPP on) and poff (PPP off) to connect to and disconnect
from an ISP. A somewhat easier solution is to use the more intelligent wvdial utility, configured
through wvdialconf .

For various purposes, you can set up processes to run automatically after taking a PPP line up or
down. For instance, a home user with a dial-up connection being enabled at irregular intervals may
want to send any outgoing emails and check for any incoming whenever she first comes online. You
can add commands and the names of scripts to the files /etc/ppp/ip-up and /etc/ppp/ip-down to run
these scripts and commands when the line goes up or down, respectively. On Fedora systems, the
user is encouraged to use the files ip-up.local and ip-down.local instead.

While the regular pon command starts the pppd service before dialing the ISP, wvdial connects to
the ISP and performs a few basic checks before starting the pppd service.

The following configuration was done on a Debian Linux system, but the files should be the same on
most distributions. The system is set up according to the following information received from the
ISP, which here we'll simply call provider :

User name: foo

Password: bar

Phone number to dial: 22334455

First, you need to create a file named after the ISP, in this case /etc/ppp/peers/ provider . There

should be one file for each ISP you connet to in the /etc/ppp/peers directory. These files hold
information on which serial interface the modem is connected to (/dev/ttyS2), the modem speed
(115,200 baud), and the username for lookup in the /etc/ppp/chap-secrets file used by CHAP. Each
provider-specific file also tells the system how to configure its network; usually the system receives

an IP address from the provider and is told to use the dial-up PPP link as its default route.
Furthermore, the file tells pppd to run the chat program when connecting. The chat program
consults a chat script (a file containing strings that each side is supposed to send) to handle
authentication and PPP configuration when connected to the ISP's modem.

35.1.8.2. Configuration files

Some examples follow of files used in dial-up connections . First view the /etc/ppp/peers/ provider

file:

hide-password
noauth
connect "/usr/sbin/chat -v -f /etc/chatscripts/provider"
debug
/dev/ttyS2
115200
defaultroute
noipdefault
user "foo"
ipparam provider

The /etc/chatscripts/ provider file should be created to match the /etc/peers/ provider script file.

Because the authentication process changes between ISPs, these scripts need to be specific to each
provider. The chat program deals with the authentication process when dialing in to an ISP.

An example follows of the /etc/chatscripts/ provider file:

ABORT BUSY
ABORT 'NO CARRIER'
ABORT VOICE
ABORT 'NO DIALTONE'
ABORT 'NO DIAL TONE'
ABORT 'NO ANSWER'
ABORT DELAYED
'' ATZ
OK-AT-OK "ATDT22334455"
CONNECT \d\c

The different situations that can abort a dial-up are listed in this file. Among the possible reasons for
terminating a dial-up attempt are a busy phone line and the lack of a dial tone. The ATZ command is
a key command in the Hayes modem control language, which tells the modem to reset. Following
that line is the Hayes command for dialing the number to the ISP.

Usernames and passwords for dial-up connections are stored in the file /etc/ppp/chap-secrets when
using CHAP authentication. If the ISP prefers PAP authentication, the file to edit is /etc/ppp/pap-
secrets . The file format is the same for both CHAP and PAP.

A sample /etc/ppp/chap-secrets file follows. It contains only one noncomment line, whose fields
reflect the information shown earlier, given by the ISP:

Secrets for authentication using CHAP
client server secret IP addresses
"foo" * "bar"

Because this file contains no IP address, the system we connect to defines our IP address.

Tip: The LPI Exam does not ask you how to use an easy-to-configure application such as pptp-config (http://www.freshmeat.net). It will ask

you how to use the command-line application and files discussed previously.

35.1.8.3. pon

pon is a script that eases the somewhat complex argument list pppd often needs to establish a dial-
up connection. pon connects to the profile of the provider you give on its command line. The
program itself does not produce much output, but pppd (called by pon) creates some entries in the
message log, especially when pppd is in debug mode. Following is the syntax for the command:

pon provider

The message log tells us that pon successfully established both the dial-up connection and the PPP
link:

Apr 24 18:22:18 foo pppd[1078]: pppd 2.4.2 started by root, uid 0
Apr 24 18:22:19 foo chat[1079]: abort on (BUSY)
Apr 24 18:22:19 foo chat[1079]: abort on (NO CARRIER)
Apr 24 18:22:19 foo chat[1079]: abort on (VOICE)
Apr 24 18:22:19 foo chat[1079]: abort on (NO DIALTONE)
Apr 24 18:22:19 foo chat[1079]: abort on (NO DIAL TONE)
Apr 24 18:22:19 foo chat[1079]: abort on (NO ANSWER)
Apr 24 18:22:19 foo chat[1079]: abort on (DELAYED)
Apr 24 18:22:19 foo chat[1079]: send (ATZ^M)
Apr 24 18:22:19 foo chat[1079]: expect (OK)
Apr 24 18:22:20 foo chat[1079]: ATZ^M^M
Apr 24 18:22:20 foo chat[1079]: OK
Apr 24 18:22:20 foo chat[1079]: -- got it
Apr 24 18:22:20 foo chat[1079]: send (ATDT22334455^M)
Apr 24 18:22:20 foo chat[1079]: expect (CONNECT)
Apr 24 18:22:20 foo chat[1079]: ^M
Apr 24 18:22:38 foo chat[1079]: ATDT22334455^M^M
Apr 24 18:22:38 foo chat[1079]: CONNECT
Apr 24 18:22:38 foo chat[1079]: -- got it
Apr 24 18:22:38 foo chat[1079]: send (\d)
Apr 24 18:22:39 foo pppd[1078]: Serial connection established.
Apr 24 18:22:39 foo pppd[1078]: Using interface ppp0
Apr 24 18:22:39 foo pppd[1078]: Connect: ppp0 <--> /dev/ttyS2
Apr 24 18:22:40 foo pppd[1078]: Remote message: login ok. welcome to PowerTech Internet.
Apr 24 18:22:40 foo pppd[1078]: PAP authentication succeeded
Apr 24 18:22:40 foo kernel: PPP BSD Compression module registered
Apr 24 18:22:41 foo kernel: PPP Deflate Compression module registered

Apr 24 18:22:41 foo pppd[1078]: local IP address 195.159.185.53
Apr 24 18:22:41 foo pppd[1078]: remote IP address 195.159.0.36
Apr 24 18:22:41 foo pppd[1078]: primary DNS address 195.159.0.100
Apr 24 18:22:41 foo pppd[1078]: secondary DNS address 195.159.0.200

The rather long preceding log example shows that the connecting process begins by starting pppd
and then calling the chat program. chat talks to the modem, first sending all the ABORT conditions,
then sending a modem reset (ATZ). The modem responds by saying OK . Then the modem is told to
call the ISP's phone number, expecting a CONNECT from the modem. Upon receiving the CONNECT ,
pppd resumes control and starts the PPP negotiation. Two kernel modules are loaded in the process,
the PPP BSD Compression module and the PPP Deflate Compression module. Finally, the IP
addresses of the Point-to-Point Protocol connection are set.

35.1.8.4. Checking a dial-up network connection

You can make sure your system really has an IP connection to the remote system by running ifconfig
and route :

ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol
 inet addr:195.159.185.53 P-t-P:195.159.0.36 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:14 errors:0 dropped:0 overruns:0 frame:0
 TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:2251 (2.1 KiB) TX bytes:390 (390.0 b)
route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
195.159.0.36 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0
0.0.0.0 195.159.0.36 0.0.0.0 UG 0 0 0 ppp0

35.1.8.5. The poff command

The syntax for using poff is:

poff [options] [provider]

The poff command tears down the PPP connection to the named provider. If more than one ISP is
connected, poff needs to know which ISP to disconnect. The most frequently used options are:

-a

Stop all running PPP connections. If the provider argument is given, it is ignored.

-c

Cause pppd to renegotiate compression, which is often useful when servers offer multiple
compression protocols.

-r

Cause the connection to be redialed after it is dropped.

35.1.8.6. The wvdial command

wvdial is a curses -based PPP dialer designed to replace the combinations of pppd configuration files
and chat scripts. wvdial is built to handle most dial-up situations, and can try PPP commands to
enable the connection if the ISP does not automatically enable one.

The syntax for the command is:

 wvdial [options] [section]

The most frequently used options are:

--chat

Run pppd and use wvdial just to establish the connection, instead of the default behavior of
establishing a connection and then starting pppd .

--config [configfile]

Use a different configuration file from the default /etc/wvdial.conf .

--no-syslog

Suppress the debug information normally sent to syslog. Useful only if used with the --chat
option.

35.1.8.7. Configuring wvdial: wvdialconf

The wvdialconf command creates the wvdial configuration file. This file is usually located at
/etc/wvdial.conf . Invoke wvdialconf as follows:

wvdialconf config_file

You can name the file anything you wish, though /etc/wvdial.conf is the standard name and location.

35.1.8.8. wvdialconf examples

Following is the successful execution of wvdialconf :

wvdialconf /etc/wvdial.conf
Scanning your serial ports for a modem.

Port Scan<*1>: Scanning ttyS2 first, /dev/modem is a link to it.
ttyS2<*1>: ATQ0 V1 E1 -- OK
ttyS2<*1>: ATQ0 V1 E1 Z -- OK
ttyS2<*1>: ATQ0 V1 E1 S0=0 -- OK
ttyS2<*1>: ATQ0 V1 E1 S0=0 &C1 -- OK
ttyS2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 -- OK
ttyS2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK
ttyS2<*1>: Modem Identifier: ATI -- 3361
ttyS2<*1>: Speed 4800: AT -- OK
ttyS2<*1>: Speed 9600: AT -- OK
ttyS2<*1>: Speed 19200: AT -- OK
ttyS2<*1>: Speed 38400: AT -- OK
ttyS2<*1>: Speed 57600: AT -- OK
ttyS2<*1>: Speed 115200: AT -- OK
ttyS2<*1>: Max speed is 115200; that should be safe.
ttyS2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK

Found a modem on /dev/ttyS2, using link /dev/modem in config.
Modem configuration written to /etc/wvdial.conf.
ttyS2<Info>: Speed 115200; init "ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0"

You can then edit the /etc/wvdial.conf file and supply the ISP login details.

Tip: wvdialconf may fail to create a configuration file and complain that no modem can be found. If this is the case, make sure that you have

attached the external modem to your serial port and turned it on. If you are using an internal modem, verify that you are not using a Winmodem,

which is a low-cost modem that relies on software and the CPU to function properly. Many times, your Linux system does not have the

necessary drivers to use a Winmodem device.

35.1.8.9. Sample /etc/wvdial.conf file

An example follows of a standard wvdial.conf file, including the parameters that the user has to
enter manually:

[Dialer Defaults]
Modem = /dev/ttyS2
Baud = 115200
Init1 = ATZ
Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ISDN
 = 0
Modem Type = Analog Modem
Phone = 22334455
Username = foo

Password = bar

With this file, run the wvdial program to establish the PPP link:

wvdial
--> WvDial: Internet dialer version 1.53
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Modem initialized.
--> Sending: ATDT22334455
--> Waiting for carrier.
ATDT22334455
CONNECT 115200
--> Carrier detected. Starting PPP immediately.
--> Starting pppd at Sat Apr 24 19:42:12 2004
--> pid of pppd: 1961

Check with ifconfig and route -n to assure yourself that the PPP connection is now up and running.

35.1.8.10. ISDN connections

Connecting to a remote network via an ISDN adapter is more of a black box on Linux. Most
distributions supply utilities to set up the ISDN link. To configure an ISDN connection manually, the
programs isdnctrl and ipppd are essential. First of all, however, the ISDN adapter must be
recognized by the Linux system. This part may require some work. On my system, an old ISDN
adapter that uses the hisax module is installed. If I enter:

modprobe hisax type=3 protocol=2 io=0x180 irq=9

The kernel responds with these entries in the message log:

Apr 25 15:02:19 foo kernel: isapnp: Scanning for PnP cards...
Apr 25 15:02:19 foo kernel: isapnp: No Plug & Play device found
Apr 25 15:02:20 foo kernel: HiSax: Linux Driver for passive ISDN cards
Apr 25 15:02:20 foo kernel: HiSax: Version 3.5 (module)
Apr 25 15:02:20 foo kernel: HiSax: Layer1 Revision 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: Layer2 Revision 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: TeiMgr Revision 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: Layer3 Revision 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: LinkLayer Revision 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: Certification not verified
Apr 25 15:02:20 foo kernel: HiSax: Total 1 card defined

Apr 25 15:02:20 foo kernel: HiSax: Card 1 Protocol EDSS1 Id=HiSax (0)
Apr 25 15:02:20 foo kernel: HiSax: Teles IO driver Rev. 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: Teles 16.3 config irq:9 isac:0x980 cfg:0xD80
Apr 25 15:02:20 foo kernel: HiSax: hscx A:0x180 hscx B:0x580
Apr 25 15:02:20 foo kernel: Teles3: ISAC version (0): 2086/2186 V1.1
Apr 25 15:02:20 foo kernel: Teles3: HSCX version A: V2.1 B: V2.1
Apr 25 15:02:20 foo kernel: Teles 16.3: IRQ 9 count 0
Apr 25 15:02:20 foo kernel: Teles 16.3: IRQ 9 count 3
Apr 25 15:02:20 foo kernel: HiSax: DSS1 Rev. 1.1.4.1
Apr 25 15:02:20 foo kernel: HiSax: 2 channels added
Apr 25 15:02:20 foo kernel: HiSax: MAX_WAITING_CALLS added

The kernel responds this way because I have told the hisax module that I have a Teles 16.3 card,
also known as a type=3 card. I also have told the card that I am using the DSS1 protocol for the
ISDN D channel, which is known as type 2 in this situation. Finally, the I/O address is 0x180, and I
am using IRQ 9 for the card.

35.1.8.11. The ipppd daemon

The ISDN Point-to-Point Protocol Daemon, ipppd , is a modified version of pppd , designed to
provide synchronous PPP connections over ISDN devices. The syntax is:

ipppd [options] [device]

Some options override defaults by disabling features; these options start with hyphens. The most
frequently used options are:

-bsdcomp

Disable compression. Used when the ISP does not support compression.

defaultroute

Indicates that when the PPP connection is established, it should be the host's default route. If
a default route already exists on the system, no action is taken.

-detach

Does not fork and become a background process. Useful when debugging.

device

Defines the device to connect to.

mru number

Sets the Maximum Receive Unit to number . The default is 1500.

noipdefault

Lets the ISP decide the address on the local end of the PPP link.

user username

Specifies the username to be used when dialing the ISP. The username must have a corresponding
entry in /etc/ppp/pap-secrets .

35.1.8.12. The isdnctrl command

The ISDN control command, isdncrtl , is used to create and delete ISDN network interfaces. It helps
create the parameters and phone numbers for dial-in and dial-out. You can also use isdncrtl to list
the current parameters of an already configured network interface.

The syntax for the command is:

isdnctrl action device

Following are the most often used options:

addif device

Lets isdnctrl control the named device.

addphone device out number

Links the device to the number that goes to the ISP dial-in ISDN pool.

dialmode device [off |manual |auto]

Defines how the device should react to outgoing and incoming connection requests. If set to
off , no connection is possible. If set to manual , an outgoing connection can be established
only by issuing the command isdnctrl dial device . If set to auto , the device will establish a

connection when IP traffic is about to leave the system (or the local network, if your system is
configured as an ISDN router).

eaz device number

Adds the dialing system's ISDN number.

encap device syncppp

Configures the device to encapsulate the IP traffic using synchronous PPP.

huptimeout device 120

Set the idle timeout on the device to 120 seconds. When no IP traffic runs through the ISDN
adapter for 120 seconds, it will tear down the connection.

l2 _prot device hdlc

Indicate that HDLC is the Layer 2 protocol when using ISDN.

l3 _prot device trans

Indicate that trans is the Layer 3 protocol when using ISDN. This command is not really
necessary, as TRans is the default.

pppbind device number

Link the ISDN device to the PPP device /dev/ippp number . This works only for synchronous

PPP. The last value must be a number.

secure device on

This is not used when dialing out. When configuring a dial-in service, this may be set to allow
specific phone numbers to use the dial-in service.

35.1.8.13. Using isdnctrl

Running the isdnctrl command with real-life parameters results in output such as the following:

isdnctrl addif ippp0
ippp0 added
isdnctrl addphone ippp0 out 21405060
isdnctrl eaz ippp0 33129027
EAZ/MSN for ippp0 is 33129027
isdnctrl huptimeout ippp0 120
Hangup-Timeout for ippp0 is 120 sec.
isdnctrl secure ippp0 on
Security for ippp0 is on
isdnctrl l2_prot ippp0 hdlc
Layer-2-Protocol for ippp0 is hdlc
isdnctrl l3_prot ippp0 trans
Layer-3-Protocol for ippp0 is trans
isdnctrl encap ippp0 syncppp
Encapsulation for ippp0 is syncppp
isdnctrl pppbind ippp0 0
ippp0 bound to 0
isdnctrl dialmode ippp0 auto

The ISDN adapter has now been configured to know each detail needed to establish a remote ISDN
connection. To link the system's PPP stack into the ISDN system, the ISDN Point-to-Point Protocol
Daemon (ipppd) must run:

ipppd user foo defaultroute noipdefault -detach mru 1524 \
 -bsdcomp /dev/ippp0 &

This command creates the following log output:

Apr 25 15:57:12 foo ipppd[599]: Found 1 device:
Apr 25 15:57:12 foo ipppd[599]: ipppd i2.2.12 (isdn4linux version of pppd by MH) started
Apr 25 15:57:12 foo ipppd[599]: init_unit: 0
Apr 25 15:57:12 foo kernel: ippp, open, slot: 0, minor: 0, state: 0000
Apr 25 15:57:12 foo kernel: ippp_ccp: allocated reset data structure c3966000
Apr 25 15:57:12 foo ipppd[599]: Connect[0]: /dev/ippp0, fd: 7

Because we set the dial mode to auto (by issuing the command isdnctrl dialmode

ippp0 auto), the connection will be established on demand and taken down after a
specified number of seconds of idle time. This is how to manually activate the ISDN PPP
connection:
isdnctrl dial ippp0
Dialing of ippp0 triggered

Your ISDN connection has now been created. To manually hang up the PPP connection, enter:

isdnctrl hangup ippp0
 ippp0 hung up

35.1.8.14. Multihomed systems

Computers with more than one network connection are often referred to as multihomed . Examples
of such network connections may be two (or more) Ethernet NICs used to connect a small or home
office to a cable or DSL modem. In some situations, you may use one Ethernet NIC for connecting to
the LAN and an ISDN adapter to provide Internet access, although this is rare in many countries. No
matter what configuration you choose, multihomed systems are increasingly popular. There may be
a variety of reasons to use a multihomed host. Most often, however, this configuration is used when
a Linux system serves as a router (and usually a firewall as well).

35.1.8.15. IP routing configuration

When configuring a router, one detail must not be forgotten: enable IP routing. This is done by
setting the value of /proc/sys/net/ipv4/ip_forward to 1 (one). The system configuration files to
enable this routing are /etc/network/options in Debian (set ip_forward=yes) and /etc/sysctl.conf in
Fedora (set net.ipv4.ip_forward = 1). When this is enabled, you have a router running. If the
nodes on your networks (on both or all sides of the multihomed Linux system) set your system's IP
address as their default gateway, they will reach each other, being routed by the Linux host.

The following is a simple way to enable IP forwarding from a command line:

sudo echo "1" > /proc/sys/net/ipv4/ip_forward

You can alternatively configure the /etc/network/options file, changing the ip_forward=no value to
ip_forward=yes . You have to be root to accomplish either of these tasks. In a safe and peaceful
network environment, this is all that is needed. If you are not in that situation, adding a firewall
using iptables is recommended, even on dial-up links. Configuring firewalls is covered by Chapter 40
.

35.1.8.16. IP forwarding versus firewalling and Network Address Translation (NAT)

Simply enabling IP forwarding does not create a firewall, nor does it allow you to route private IP
addresses to the Internet. Three ranges of IP addresses have been set aside for private networks .
These IP addresses are automatically dropped by all Internet routers. Internal routers for your
network will pass these IP addresses, however.

The private IP address ranges are:

The entire 10.0.0.0 IP address block, with the subnet mask of 255.0.0

All IP addresses between 172.16.0.0 and 172.31.255.255,with the subnet mask of 255.240.0.0

All IP addresses between 192.168.0.0 and 192.168.255.255, with the subnet mask of
255.255.0.0

In order to route these IP addresses on to the Internet, you need to engage in Network Address
Translation. The iptables or ipchains command allows you to do this. iptables is preferred in modern
versions of Linux. These commands also allow you to control the packets that pass between
multihomed systems, thereby making your router a firewall. See Chapter 40 for more information
about using iptables to enable NAT and firewalling.

35.2. Objective 2: Advanced Network Configuration and
Troubleshooting

For this Objective, make sure that you focus on troubleshooting, not just knowing the names of
commands. By troubleshooting, we mean being able to:

Use the applications and configuration files discussed earlier in the chapter

Review configuration files for simple problems (e.g., misspellings and mis-entered lines)

Review log files for problems

Generally keep your cool when faced with balky systems

Although the LPI Exams don't really test you on the last item, we assume that many people reading
this book are using it to learn essential Linux skills, as the LPI Exam examines real-world
knowledge.

This section contains scenarios that help you learn more about the depth of troubleshooting skills
you will need. We'll cover practical uses of netstat, tcpdump, ethereal (and the associated tethereal
application), lsof, and netcat (nc). It is also important for you to understand ping and the utilities
shown earlier in this chapter in a troubleshooting situation. But we'll start with one of the most basic
utilities in networking.

35.2.1. Simple Connectivity Example: Telnet

Suppose an employee reports that the intranet web server is unavailable. What do you do? Open up
a web browser? That won't provide much more informaiton than the employee already told you.
Instead, try Telnet. Don't get incredulousTelnet is a terrific troubleshooting tool.

Depending on your location, you can use Telnet to log in to the system and check the process list to
see if the web server is running. If it is, issue the command telnet localhost 80 while still on the web
server host, specifying that you want to talk to port 80 (HTTP) on the server. A sample session looks
like this:

telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 302 Found
Date: Mon, 26 Jul 2005 13:14:44 GMT
Server: Apache/1.3.29 (Debian GNU/Linux) PHP/4.1.2 mod_ssl/2.8.16 OpenSSL/0.9.7c
X-Powered-By: PHP/4.1.2
Location: http://intranet.company.test/

Connection: close
Content-Type: text/html; charset=iso-8859-1

Connection closed by foreign host.

The typical HTTP response from the web server tells you it can respond to requests properly on port
80. But this test bypasses any possible network problem, because you're on the same host as the
web server when you run Telnet.

Now run the Telnet command from another host:

telnet intranet.company.test 80

The outcome of this test determines what you do next: success will suggest you query the employee
more carefully to find out why his particular request failed, while failure suggests you look at the
components of your network that permit communication, including DNS and the web server
configuration itself.

Simple as it may be, Telnet may be one of your most valuable tools when troubleshooting networks.
We would never willingly use Telnet to configure a remote system, but it is very useful for
troubleshooting. netcat is much more capable, of course. However, netcat is not always available,
while Telnet usually is. You would not use SSH when troubleshooting, because it will try to encrypt
the connection, causing the connection to fail.

The ability to speak directly to the service's listening port at a low level using Telnet or netcat is
often invaluable, because client software such as a browser works at too high a level. It does not
give an administrator the required level of control over situations. The great strength of using Linux
is that you can break down troubleshooting into network connectivity, DNS resolution, and so on,
using various tools. It is vital that you use command-line tools, because they provide the most
information. A Telnet test to see whether the remote service is listening gives a quite clear answer to
whether this is a network problem or a client/server application problem.

35.2.1.1. Using tcpdump

tcpdump is another extremely useful tool. Contrary to its name, it does a good deal more than
display information from the TCP headers of packets; it actually understands a wide range of
protocols. So you can use tcpdump to read packet captures created by various applications (e.g.,
ethereal and Snort).

tcpdump is text based; it does not have a fancy GUI or even an ncurses interface. The independence
from the X Window System is a blessing, because many times you will be asked to monitor traffic
from a host that does not have X running.

Some still might think that tcpdump's lack of a fancy GUI indicates the tool is unsophisticated. They
would be mistaken. tcpdump is quite sophisticated. It can sniff traffic on many types of networks,
including 802.1Q VLANs. It can sniff on standard hub-based networks as well as switched-based
networks. There is one overriding factor regarding tcpdump: you need to use the right options and
syntax. Otherwise, you will be lost.

The reason your choice of options is so important is that a production network provides tcpdump
with far too much information. That is the main difficulty in using tcpdump. You need to tell it to be
selective.

The syntax for tcpdump is:

tcpdump [options] [expression]

Some of the most commonly used options are:

-c count

Capture count packets, then stop.

-D

List the devices (interfaces) that are configured on the system. If you are lucky, the device will
have an accompanying description that will help you know whether the interface can capture
packets.

-i interface

Listen to interface. If set to any, tcpdump listens to all interfaces.

-q

Quiet operation: show less information on each capture. (The manpages refer to -q as "quick"
as well.)

-r file

Read a previously written tcpdump file.

-s 0

Set the "snaplength" to 0. tcpdump thus reads the whole packet instead of just the first 68
bytes, which is the default.

-t

Suppress timestamp entries.

-v, -vv, -vvv

Print a lot of information; the more v s in the option, the more verbose the output.

-w file

Write the displayed information to file. This file may later be analyzed at your leisure using
either tcpdump in read mode (with the -r file option) or ethereal.

35.2.1.2. tcpdump expressions

It is not enough to know tcpdump's options; the volume of traffic displayed makes it unlikely you
will find what you need to know unless you also use expressions. The ones given here are quite
useful. Make sure that you understand them before you take the exam.

not port ssh

Filter out any SSH traffic. Extremely useful if you run tcpdump from a shell on a remote host,
so you won't see your own login connection.

Tip: It is more accurate to say that the not port ssh command suppresses traffic that uses port 22. The SSH protocol uses this port by

default. If, for some reason, some other application was using that port, you would not view that traffic, either.

ip proto \\icmp

Specify that only ICMP traffic is to be monitored.

dst 192.168.0.1

Monitor only network traffic destined for host 192.168.0.1.

src 192.168.0.1

Monitor only for network traffic originating from host 192.168.0.1.

host 192.168.0.1

Monitor only network traffic involving host 192.168.0.1, both ways.

host 192.168.0.1 and host 192.168.0.2

Monitor only traffic between these two hosts, both ways.

src 192.168.0.1 and dst 192.168.0.2

Monitor only traffic from 192.168.0.1 to 192.168.0.2, not vice versa.

As these sample expressions show, you can manipulate the options by using familiar Boolean
operations, expressed as words or punctuation: not (!), and (&&), or (||).

Some examples of how you can use tcpdump to monitor network traffic follow.

35.2.1.3. Example #1

In this example, you will view all network traffic on the second Ethernet interface (eth1) of the host
having the IP address of 192.168.45.1, with the exception of SSH traffic:

tcpdump -i eth1 -v -vv -vvv -s0 not port ssh and host 192.168.45.1

This command might be useful if you are on a host on a local area network and want to see
everything traveling to and from a hub.

35.2.1.4. Example #2

The following example captures all network traffic on interface eth0 destined to port 80 on the host
192.168.0.20 and writes the raw data to the file /tmp/web:

tcpdump -i eth0 -w /tmp/web -s0 dst 192.168.0.20 and dst port 80

This command actually doesn't need to specify the interface, because tcpdump defaults to the eth0
interface.

35.2.1.5. Example #3

In this example, the expression captures a brief view of the handshake that occurs when an email
client contacts a POP-3 daemon residing on host 192.168.0.20:

tcpdump -t -n -q host 192.168.0.20 and host 192.168.1.18 and port 110
tcpdump: listening on eth0
192.168.1.18.1035 > 192.168.0.20.110: tcp 0 (DF) [tos 0x10]
192.168.0.20.110 > 192.168.1.18.1035: tcp 0 (DF)
192.168.1.18.1035 > 192.168.0.20.110: tcp 0 (DF) [tos 0x10]
192.168.0.20.110 > 192.168.1.18.1035: tcp 113 (DF)
192.168.1.18.1035 > 192.168.0.20.110: tcp 0 (DF) [tos 0x10]
192.168.1.18.1035 > 192.168.0.20.110: tcp 14 (DF) [tos 0x10]
192.168.0.20.110 > 192.168.1.18.1035: tcp 0 (DF)
192.168.0.20.110 > 192.168.1.18.1035: tcp 36 (DF)

tcpdump captures the packets in "quiet mode," meaning it provides only an overview showing the IP
addresses involved as well as source and destination ports. As the example shows, the source port is
an arbitrary port above 1023 on the client IP. The output is useful for debugging.

35.2.1.6. Example #4

For this final example, we have set an improper static route to the client IP address on the
destination POP-3 server. The result of this misconfiguration is that all of the return packets are lost.
The tcpdump output shows that the client tries to initiate a connection, but cannot get a response
from the POP-3 server:

tcpdump -t -n -q host 192.168.0.20 and host 192.168.1.18 and port 110
tcpdump: listening on eth0
192.168.1.18.1037 > 192.168.0.20.110: tcp 0 (DF)
192.168.1.18.1037 > 192.168.0.20.110: tcp 0 (DF)
192.168.1.18.1037 > 192.168.0.20.110: tcp 0 (DF)
192.168.1.18.1037 > 192.168.0.20.110: tcp 0 (DF)
192.168.1.18.1037 > 192.168.0.20.110: tcp 0 (DF)

tcpdump output such as this is usually caused either by asymmetric routingwhere the return packets
leave the host on another interface from the one that received trafficor when a service has broken
down but still keeps listening to the TCP port.

Make sure that you are familiar with how to exclude packets, as well as how to "drill down" into the
packets that you have captured using tcpdump. Not only will you find it easier to pass the exam, but
you will also be a better networker.

35.2.1.7. ethereal and tethereal

Although tcpdump is versatile and powerful, ethereal has much to offer it as well; it is an excellent
GUI-based packet sniffer. You can use ethereal, as you can tcpdump, to obtain a detailed analysis of
network traffic. It may be used in interactive mode to capture network activity on the fly or in file
mode to analyze an input file captured earlier. ethereal is capable of reading various packet capture
files, including those created by tcpdump. A text-only version called tethereal is usually installed
along with ethereal.

The syntax for ethereal and tethereal is:

etheral [options] [file]
tetheral [options] [file]

A couple of frequently used options, which are the same as the corresponding tcpdump options, are:

-c count

Capture only count packets.

-s snaplength

Set the amount of each packet read. Set to 0 to ensure the entire packet is captured.

tethereal's output from a simple ping packet (ICMP request) looks like this:

tethereal -V -r /tmp/ping
Frame 1 (98 bytes on wire, 96 bytes captured)
 Arrival Time: Apr 26, 2004 06:20:32.926621000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 98 bytes
 Capture Length: 96 bytes
Ethernet II, Src: 00:c0:f0:30:1d:5e, Dst: 00:01:02:f7:7c:4b
 Destination: 00:01:02:f7:7c:4b (3com_f7:7c:4b)
 Source: 00:c0:f0:30:1d:5e (Kingston_30:1d:5e)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.18 (192.168.1.18), Dst Addr: 192.168.0.20
(192.168.0.20)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 84
 Identification: 0x0000 (0)
 Flags: 0x04
 0... = Reserved bit: Not set
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: ICMP (0x01)
 Header checksum: 0xb832 (correct)
 Source: 192.168.1.18 (192.168.1.18)
 Destination: 192.168.0.20 (192.168.0.20)
Internet Control Message Protocol
 Type: 8 (Echo (ping) request)
 Code: 0
 Checksum: 0xb958
 Identifier: 0x3507
 Sequence number: 0x0000
 Data (54 bytes)

0000 4b aa 8c 40 3b b2 0b 00 08 09 0a 0b 0c 0d 0e 0f K..@;...........
0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0020 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&'()*+,-./
0030 30 31 32 33 34 35 012345

As the output shows, every network layer and protocol involved are analyzed.

Figure 35-3 shows an example of ethereal viewing packets on an Ubuntu system.

Figure 35-3. ethereal in action

The ethereal layout makes it much easier to view the important details of packets than the output of
either tcpdump or tethereal. ethereal also provides fairly effective ways to measure network traffic
volumes. You can filter packets either during a packet capture, using expressions, or after the
capture.

35.2.1.8. The lsof command

The lsof command lists all open files on your system. Because Linux systems treat everything,
including open network sockets, as files, lsof is useful when troubleshooting network connections. By
using a few of its options, as well as piping it through grep, you can determine the origin of network
connections, as well as find open ports on your system.

The syntax for using lsof is:

lsof [options]

Some of the most frequently used options include:

-i

List IP sockets. Accepts parameters that can restrict the sockets listed, such as -i tcp, -i udp,
or -i 192.168.1.1.

-n

Do not resolve hostnames; can make lsof run faster.

-P

Do not resolve port names; can make lsof run faster

All the examples in this section include the -i option, because we want to see only sockets and not
other open files on the system. Some examples further restrict the types of sockets viewed to a
particular protocol.

35.2.1.9. Example #1

This example tells lsof to report only open network files (i.e., sockets) and to ignore hostnames:

lsof -i -n
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
dhclient 1047 root 5u IPv4 2068 UDP *:bootpc
portmap 1113 rpc 3u IPv4 2183 UDP *:sunrpc
portmap 1113 rpc 4u IPv4 2187 TCP *:sunrpc (LISTEN)
rpc.statd 1132 rpcuser 4u IPv4 2217 UDP *:1024
rpc.statd 1132 rpcuser 5u IPv4 2207 UDP *:884
rpc.statd 1132 rpcuser 6u IPv4 2220 TCP *:1024 (LISTEN)
cupsd 1267 root 0u IPv4 2487 TCP 127.0.0.1:ipp (LISTEN)
cupsd 1267 root 2u IPv4 2488 UDP *:ipp
sshd 1470 root 3u IPv6 2567 TCP *:ssh (LISTEN)
xinetd 1483 root 5u IPv4 2605 TCP 127.0.0.1:1025 (LISTEN)
sendmail 1501 root 4u IPv4 2650 TCP 127.0.0.1:smtp (LISTEN)

35.2.1.10. Example #2

This example further restricts the listing to TCP-based connections:

lsof -i tcp -n
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 1113 rpc 4u IPv4 2187 TCP *:sunrpc (LISTEN)
rpc.statd 1132 rpcuser 6u IPv4 2220 TCP *:1024 (LISTEN)
cupsd 1267 root 0u IPv4 2487 TCP 127.0.0.1:ipp (LISTEN)
sshd 1470 root 3u IPv6 2567 TCP *:ssh (LISTEN)
xinetd 1483 root 5u IPv4 2605 TCP 127.0.0.1:1025 (LISTEN)
sendmail 1501 root 4u IPv4 2650 TCP 127.0.0.1:smtp (LISTEN)

35.2.1.11. Example #3

This example lists only UDP-based connections:

lsof -i udp -n
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
dhclient 1047 root 5u IPv4 2068 UDP *:bootpc
portmap 1113 rpc 3u IPv4 2183 UDP *:sunrpc
rpc.statd 1132 rpcuser 4u IPv4 2217 UDP *:1024
rpc.statd 1132 rpcuser 5u IPv4 2207 UDP *:884
cupsd 1267 root 2u IPv4 2488 UDP *:ipp

35.2.1.12. Example #4

In this example and the next, notice how you can use grep to isolate the port used by the network
socket:

lsof -i -n -P | grep sendmail
sendmail 1501 root 4u IPv4 2650 TCP 127.0.0.1:25 (LISTEN)

This example uses the -P option, which tells lsof not to convert port numbers to names. As a result,
you see (in the right-most column, just after the colon) that sendmail is running on port 25, the
standard SMTP port.

35.2.1.13. Example #5

In this example, notice that the +P option is used, so that the name of the protocol instead of the
port number is listed:

lsof -i -n +P | grep sendmail
sendmail 1501 root 4u IPv4 2650 TCP 127.0.0.1:smtp (LISTEN)

Notice now that you see smtp in the port field. The +P option is the default.

One possible use of lsof is in combination with the fuser commandfor example, to kill certain
processes associated with suspicious network connections or to stop malfunctioning network
processes.

35.2.1.14. The netstat command

netstat, like lsof, can find standard ports open on your system, as well as ports opened by
applications such as netcat. netstat can help you determine TCP- and UDP-based connections and let
you view your system's routing table.

netstat's syntax is:

netstat [options]

Frequently used options include:

-a

List all sockets.

-e

Extended mode. Use twice for more details.

--inet

List only IP connections.

-l

Show only listening sockets.

-n

Do not resolve IP addresses to hostnames.

-p

Show the process ID (PID) and name of the program holding the socket.

-r

Show the host's routing table (similar to the route command).

35.2.1.15. Example #1

List only open IP-based network connections and show the PID, as well as the program and
username that opened the file:

netstat -apne --inet

This command also places output into extended view (-e option). This offers more information,
including the network socket's inode and the associated user.

35.2.1.16. Example #2

You can also list all of the ports that are currently listening:

netstat -le --inet

35.2.1.17. Example #3

To view the system's routing table and ignore name resolution, enter:

netstat -nre

35.2.2. netcat (nc)

netcat allows you to establish, analyze, and read connections between systems. It is a very useful
program, and you should count it as one of the more useful weapons in your troubleshooting
arsenal. You can also use netcat to open ports on your local system, which has various uses. For
example, you can place your system behind the firewall and run netcat on your system to open up a
port (e.g., port 80). You can then conduct a penetration test using a system outside of the firewall to
see whether the firewall is properly blocking packets to internal systems. Conveniently enough, you
can use netcat to simulate both the client and the server in this case.

netcat is installed by default on many systems. If it is not installed, obtain it by using your
packaging tool (e.g., rpm, YaST, dpkg, apt, or Synaptic) or download the source code from
http://netcat.sourceforge.net.

The syntax is:

 nc [options] hostname [ports]
 nc -l -p port [options] [hostname] [ports]

On many Linux systems, nc is the actual binary and the netcat file is a symbolic link to it.

netcat is capable of connecting to and listening on any port. It can use both TCP and UDP. Because
netcat is able to both listen and send, it may be used for file transfers between systems. Many
systems are not configured with Samba, FTP, or SSH; netcat acts as a useful, quick, adhoc file
transfer solution in these cases.

Finally, you can also use netcat to analyze the protocol of a network client by directing the client to a
listening netcat process. You can then view the connection's state to determine how the host handles
connections.

35.2.2.1. Example #1

http://netcat.sourceforge.net

When you start netcat with host and port arguments, the service running on the given host and port
are contacted. Whatever you enter into netcat will be sent to the service, and any response will be
shown to you. Following is a simple example.

First, tell netcat to read port 80 on your own system:

$ nc localhost 80

Once you connect, netcat will keep the connection persistent. You may be tempted to think that the
connection has "hung," but that is not the case. netcat is simply keeping it open, which allows you to
then formulate a request. In this case, because you have opened a connection to your web server,
create a simple HTTP request, imitating a basic web client:

HEAD / HTTP/1.0

The web server will then issue a response, similar to that shown here:

HTTP/1.1 302 Found
Date: Mon, 26 Jul 2005 04:27:12 GMT
Server: Apache/1.3.29 (Debian GNU/Linux) PHP/4.1.2 mod_ssl/2.8.16 OpenSSL/0.9.7c
X-Powered-By: PHP/4.1.2
Location: http://www.company.test/
Connection: close
Content-Type: text/html; charset=iso-8859-1

What you see will vary, depending on how verbose your version of the Apache server is and the
nature of the request you type. Notice in the preceding example how the web server has returned
quite a bit of information. Legitimate uses of this information include determining the exact
configuration of the web server. Illegitimate uses of this tool include trying to determine a server's
configuration so that an intruder can attack its weaknesses.

35.2.2.2. Example #2

In this example, netcat transfers files from one host to another. Suppose that host A is the one
receiving the file. The following command on host A allows netcat to listen to traffic on an arbitrarily
chosen port and receive a file:

nc -l -p 1234 | tar xvfp -

Tip: In order for netcat to obtain a network socket, you have to run it with root privileges.

Now that host A is listening and ready to receive, you can send a file from host B using netcat on
that system:

tar cfp - /some/dir | nc -w 3 hostA 1234

35.2.2.3. Example #3

You can also use other applications instead of tar: for example, dd or cat. In the following example,
netcat writes a complete backup of the /dev/hda1 partition to a file on a remote host. On host A, the
receiving end, enter:

nc -l -p 1234 | dd of=backup_hda1

On host B, the host containing the hda1 device to be copied, issue the following command:

dd if=/dev/hda1 | nc -w 3 hostA 1234

You now know how to use the tools referred to in the LPI 202 Exam. You also understand the
advanced networking concepts and troubleshooting tools assumed in the exam. Now, find a "live"
Linux system and experiment with what you have found. Once you do that, you will be ready to pass
this portion of the exam.

Chapter 36. Mail and News (Topic 2.206)
This chapter covers the running and administration of mail and news services. The four LPI Exam
Objectives are as follows. We deliberately cover them in this chapter out of order, because Sendmail
configuration must be understood before some of the others.

Objective 2: Using Sendmail

Candidates should be able to manage a Sendmail configuration, including email aliases, mail
quotas, and virtual mail domains. This Objective includes configuring internal mail relays and
monitoring SMTP servers. Key files, terms, and utilities include /etc/aliases, sendmail.cw,
virtusertable, and genericstable. Weight: 4.

Objective 3: Managing Mail Traffic

Candidates should be able to implement client mail management software to filter, sort, and
monitor incoming user mail. This objective includes using software such as Procmail on both
server and client side. Weight: 3.

Objective 1: Configuring Mailing Lists

Install and maintain mailing lists using Majordomo. Monitor Majordomo problems by viewing
Majordomo logs. Weight: 1.

Objective 4: Serving News

Candidates should be able to install and configure news servers using INN. This Objective
includes customizing and monitoring served newsgroups. Weight: 1.

36.1. Objective 2: Using Sendmail

First, it's important to understand Sendmail's function in regard to email. To do this, it is necessary
to learn some terminology. Sendmail is a Message Transfer Agent (MTA)the oldest one in existence.
The MTA has two jobs: to ensure that mail messages are transferred between entities and to place
those messages in a destination directory. The MTA can also authenticate parties, but this is just
part of its function of transferring messages between users or hosts.

In contrast, a POP or IMAP server is called a Message Delivery Agent (MDA). The MDA's job is
responsible for providing mechanisms that allow users to retrieve their messages. Both the MTA and
MDA are usually server-based functions. The tool that you use to send and receive email is called a
Message User Agent (MUA). The MUA is most often a client-side tool, though with web-based mail,
the MUA's function becomes complicated to some extent, because the ability to send and receive
email is more evenly split between the web browser and a server.

Sendmail is an old MTA; it has has been in constant use for decades. It is the subject of one of the
largest O'Reilly books, the well-known "bat book," so called because it has a bat on its cover. This
section in no way is meant to replace that remarkable achievement. However, this section will help
you get a handle on how much you need to learn about Sendmail in order to pass the LPI Level 2
Exam. But before we move on with the specifics of Sendmail configuration , it is important to
understand that other MTAs also exist. Table 36-1 lists the most popular MTAs used with Linux
servers.

Sendmail

http://www.sendmail.org

The traditional MTA. This chapter's examples are based on Sendmail from the Sendmail Consortium.

Postfix

http://www.postfix.org

A common Sendmail replacement, considered more lightweight.

Qmail

http://www.qmail.org

Often used to replace Sendmail as the network MTA.

Exim

http://www.exim.org

A relatively new replacement, the default MTA in the Debian distribution.

Table 36-1. Common MTAs

http://www.sendmail.org
http://www.postfix.org
http://www.qmail.org
http://www.exim.org

MTA Available at Description

Not only is the configuration of MTAs an important skill to enable mail service, but many other
services also demand an MTA and interact with it. For example, mailing list servers such as
Majordomo (discussed later in this chapter) use an MTA.

36.1.1. Sendmail Configuration

A properly configured email server doesn't need constant attention. When everything's configured
properly, few things can go wrong. And when something does go wrong, the protocol used by
Sendmail and other Internet MTAs, the Simple Mail Transfer Protocol (SMTP), tends to keep
messages buffered until the systems are up again.

In this chapter you will be guided through the configuration and securing of your Sendmail server.
The examples are based on a fairly new version of Sendmail, 8.12.10. As Sendmail has had its share
of security issues, you are strongly encouraged to upgrade your Sendmail software to a recent
version. If your Linux distribution is not very new, check your distribution's web site for erratas and
upgrades. Also, antispam features are better supported in recent versions of Sendmail.

The Continuing Importance of Sendmail

Some controversy exists in LPI circles concerning the Sendmail Objective. "Why cover Sendmail
when so many have gone over to Qmail or Postfix?" people often ask. The answer is relatively
simple: tradition.

Yes, Sendmail has a long, storied history of buffer overflows and security problems. Its longevity has
helped contribute to code bloat and needless difficulty in configuration. Yes, other daemons have
been written "from scratch" with security in mind, whereas Sendmail was put together in ragtag
fashion for years. But again, Sendmail is used by most of the corporations and organizations hiring
people. Sendmail also underwent a complete rewrite some years ago. Even though configuring
Sendmail often requires the administrator to know its history and a good many other associated
protocols (e.g., DNS), it remains the de facto standard.

Nearly 75% of all email worldwide is still handled by Sendmail. This means that regardless of your
preference or passion, you are likely to come across a Sendmail installation in your career as a Linux
professional.

Increasingly, Sendmail is being replaced by other MTAs by major Linux distributions. One day, LPI
will find in its review of small and medium enterprises that the balance has tipped toward newer
MTAs. When it does, you can rest assured that the Objective will change, too.

Also, even though most Linux distributions offer other default MTAs, they still require you to know
the same concepts and principles. Many of the practices are the same, too. So, if you know
Sendmail, you'll be able to quickly learn other MTAs as well.

36.1.1.1. Building and editing configuration files: the m4 utility

The Sendmail configuration file, usually stored in /etc/mail/sendmail.cf , is designed to be easily
understood by the mail server software. Unfortunately, email servers don't read files as humans do,
and Sendmail has achieved a well-deserved reputation for being difficult to configure.

To remedy this, the creators of Sendmail decided to create a more human-readable set of macros to
help configure the daemon. If you learn the basics of the Unix m4 macro language for which the
macros are written and adapt the macros to your needs in a plain text file, you can use the m4
utility to convert your macro file into a valid sendmail.cf file.

Tip: The m4 utility is often not installed, even if Sendmail is the MTA used on the server. Use your package management utility (such as apt-

get , rpm , or YaST) to install it.

Sendmail often ships with sample m4 -based macro files. The default file is usually called
sendmail.mc , but you may come across .mc files with different names as well. Some distributions
ship with many sample .mc files, each designed to suit different purposes. All you have to do
customize these .mc files to meet your own needs.

Many might be tempted to simply bypass using m4 and an .mc file and simply edit the sendmail.cf
file directly. This is a mistake, because any changes you make directly to this file will be overwritten
if you or an application later generates the sendmail.cf file from the macro file. And don't think that
you or another person won't do that later on. For this reason, the recommended method is to edit
only the macro file.

36.1.1.2. Additional configuration files

The sendmail.cf file is not the only file that is used to configure Sendmail. Various additional files
exist in the /etc/mail directory.

Tip: Sendmail maintains much of its configuration information in a binary database format for the sake of efficiency. Therefore, after editing this

information in various text files, you must convert them to a database format by running the makemap command and then restart Sendmail. For

instance, to convert the /etc/mail/access file to Sendmail's database format, you would change to the /etc/mail directory and issue the following

command:

Make sure that you understand the purpose of the following files:

access

Used to allow or deny access to systems and users. Starting with Version 8.9, Sendmail does
not relay by default, so you can either use this file to override antirelaying settings in the
sendmail.cf file or reconfigure the sendmail.cf file. To create the new access map, enter:

makemap hash access < access

local-host-names

Allows you to inform Sendmail about the hostname of the computer.

virtusertable

Used to map incoming email to a local account. Using virtusertable , you can make sure that a
message sent to one account (e.g., sales@oreilly.com) is actually sent to two users (e.g.,
james@oreilly.com and sandi@oreilly.com). Or, if you wish to set up a "catchall" email

address to route mail with mistyped addresses, you can use the virtusertable file to which to
route these messages to a particular user. To create the requisite binary file, issue the
following command to read the source file that contains the virtusertable instructions:

makemap hash /etc/mail/virtusertable < sourcefile

Older Sendmail systems might expect you to use dbm rather than hash in the previous command. You
can give the source file any name you wish.

genericstable

Used for outbound mail. Allows you to rewrite local usernames (e.g.,
james@albion.stangernet.com) so that they appear to have originated from a different host or
domain. Mail can even appear to originate from a different username. To create the requisite
binary file, run the following command so that the genericstable file is read to create the
genericstable.db file:

makemap -r hash genericstable.db < genericstable

Messages are rewritten only if they originate from your system. Incoming messages are not affected.

genericsdomain

Tells your system which addresses are considered local and which are considered remote.
Populate the file by using the following command:

hostname -long

Place the results of this command into the genericsdomain file.

mailertable

Can route email from remote systems. Seen by some as a better way to route messages than
using virtusertable , because it is faster and more capable. Often used to configure a Sendmail
system to act as a backup email system, or MX host .

domaintable

Can be used, for example, if a company or organization needs to make a transition from an
old domain name to a new one To create the actual binary file, issue the following command:

makemap hash /etc/mail/domaintable < /etc/mail/domaintable.txt

aliases

Used to redirect mail for local recipients. You can use the file to make sure that mail sent to
the root account, for example, is mailed to your standard user account. The syntax for each
line of the file is:

original_account: user

where user is the account that will receive email sent to original_account . The aliases file must be

processed into an aliases.db database that Sendmail can read using the following command:

makemap hash /etc/mail/aliases.db < /etc/mail/aliases

The aliases file works only for mail sent to local accounts (email addresses whose domains are local
to your MTA's system). It is not used to change address information for outbound user accounts.

The /etc/mail directory does not have to contain all of the preceding files. The aliases file, for
example, is usually found right off of the /etc directory. The other files need to be present only if the
sendmail.cf file is configured to use these features. You will have to create these files yourself and
use the m4 configuration files to configure the sendmail.cf file to refer to the files. You will learn
more about the files relevant to the LPI Exam in later sections.

36.1.1.2.1. Restarting Sendmail

If you change any of the preceding files, you need to restart Sendmail. You can restart it in various
ways, including any of the following:

kill -HUP 'cat /var/run/sendmail.pid'
killall -HUP sendmail
/etc/rc.d/init.d/sendmail restart
/etc/init.d/sendmail restart

or the following two-step procedure, using the PID of the sendmail process found through the ps
command:

ps aux | grep sendmail

kill pid

The most universal method is to use the kill or killall command.

36.1.2. Securing Sendmail

One of the first steps you can take to secure Sendmail is to disable it altogether on hosts that don't

need it. For example, you likely do not need Sendmail to process mail from other hosts if you are
going to use it for internal mail (i.e., mail sent between users on the same system).

In an environment in which only a few MTAs handle email routing, the MTA daemon should be
disabled on all the other hosts. Disabling the daemon still lets the system send email, but not
receive it from remote hosts. When installing, most distributions specifically ask if you want to
enable the Sendmail daemon. Fedora and RedHat, however, have traditionally enabled the Sendmail
daemon automatically after installation without consulting the administrator. On those distributions
and versions, unless the host is an email-routing MTA, disable the listening Sendmail daemon by
entering:

root@james mail# chkconfig --level 123456 sendmail off

Then verify that the service is disabled:

root@james mail# chkconfig --list sendmail
sendmail 0:off 1:off 2:off 3:off 4:off 5:off 6:off

On a more general level, MTA software needs to be given two pieces of information to be considered
secure:

Which IP addresses or IP networks/subnetworks may use the mail server as a relaythat is, use
the server to send email to anyone chosen by the originator. Without this restriction, your mail
server will be used for unauthorized mail relaying. In other words, your Sendmail server can
become a spam factory.

Which domains your mail server should accept email for. This simply means whom you're
serving with your email server.

36.1.2.1. Defining a trusted network

No one wants to receive spam. Furthermore, you don't want to be an unwitting party that promotes
spam. If you fail to configure Sendmail correctly, your mail server may very well be a so-called
"open relay" that can be abused by spammers. Several public lists of open relays exist on the
Internet, and most MTA software can easily be configured to reject incoming email if the originating
mail server is blacklisted. If your mail server gets into one of these lists, you may face a difficult
process getting off the list again. You may even have to pay to be removed from some of these lists.
Table 36-2 describes a few of the open relay blacklists at the time of writing.

Open Relay Database

http://www.ordb.org

Spamhaus

http://www.spamhaus.org

Blitzed

http://www.ordb.org
http://www.spamhaus.org

http://www.blitzed.org

Composite Blocking List

http://cbl.abuseat.org

Distributed Server Blocking List

http://www.dsbl.org

Table 36-2. Popular relay blacklists (RBLs)

Blacklist URL

36.1.2.2. The /etc/mail/access file

As discussed earlier, newer versions of Sendmail do not relay by default. Also, newer versions of
Sendmail default to allowing only the local host to send email. If you want to allow your users to
send email from their desktop computers via your Sendmail server, you will need to add the IP
addresses of those computers to Sendmail's list of allowed senders. At the same time, this file is
used when someone from the outside tries to send to you and therefore can be useful to stop
spammers from reaching your users.

Earlier you learned that you can use the /etc/mail/access file to list the IP addresses, domains, and
email addresses that can use the server. The input file that you write lists IP addresses, domains,
and email addresses on the left side and the action to take on the right side. Table 36-3 describes
the actions and results described in the input to the access file.

OK

Unconditionally accept the email for local delivery. Sendmail's default behavior is to OK all mail
destined for the host. The explicit OK action is often used when other Sendmail rules would reject
the email because of spam control or if the domain does not resolve.

RELAY

Accept the email for relaying through this Sendmail server. RELAY is also an OK to bypass other
checks (spam control, etc).

REJECT

Reject the incoming email with a generic rejection message.

DISCARD

Silently discard the message. Only sender addresses or domains may be discarded, not IP addresses
or networks.

Table 36-3. Actions in access database

Action Result

http://www.blitzed.org
http://cbl.abuseat.org
http://www.dsbl.org

The codes in Table 36-3 are all case-sensitive. Following is an example of what you can put in the
input file:

This guy is a known spammer.
nasty.spammer@random-mail.com DISCARD
Drop all mail from this DNS domain. If the host trying to send mail
resolves into a host within the DNS domain, the mail is rejected.
spam-r-us.net DISCARD

A friend of ours has an IP address that resolves to the
spam-r-us.net domain but we'd still like to receive his email.
10.45.34.203 OK
Our local network is 1.2.3.0 - 1.2.3.255. Sendmail does not accept
CIDR notation (1.2.3.0/24) so you need to operate on the traditional
network boundaries.
1.2.3 RELAY
Another known mail server may use your mail server for relaying:
172.20.45.23

Remember, once you make changes to the access file, you need to use the makemap command to
re-create the access binary file.

36.1.2.3. Testing Sendmail configuration

If you'd like to check that your Sendmail server actually does what you configured it to do, you may
run Sendmail in test mode. This starts Sendmail with a special interactive session, much like a
terminal session. To enter test mode, first become root , as Sendmail sometimes requires this
privilege. You can then use the -b and -t options to the sendmail command. A test mode session
might look something like the following:

root@james # sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset>; <address>

You would then enter the following to look up relay settings:

/map access 1.2.3
map_lookup: access (1.2.3) returns RELAY (0)

Notice in the preceding command that you precede everything you type with a forward slash. Now,
issue a command that determines what happens when mail comes from the random-mail.com
domain:

/map access nasty.spammer@random-mail.com

map_lookup: access (nasty.spammer@random-mail.com) returns DISCARD (0)

Notice that the email is discarded.

Using this testing mode is much easier than configuring an email client and sending email
messagess to the SMTP server. To quit the session, enter the following:

/quit

36.1.2.4. Defining accepted email domains: local-host-names and sendmail.cw

When setting up an email server, you probably know which domains it is supposed to handle. If the
hostname of your server does not happen to be the exact name of the email domain, you need to
add the domain to the file /etc/mail/local-host-names . This file defines local mail addresses for the
host. If you run an old version of Sendmail, the filename is /etc/mail/sendmail.cw . The format of
this file is easy: one domain per line:

somedomain.com
someotherdomain.com
differentdomain.com

The /etc/mail/local-host-names file is a plain text file and does not need to be turned into a hash by
makemap . However, you must force Sendmail to reread the file in order for the changes to apply.
You can do this either by restarting Sendmail or, less disruptively, by sending it a SIGHUP signal as
with many other daemons. You may then want to check that Sendmail has read and accepted the
virtual domains. Enter test mode and check its configuration as follows:

root @james mail# sendmail -bt
ADDRESS TEST MODE (ruleset 3 is NOT automatically invoked)
Enter <ruleset> <address>

Then enter:

$=w

You should see:

[192.168.1.18]
system
localhost.localdomain
localhost

someotherdomain.com
[127.0.0.1]
somedomain.com
differentdomain.com

Then quit the session:

/quit

You can see in the sample output that some other domains appear in this list besides those in
/etc/mail/local-host-names . This is because Sendmail, in accordance with the RFCs governing
email, accepts mail for the host itself. It thus includes the host's IP addresses (in square brackets)
and the hostnames that are associated with these IP addresses either in the /etc/hosts file or by
DNS lookup.

When your mail server accepts multiple domains, be aware that you cannot have users with the
same name in the different domains. For example, email to tom@somedomain.com and
tom@someotherdomain.com will actually end up in the same person's inbox. If these two addresses
happen to be read by the same person, this is OK. Otherwise, you need to configure your Sendmail
server to understand and properly process virtual user accounts. This will be explained in detail
later.

36.1.3. Delivering Email

A mail server works differently when it delivers mail to a remote server (SMTP delivery) and when it
delivers mail to users on its own system (local delivery). SMTP delivery relies on either DNS
information (the usual behavior) or on local transport mechanisms (normally used in company
networks using the smart host facility). Local delivery happens when either a local user (found in the
/etc/passwd file) or a virtual user exists on the system. In these cases, the MTA leaves mail in an
inbox file or set of files located on the local system.

Tip: When users check their email from separate computers, this last part is not actually regarded as delivery, but retrieval, as it is the user's

initiative to actively fetch the email. The MTA's job was done when it delivered the mail to a local mailbox. Retrieving the email does not involve

the MTA at all; it is taken care of by other software, normally POP or IMAP server software that reads from the local mailbox when the user logs

in.

36.1.3.1. SMTP delivery based on DNS lookup

You must know on the exam exactly how Sendmail uses DNS. An example will help you learn more
about the process. Suppose you send an email to john.smith@somedomain.com . The email address
consists of two parts: the local user part and the domain part. The local user part is what comes
before the @ at sign, and the domain part is what comes after. Notice that no server name is given,
just the domain name. This would seem to be incomplete information, but thanks to DNS, Sendmail
can get the job done.

When delivering based on DNS, Sendmail (or any MTA, for that matter) asks a nearby DNS server
for the server responsible for receiving the messages that it wants to deliver. In our case, it asks,
"Which mail server should accept messages for somedomain.com ?" Sendmail really does not care
much at this point about the destination directory or even the user. Right now, it's interested in

finding the server responsible for receiving messages for the whole domain. Usually, other MTAs
don't know the answer. DNS does know, as long as a valid MX (standing for Mail eXchange) record
exists in the DNS zone of the destination domain.

More technically, when the MTA wants to know where to send email for a domain, it does the
equivalent of the following command:

dig MX somedomain.com

From a DNS zone, an MX record returned for the zone looks something like this:

somedomain.com. 1800 IN MX 10 mail1.somedomain.com.
somedomain.com. 1800 IN MX 20 mail2.somedomain.com.

This output shows that somedomain.com has two MTAs running, mail1.somedomain.com and
mail2.somedomain.com . These might be running Sendmail, or they might not. But they must be
MTAs.

The numbers immediately in front of the mail server names (e.g., 10 for mail1.somedomain.com)
indicate priorities. Lower numbers mean higher priorities, so mail1.somedomain.com has a higher
priority than mail2.somedomain.com. As a result, if mail1.somedomain.com is unreachable for the
moment, email messages will be sent to mail2.somedomain.com.

Tip: The first number given in the example (e.g., 1800) is the Time To Live (TTL) value associated with the IN entry. Many zones will list the

TTL entry at the start of the output, rather than inline with the actual DNS entries.

In the preceding scenario, mail1 is called the primary server , and mail2 (along with any other
nonprimary servers) is called a secondary server or secondary MX . Secondary mail servers check
the DNS MX information when trying to deliver mail, so that if your mail server has suffered a major
failure and will be permanently down, you could establish a new primary mail server, change the
DNS information, and be up and running again.

When you send an email message, your outgoing mail server will know what to do with the priority
numbers. If a primary mail server is unavailable, it automatically tries the second best mail server,
the third, and so on. If no mail servers are available at all (which is quite possible in the case of a
major power failure or other disaster), the company may have made arrangements so that another
company or its ISP will be listed as one of the servers. If not, the sender MTA will just wait for some
time and then try to send the email again, working its way through the MX priority list. The RFCs
recommend that an MTA wait four days before giving up. Most MTAs send a warning to the original
sender after about five hours, saying that the email is not yet delivered but that the MTA will
continue to try for a given time.

It is perfectly acceptable to have more than one server with the same priority level. Thanks to the
retry mechanisms of SMTP, the sender MTA will try again if one of the same-priority MXs is down,
and this time perhaps it will reach one of the running servers.

Let's take a look at the MXs currently set up for the cisco.com domain:

cisco.com. 86400 IN MX 20 sj-inbound-1.cisco.com.

cisco.com. 86400 IN MX 20 sj-inbound-2.cisco.com.
cisco.com. 86400 IN MX 20 sj-inbound-3.cisco.com.
cisco.com. 86400 IN MX 20 sj-inbound-4.cisco.com.
cisco.com. 86400 IN MX 30 proxy9.cisco.com.
cisco.com. 86400 IN MX 50 proxy6.cisco.com.
cisco.com. 86400 IN MX 10 sj-inbound-0.cisco.com.
cisco.com. 86400 IN MX 20 proxy5.cisco.com.

As the output shows, there is only one primary MX (with a priority of 10) but no fewer than five MXs
with the next-level priority of 20. If the primary MX is unavailable, the sender MTA will attempt
delivery to one of the priority-20 mail servers, chosen at random.

SMTP delivery using DNS lookups is the default behavior of all MTAs. The default configuration in
/etc/mail/sendmail.cf , which defines DNS delivery, is usually quite sufficient.

Tip: An MX record cannot point to a CNAME entry. It usually points to an A entry (for IPv4) or a AAAA entry for IPv6. You will not need to

know in-depth IPv6 concepts for the LPIC 2 Exam, however.

36.1.3.1.1. SMTP delivery via a smart host

A smart host is another mail server to which your MTA may forward all messages for further
processing. Sending through a smart host uses most of the same mechanisms as with DNS. We may
compare smart host delivery to what happens when a secondary MX tries to deliver a message to
the primary MX: if the primary MX is up, the server sends the mail; if not, it just waits. The
previously mentioned maximum wait period also applies to smart host configurations.

The principal difference between DNS-based and smart host-based delivery is that in a smart host
configuration, the email's final destination mail server (at least as far as your MTA is concernedit
could be a gateway to other systems, but that's not important here) is statically coded into the mail
server's configuration, not dynamically determined through DNS mechanisms.

Smart host configurations are usually found within larger networks where different servers should
use only one server for further processing. All your other servers should be configured to use your
main MTA. In this case, you do not need to set up MX records on your internal DNS servers (if you
even have any).

In another scenario, on which the following example is based, you tighten your firewall so that only
your properly configured mail server may handle outgoing email by forwarding it to an external MTA
on a so-called "bastion host." Configuring Sendmail on a bastion host will be discussed later.

On your internal Sendmail server, you need to change only one configuration directive. In your
sendmail.mc file, find or create a line specifying your smart host as either an IP address or a server
name, as shown in the following examples:

define('SMART_HOST','[172.20.45.23]')
define('SMART_HOST',' external-mailserver.company.com')

IP addresses are distinguished by being enclosed in square brackets. You can choose whichever line
you prefer; they have the same effect.

Tip: Both of the SMART_HOST directives in the sendmail.mc file illustrate an important element of the file's syntax: you must use a backquote (')

to start a value and an apostrophe (') to end it. This syntax is required by the m4 processor used to transform sendmail.mc to sendmail.cf .

After changing and saving the sendmail.mc file, run the m4 processor to apply the changes to the
sendmail.cf file. As explained earlier, most distributions supply a Makefile that runs m4 to convert
sendmail.mc to sendmail.cf , so typing a make command in the /etc/mail directory will generate the
sendmail.cf file correctly.

36.1.4. Manual Entries

If you want to get your hands dirty by editing in the sendmail.cf file, the directive you must find (or
set) is DS . An example is:

DS[172.20.45.23]

You can also add the following entry to achieve the same effect:

DS external-mailserver.company.com

Once you have made either of the preceding changes, you need to restart the Sendmail daemon
(and all the daemon's children, if any). As described earlier, there are many ways to restart
Sendmail, but make sure that you understand both of the following commands:

/etc/init.d/sendmail reload
killall -HUP sendmail

To confirm that you have made a change, check your message log. Following are sanitized examples
from an Ubuntu and Red Hat system, respectively:

Apr 24 12:45:18 foo sm-mta[7679]: restarting /usr/sbin/sendmail due to signal
Apr 24 12:45:18 foo sm-mta[7692]: starting daemon (8.12.11): SMTP+queueing@00:10:00

These lines show that the Sendmail daemon has started and is now ready to queue processes. The
following example shows Sendmail restarting in a Red Hat system:

Apr 24 12:52:28 foo sendmail: sendmail -HUP succeeded

After restarting, Sendmail delivers every email message not destined for a local user account
through your external mail server and out onto the LAN, WAN, or Internet.

Tip: On Red Hat/Fedora systems, the /etc/init.d/sendmail script understands the reload argument even though it is not documented.

36.1.5. Local Delivery

An email address has two parts: the local user part and the domain part. Local delivery is defined as
an instance when your mail server receives an email in which the domain part matches its own
domain or list of domains. As mentioned earlier, the accepted domains are listed in the
/etc/mail/local-host-names file, for newer systems. In older systems, this information is listed in
/etc/mail/sendmail.cw .

This file is one of the first checkpoints on an email's path to final delivery, so if you want Sendmail to
accept mail for your domain, you will need to edit this file so that it contains the appropriate domain
names. Because the file may contain more than one domain, your mail server may even accept mail
for your company and for your privately owned email domain at the same time.

Traditionally, a match between an email address and a user account is found by reading the MTA
server system's /etc/passwd file. As a result, john.smith@somedomain.com will be delivered to the
user account named john .

By using an aliases file, you can have mail to the address customer-support@ispcompany.com
simultaneously distributed to the accounts tom, dick , and harry . You will learn more about the
aliases file later.

When running more than one email domain on the same server, you will most likely run into the
following problem: an account named tom is found in more than one of your domains. The result
could be chaos, because the MTA would try to deliver the email messages to multiple people.

The solution to this problem is the concept of virtual users, described in the following section.

36.1.6. Using virtusertable

In Sendmail, the concept of the virtual user allows you to configure Sendmail so that nonlocal email
can be properly routed. You create virtual users with the file named /etc/mail/virtusertable . Here
are some examples of the format used:

Tom, Dick and Harry all have local user accounts.
Tom's system user account is tjohnson, Dick's is dsmith,
and Harry's is hflynn.
tom@somedomain.com tjohnson
dick@somedomain.com dsmith
harry@somedomain.com hflynn

Harry is the guy that gets all wrongly addressed email
within the @somedomain.com address space
@somedomain.com hflynn

Here is the other Tom; he has a different user account.
tom@someotherdomain.com tgoldman
@someotherdomain.com tgoldman

Now, a third guy named Tom -- but he's reading his mail somewhere else.
tom@differentdomain.com tom@acme-company.com
@differentdomain.com error:nouser Sorry, no such user.

Beginning at the top, you see three email addresses all belonging to @somedomain.com . Below
those, you see a so-called catchall rule : if someone mistypes an email address to
@somedomain.com , the email is forwarded to Harry (hflynn) instead of being returned to sender
with a "no such user" error message.

Then you see the second Tom who has an email account on your server. The second Tom and the
previous Tom have different local user accounts, so this does not introduce a problem. The email
domain someotherdomain.com has a catch-all rule as well.

Then a third Tom enters the scene. Even though your mail server handles his email address,
tom@differentdomain.com , he also has another email account at work, (@acme-company.com)
and he likes to read all his mail there. After his entry is a @differentcompany.com catchall resulting
in an error message. If someone misspells the local part of the email address, the email message is
returned and the sender is notified.

Once you have created a virtusertable entry such as this one, you need to use the makemap
command as follows to create a database file that Sendmail can read:

makemap hash virtusertable < virtusertable

Catchall Rules

When operating with virtual domains, you should have a catchall rule for each domain. If not,
Sendmail will try to find a local user that will match the local part of the (wrong) email address. If
someotherdomain.com did not have a catchall rule, an email sent to the nonexistent virtual address
mick@someotherdomain.com could end up at a local user named mick even though he has nothing
to do with someotherdomain.com .

36.1.7. Checking Virtual Users

Once you have created virtual users, check them by by entering Sendmail's test mode. Test mode is
an interactive shell run by Sendmail that allows you confirm your settings. If you have the following
/etc/mail/local-host-names file:

somedomain.com
someotherdomain.com
differentdomain.com

the following example of an interactive session confirms your virtual users and virtual user
mappings:

sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

/map virtuser tom@somedomain.com
map_lookup: virtuser (tom@somedomain.com) returns tjohnson (0)
/map virtuser tom@someotherdomain.com
map_lookup: virtuser (tom@someotherdomain.com) returns tgoldman (0)
/map virtuser tom@differentdomain.com
map_lookup: virtuser (tom@differentdomain.com) returns tom@acme-company.com (0)
/quit

36.1.8. Email Aliases

Aliasing is different from using and mapping virtual users. On your mail server, a file named
/etc/mail/aliases (or simply /etc/aliases) exists. On each line you will see the alias and the real
address, separated by a colon and a tab. What is called the real address may be a new alias or an
email address somewhere else. Consider this /etc/mail/aliases file:

MAILER-DAEMON: postmaster
postmaster: root
john.smith: jsmith
jack.smith: jack@acme-company.com
custsupp: tom,dick,harry

Whenever changes are made to the aliases file, you must run the newaliases command to convert
the contents of the text file into a database format that Sendmail will recognize. Once you do this,
Sendmail will recognize your changes.

36.1.8.1. The contents of the aliases file

The MAILER-DAEMON address shown in the preceding example is used as a sender address whenever
the mail server needs to communicate with someone, such as when receiving an email message to a
nonexistent user. Quite a few people actually respond to this automated message asking what to do.

The postmaster address is an address required by the email RFCs. All email domains must have a
postmaster account, which should be processed regularly.

The entry of john.smith is an alias for the person using the user account jsmith . John's brother,
Jack, also has an email account here, but he reads his email at work, so his entry forwards
jack.smith 's email to jack@acme-company.com .

The fourth entry is somewhat more complex. The alias custsupp is translated into three different
local user accounts, separated by commas. It is important to note that forwarding to more than one
address is allowed only in the aliases file, not the virtusertable file. If you want all your customers to
contact your team (Tom, Dick, and Harry) via the common email account customer-
support@isp.com , you need to include one entry in the virtusertable file:

/etc/mail/virtusertable
customer-support@isp.com custsupp

and one in the aliases file:

/etc/mail/aliases
custsupp: tom,dick,harry

To verify that Sendmail got your aliases correct, enter test mode again:

sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
/map aliases postmaster
map_lookup: aliases (postmaster) returns root (0)
/quit

36.1.8.2. Reversing virtual user accounts

If you or your users run scheduled jobs that report results by sending an email message or if
someone uses an email client installed on the mail server (e.g., Pine, Mutt, or Gnus), the email will
show the local username as the sender address. Suppose John Smith, with jsmith as his user
account name, doesn't want jsmith@somedomain.com to be exposed. Rather, he wants his aliased
address john.smith@somedomain.com to appear to recipients instead.

This request is actually quite easy to fulfill with Sendmail, as long as you have a relatively new
version (e.g., Sendmail 8.10). However, this feature may not be enabled in your configuration. To
enable it, use the m4 utility. As long as you have a fairly new version of the software, it is a simple
task involving the creation of a genericstable file.

If you have the following lines in your sendmail.mc file, reverse aliasing is already enabled. If not,
you need to add them. Remember the backtick and apostrophe (''). Otherwise, your entry will
result in an error when m4 runs.

FEATURE('genericstable', 'hash -o /etc/mail/genericstable.db')dnl
GENERICS_DOMAIN_FILE('/etc/mail/generics-domains')dnl

After adding these lines, you need to build the sendmail.cf file again. It's a good idea to back up
your existing sendmail.cf file and perhaps build the new one in a different directory:

m4 sendmail.mc > sendmail.cf

Then copy the new file to the appropriate directory (e.g., /etc/mail) and reload Sendmail.

36.1.8.3. The genericstable file

For the genericstable file, you need to include the domains that you will map from; under normal
circumstances this is the fully qualified name of the host. The /etc/mail/genericstable file will be a
mirror of the virtusertable file, so that the local account is on the left side and the alias is on the
right side. Following is a genericstable file that matches the virtusertable we created earlier:

Tom, Dick, and Harry all have local user accounts
tjohnson tom@somedomain.com
dsmith dick@somedomain.com
hflynn harry@somedomain.com
the other tom
tgoldman tom@someotherdomain.com

The genericstable file must be converted to a database file so that Sendmail can read it. To do this,
as usual, enter a makemap command:

makemap hash genericstable < genericstable

The Sendmail test mode command for verifying the reverse virtual user mapping is:

/map generic [username]

used as follows:

sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
/map generics tjohnson
map_lookup: generics (tjohnson) returns tom@somedomain.com (0)
/quit

On the Exam

You are expected to know the difference between the virtusertable and the genericstable files. Be
able to explain each file's function. Make sure that you know how each file is formatted as well.

36.1.9. Bastion Host Sendmail Server

A bastion host is a system that can be accessed from a public network, such as the Internet. It is
often advisable to offer such an external server to handle all incoming email. Sometimes, this server
will also process outgoing mail, if you are concerned about forwarding viruses, worms, and other
problems. Your bastion host Sendmail server may also perform spam filtering and/or virus control to

help keep viruses outside of your network.

A bastion host must be configured with the following concerns in mind: First, it must provide provide
necessary email services, exactly as defined by the organization you are working for. This seems like
an obvious concern, but always make sure that your solution provides all necessary services, as long
as the requested service does not cause a security problem in and of itself. Second, your Sendmail
bastion server must be configured so that it can withstand attacks. As soon as it goes live, your
system will be a target of all kinds of attacks and exploit attempts. While it is not possible to
anticipate all attacks, it is best to research ways to "lock down" your system as much as possible.

36.1.9.1. Locking down the server

First, the bastion host should be protected behind some kind of firewall. Preferably, this firewall
should be a separate unit. Using a local solution, such as iptables , is also a good idea, but it is no
substitute for a separate firewall. When configuring your firewall solutions, consider the following
rules:

Two firewall stances exist: open by default, and closed by default. Firewalls that are open by
default allow any traffic. You must then create rules that block the ports, IP addresses, and
traffic types that you wish to block. Firewalls that are closed by default will not allow any traffic
at all, unless you explicitly allow the port, IP address, and traffic type. Generally, closed by
default is preferable, though there is no hard and fast rule.

Find the most secure way to allow incoming and outgoing email. By definition, a Sendmail
bastion host should be running Sendmail (e.g., port 25). However, many administrators also
enable POP-3 (port 110) and IMAP (port 143). Remember, also, that SMTP, POP-3, and IMAP
servers all open up ports above 1024 to communicate with clients and other servers. Create
rules accordingly.

Also available are SSL-enabled SMTP (port 25, but some firewalls may reject encrypted
packets), POP-3 (995), and IMAP (993). Enable these ports only if you are using them.

Next, "harden" the operating system itself. The topic of operating system hardening is the subject of
entire books. Following is a brief list of hardening steps that will help you not only pass the LPI
Exam, but also protect your live servers:

Disable all unnecessary services .

If you are creating a Sendmail bastion host, this server should be offering only the SMTP
service or an SSL-enabled SMTP service. Still, many people need to administer their servers
remotely, so they use SSH on their systems. Additional services, such as a web server
andaccording to puristsPOP and IMAP servers should be disabled.

Configure all running services for security .

If you must provide additional services on your bastion host, secure them as much as possible.
If you plan on using SSH or VNC to administer the systems remotely, use firewall rules and
internal configuration files (e.g., /etc/ssh/sshd_config) to allow connections only from certain
IP addresses, for example. Although it is possible to spoof IP addresses, such steps will help
reduce the likelihood of successful attacks. Additional configuration options exist for almost
any service. Use them. If you are using SSH, for example, use public-key encryption for
authentication. This sounds like a basic idea, but you will be surprised at how few people
actually do.

In this brief discussion, you have learned about how important it is to lock down the operating
system. The Sendmail daemon needs special attention as well.

36.1.9.2. Configuring Sendmail for a bastion host

First, the Sendmail server needs to be secured from unauthorized relaying. Second, if you have
internal mail servers, this server must act as a smart host for them. Under normal circumstances,
only one or two IP addresses should be allowed to use this server as a smart host relay.

Third, you need to tell the external MTA where it should forward your company's email and which
domains your server handles. This is done in the file /etc/mail/mailertable . The format should be
familiar; what to look for is on the left side and what to do with it is on the right side. If we continue
using our three domains from before, the file will appear as follows:

somedomain.com smtp:[192.168.200.3]
someotherdomain.com smtp:[192.168.200.3]
differentdomain.com smtp:[192.168.200.3]

In this example, your internal mail server has, as you probably guessed, the IP address
192.168.200.3.

Remember to convert the file to the Sendmail-readable database format with the following
command:

makemap hash mailertable < mailertable

Or you can use the update scripts supplied in the /etc/mail directory.

You may want to check the mailertable configuration as well:

sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
/map mailertable somedomain.com
map_lookup: mailertable (somedomain.com) returns smtp:[192.168.200.3] (0)
/quit

36.1.10. Managing Mail Traffic

You have already learned about how to verify Sendmail's configuration through the -bt options, a
key skill in managing mail traffic . Additional considerations include:

Monitoring mail

It is not enough to know how Sendmail works to pass the LPI exam. You also need to know
how to review incoming and outgoing mail by reading log files.

Filtering and sorting mail

You must know how to identify content in email messages and then filter and sort mail
accordingly. You will need to know how to identify the content of the Subject, From , and To
fields, as well as the content of the message body, and then configure your system to process
the messages accordingly. There are many ways to filter and sort mail. This chapter focuses
on Procmail.

A brief discussion follows on each of these topics.

36.1.11. Monitoring Mail

The most common ways to monitor Sendmail messages are:

Checking the Sendmail log

The /var/log/maillog file, on many systems that use Sendmail, contains messages specific to
Sendmail, as determined by the sendmail.cf file. Sendmail uses the syslog facility to generate
messages. Specifically, the mail syslog level is often used to send messages to the maillog file.

Reviewing the /var/log/messages file

Depending upon the system, some or all Sendmail messages are sent to the
/var/log/messages file.

Each Sendmail log entry has the following format:

date, host, sendmail_function[pid]: <qid>: occurrence=message

Table 36-4 contains a brief discussion of each field in the mail log.

date

The month, day, and time (according to system time) of the event. No year is given.

host

The host that generated the message. Useful for remote logging. If it is a local message, the host is
often given as the hostname or as localhost.localdomain if the hostname has not been configured.

sendmail_function

The particular Sendmail process that generated the message.

pid

The process ID that generated the message.

qid

The ID number of the message in the queue or process assigned by Sendmail.

occurrence=message

The occurrence and associated message.

Table 36-4. Sendmail log

Entry Description

Various occurrences exist. Following are some of the more common:

Relay

Shows the system that received and sent the relayed message, in username @ domainname
format and with a domainname of localhost when the messages is relayed by the local system.

Delay

The total amount of time the message was delayed. Specifically, the difference between when
the message was received and when it was delivered. The format for messages delayed less
than a day is HH : MM : SS . For messages longer than a day, the format is days +HH : MM : SS

.

Nrcpts

The number of recipients, after aliasing.

From

The sender of the message, in the format from = address . The sender value can be a user-

based email address, a message from the postmaster, or a Sendmail-specific value if the
message has bounced.

Pri

The priority of the message assigned by Sendmail. The message priority decreases after each
resend, but the priority value given in this message is the initial one.

Size

The size of the message, in bytes.

Additional entries exist, but these are the most important ones for the LPI Exam. For example, the

following entry shows that a relay has occurred for the root account on the local system:

jacob sendmail[15232]: jBK0llQK015232: from=root, size=0, class=0, nrcpts=0,
relay=root@localhost

36.1.12. Log Configuration

Try opening /etc/syslog.conf and review the settings. You do not have to use the default settings on
your system. You can, for example, set syslog to send all mail messages to a remote system, which
is particularly useful if you have a Sendmail bastion host or if you want a backup log for security
reasons. This syslog.conf entry sends all mail messages to the system jacob.stangernet.com :

mail.* @jacob.stangernet.com

In many cases, you may want the mail.alert syslog level of logging, which will relate all alert-level
Sendmail information. These messages include when Sendmail starts or restarts, as well as
conditions that are considered fatal including failed processes and messages that are not sent due to
a system failure:

mail.alert @jacob.stangernet.com

36.2. Objective 3: Managing Mail Traffic

Filtering and sorting mail can be accomplished in many ways on a Linux system. Solutions include:

SpamAssassin (http://spamassassin.apache.org)

MIMEdefang (http://www.mimedefang.org)

Procmail (http://www.procmail.org)

Procmail is one of the older solutions but is explicitly covered by the LPI Exam. Therefore, it
warrants the discussion in this section.

36.2.1. Filtering and Sorting Techniques

Before you learn more about Procmail, it is important to understand the basics of how mail is filtered
and sorted. Filtering mail requires the application to read messages and determine the parameters
given in Table 36-5 .

The From field

Information concerning the host and user who sent the message

The To field

Information concerning the host and user intended to receive the message

The Subject field

The field that endusers enter to describe the message

Message body contents

Can include text as well as indicators of the document format (e.g., ASCII or HTML)

Table 36-5. Filtering techniques

Parameter Description

Once the filtering parameters are determined, messages can be sorted and processed in many ways,
including:

Forwarding the message to a remote host

Issuing an autoreply, a useful option for messages indicating a prolonged absence (e.g., a
vacation)

Storing the message into a custom directory

Deleting the message, often by sending the file to the /dev/null file

You will need to know how to identify the contents of Subject, From , and To fields, as well as the
content of the message body, then configure your system to filter and sort the messages
accordingly. As mentioned earlier, this chapter focuses on doing these things with Procmail, which is
the filtering system on the LPI test.

36.2.1.1. Using Procmail

Procmail is an MDA that allows clients to filter mail and customize delivery. Using rule sets called
recipes , you can configure Procmail to receive, sort, and react to all mail you receive.

36.2.1.2. Procmail files

Table 36-6 provides a quick list of the binary files and configuration files used in Procmail.
Familiarize yourself with each of these files for the LPI Exam.

/usr/bin/procmail

The binary for the Procmail service.

~/.procmailrc

The configuration file located in each user's home directory. Can contain recipes.

~/.procmail

The directory that contains user-specific procmail files. Such files can include the log files (such as a
file named log) that can inform you about problems, and recipe files (a file you use to create a
notification message when you are on vacation). This directory can also be named .Procmail or
Procmail , a nonhidden directory. It can also contain dedicated files that specify recipes.

/etc/procmailrc

The systemwide Procmail configuration file. User-based .procmailrc files (if present) take
precedence, unless they are overridden by the /etc/procmail file.

.forward

Determines which messages will be forwarded to another account.

Table 36-6. Procmail files

File Description

Tip: The locations of some of these files may vary from one distribution to another. Some of the directory names may have changed, also,

because it is possible to specify custom values in the /etc/procmailrc file.

36.2.1.3. Creating recipes in Procmail

To configure Procmail, you must enter instructions called recipes . You can place a recipe either in
the .procmailrc file or in a dedicated files, usually in the .procmail directory. If you create a
dedicated file, you must refer to it in the .procmailrc file.

The syntax for creating a recipe is comprised of three parts:

beginning

condition

action

The beginning is a special character sequence, usually :0 on a line by itself, that informs Procmail
that a recipe begins immediately below. The condition specifies text matches or other conditions

that the mail message must meet before it is processed. There can be multiple conditions in this
section. The final action section contains processing directives that specify what actions to take

(e.g., forwarding or deleting the mail) once the conditions have been met.

On the Exam

Make sure that you know how to create and read a simple Procmail recipe.

Table 36-7 contains a list of common Procmail parameters used to create recipes.

#

Starts a comment. Using comments is highly recommended for troubleshooting.

:0

Informs Procmail that a recipe is beginning. Specifying :0 c makes a copy of the matching message,
meaning that the message will go on to appear in your inbox as well as be processed by the recipe.

*

Specifies a new condition. Placed at the front of a line in a recipe.

.*

Specifies the "everything" wildcard. This is never used at the start of a line and therefore can be
distinguished from the previous item. For example, Subject:.*Kenya.* in a condition matches any

message with Kenya in the Subject field.

^

Instructs Procmail to look for the character or parameter that follows at the beginning of a line

!

In an action, forwards the message to the address you specify. For example, the following line:

! andy@oreilly.com

sends the message to the user named andy at the oreilly.com domain.

Whc: filename.lock

Specifies a lock file for the particular message. Useful to avoid race conditions, where another
Procmail process might be running the same recipe.

Table 36-7. Procmail parameters

Parameter Description

36.2.1.3.1. Sample Procmail recipes

Several recipe examples follow. The first is a rather simple example that deletes email sent from an
objectionable user:

:0
 * ^From: knownspammer@mail.badspammers.com
/dev/null

The same thing can be done to an entire domain, by specifying all users in that domain in the
condition:

:0
* ^From: .*@badspammers.com
/dev/null

The following example matches any email with the character sequence beegees in the Subject field
and deletes it:

Spam filter
:0
* ^Subject:.*beegees
/dev/null

Notice how the ^ character is used to denote the Subject field; a field name is always at the
beginning of a line in the email header. The colon (:) is treated as a simple character, appearing
like any other character in a line.

This third simple example shows how to forward an email message from a specific user email
account:

:0
 * ^From: elvis@heaven.com
! elvisfan@comcast.net

The following example shows how to automatically reply to almost all messages sent to the current
user. The only exceptions are those messages sent by email daemons and those that might cause an
infinite loop because they appear to originate from the current user. The recipe contains a few
additional parameters that will be explained after the example:

:0 Whc: autoresponder.lock
 * $^To:.*\<$\LOGNAME\>
 * !^FROM_DAEMON
 * !^X-Loop: username@udel.edu
 | formail -rD 8192 out.cache
 :0 ehc

 | (formail -rA"Precedence: junk" A"X-Loop: your@own.mail.address" ;
 echo "I am currently out of the office."; \
 echo "I will return Thursday, September 13th."; \
 echo "-- "; cat $HOME/.signature_line.txt \
) | $SENDMAIL -oi -t

The recipe has two parts. The first part uses the standard Procmail commands to process the
message, negating certain conditions with *! to exclude messages that shouldn't be responded to.
The formail command in this first part creates a file called out.cache that contains all mails sent. The
-r option to formail strips unnecessary headers from the mail message, while the -D option limits the
length of the message, to save on system resources and network bandwidth.

The second part of the message begins at the :0 ehc line. This line directs the recipe to reply to
messages even if they are not found in the out.cache file. The directive portion of the message
contains the actual autoresponder message, complete with an email signature file. The backslashes
are necessary for line continuation. The -oi option to Sendmail causes Sendmail not to send a
message created from standard input, even if a single period is at the end. The -t option removes all
recipients from the message headers.

It is possible to create very sophisticated sorting and filtering recipes using Procmail. The
information in this section should help you pursue the knowledge you need to pass the LPI Exam.
For more information, go to the Procmail web page at http://www.procmail.org . The following URL
contains many suggestions compiled by the Procmail project:

http://pm-doc.sourceforge.net/pm-tips-body.html#procmail_flags

It is an outstanding example of how open source projects are capable of documenting all features of
an application.

36.2.1.4. Monitoring and troubleshooting Procmail

http://pm-doc.sourceforge.net/pm-tips-body.html#procmail_flags

It is not enough to know how to create and use recipes. You must also be able to determine the
cause of problems. This section includes examples of ways to monitor and troubleshoot Procmail.

As usual, start by consulting the log files. In many systems, the log file is placed off of the
~/.procmail directory. You can use the tail command with the -f option to view new log entries:

tail -f $HOME/.procmail/pmlog

You may have to change the name of the log file to monitor, however. Look in the /etc/procmailrc or
~/.procmailrc file to determine whether a log file is being generated. If you wish to view more than
the last 10 lines, use the -n command:

tail -n 20 -f ~/.procmail/pmlog

You can also view the /var/log/messages file to determine whether errors have occurred. Finally,
consider the following when troubleshooting a Procmail problem:

Make sure variables are correct.

Make sure that directories are correct.

Check filenames (e.g., rc.away rather than rc.vacation).

To test your settings, set Procmail's VERBOSE variable, create a file of recipes and another file of test
mail messages, and run the procmail command in a manner such as:

% procmail $HOME/pm/procmail_test.rc < $HOME/tmp/my_test_mail.txt

36.3. Objective 1: Configuring Mailing Lists

As with MTAs, mailing list servers are a very large topic. Fortunately, the LPI focuses just on the
Majordomo mailing list server, found at http://www.greatcircle.com/majordomo. Even more
fortunate for us, the LPI assigns a relatively small value to this topic.

Still, it is essential for you to know how to install and configure the revised version of Majordomo,
called Majordomo 2, for various reasons. First, mailing lists are still very popular and are expected
in many environments. You should know how to provide them.

Majordomo is essentially an add-on application to an MTA. It can be used with any MTA (such as
Sendmail or Qmail) to manage lists of email applications. You can configure Majordomo to receive
commands from potential users, who then direct Majordomo to add them to a list or drop them from
a list. Majordomo does not deliver mail; that's the job of the MTA. Majordomo essentially acts as a
mediator between users, the MTA, and the MDA.

Users generate postings often based on a particular discussion, which is often called a thread. This
thread can be made public or private, depending upon the wishes of the administrator. The
Majordomo administrator can configure Majordomo using various means, including a command-line
interface, a web interface, or even by sending email messages to the Majordomo server.

Majordomo servers often have a moderator. This person can be the same person as the
administrator, but does not have to be. The moderator is responsible for determining the content
posted on the site. The moderator can also add and remove users.

Majordomo provides the following services, if properly configured:

User addition and deletion

Users can petition to join a list simply by sending an email to the server. The user will be
automatically added. The server will then send the user a confirmation message that the user
must reply to in order to be added to the list. For more secure situations, Majordomo can be
configured to defer the user request and forward the join message to the Majordomo
administrator, who can decide whether to add that user.

List moderation

Many times, lists are completely open and unedited. Any user is welcome to post to it at any
time. However, organizations and businesses might require moderated lists for various
reasons. Messages, in these cases, are sent first to the moderator, who can then edit or drop
various messages. The moderator can also drop users as necessary.

Message digests

Users often do not want to read each individual message on a thread. They would prefer
receiving the entire thread after a period of time (e.g., a day or a week). Recipients will
receive one large email, rather than a series of short emails.

http://www.greatcircle.com/majordomo

Subscription confirmation

Whenever a user requests to be added to a list, a confirmation message is sent out to that
user's email address. This step is necessary to avoid a malicious user subscribing a person to a
list who does not want to belong to it. When a user unsubscribes from a list, a confirmation is
also sent. The user will often have to confirm the unsubscribe request, to avoid a malicious
user spoofing an unsubscribe command.

Instruction and reminder messages

Majordomo servers can be configured to send instruction messages to end users. Such
messages can include instructions on how to unsubscribe. They can also include information
concerning the expected content of messages sent to the Majordomo server. Also, Majordomo
servers can be configured to send out reminder messages at specified times (usually the first
day of the month) to remind users about their participation in the list.

36.3.1. Configuring Majordomo

The steps for configuring Majordomo are not particularly difficult. It is important, though, to
understand Majordomo's essential components. Table 36-8 contains a list of essential Majordomo
files.

Table 36-8. Majordomo configuration files, commands, and resources

Resource Description

majordomo.cf The Majordomo configuration file. Usually found in the /etc directory.

create Used to create a list name.

Archive
directory

Location where list server configuration files are kept.

List server file A file with the same name as the list. This file contains configuration information
for the specific mailing list group.

When using Majordomo, two types of passwords exist:

Administrative

Required of a user who has the privileges to change the characteristics of an entire group
(e.g., to enable moderation or to enable user-based passwords for submissions).

User

A user might be required to issue a password in order to change preferences (e.g., to request
summary messages of group postings, called digests).

It is important to not confuse these two passwords. Following are the steps to take when preparing
Majordomo.

36.3.1.1. Preparing Sendmail

The first step to take when configuring Majordomo is to set an alias for the Majordomo administrator
. To do this, edit the /etc/aliases file so that it has the following lines. This chapter assumes that you
are using Sendmail, but you can use any MTA you wish:

majordomo-owner: domo_admin_account_name

owner-majordomo: domo_admin_account_name
majordomo: "|/usr/local/majordomo-1.94.5/wrapper majordomo"

where domo_admin_account_name is the username of the person you wish to administer Majordomo.

Now, when users send an email to the moderator account at majordomo-owner@yourdomain.com,
those messages will go to the user account of the person administering the system. The third line
has Sendmail use the Majordomo aliases file, to ensure proper routing of local messages.

Warning: Pay close attention to the aliases file. You will have to update it regularly to include additional entries specific to the names of the

groups you wish to add.

The next step to take is to edit the sendmail.cf file (often located in the /etc/mail directory). This file
needs to have the following changes made to it:

Add the following line:

OA/usr/local/majordomo-1.94.5/majordomo.aliases

This line creates a second alias file, which is necessary for Majordomo to process mail. Once
you have done this, restart Sendmail.

1.

Configure Sendmail to make Majordomo a trusted user, by adding the following line to the
sendmail.cf file:

Tmajordomo

This line allows Majordomo to properly masquerade users as it resends files.

2.

Determine whether Sendmail is using the smrsh environment. If so, you have to create a
symbolic link from the /etc/smrsh directory to the the Majordomo wrapper program (which
often resides in the /usr/local/majordomo-1.94.5 directory). In this case, enter:

3.

ln -s /usr/local/majordomo-1.94.5/wrapper /etc/smrsh/wrapper

Verify that Sendmail security measures (those that concern forwarding and some spam-specific
settings) do not conflict with Majordomo. If they do, you will experience possibly hours of
frustration trying to figure out why a perfectly configured Majordomo list server isn't working.

4.

36.3.1.2. Installing Majordomo

Once you have created the proper Sendmail environment, you can install Majordomo. You have
various options available to you. Debian-based systems can use apt-get, dpkg, and Synaptic. Red
Hat and other systems can use various RPM handlers, while Novell systems can use YaST or RPM.
The source tarballs are available at http://www.greatcircle.com/majordomo.

Once you have installed Majordomo, you can begin configuring lists.

36.3.1.3. Creating Majordomo lists

To configure a Majordomo list, you simply need to create a new file that will be populated to specify
users who wish to subscribe to the list. To create the file, issue the following command as root:

touch /usr/local/majordomo-1.94.5/lists/telecaster

Then, still as root, add the proper alias to /etc/aliases:

owner-telecaster: domo_admin_account_name
telecaster-request: "|/usr/local/majordomo-1.94.5/wrapper request-answer
 telecaster"

telecaster-approval: domo_admin_account_name

You have just added a list. Users can now send messages to your list server to subscribe to the list.
Notice that you had to add aliases for requests, approval, and the list owner. Failure to add these
aliases will cause these group entries to behave improperly or not work at all.

36.3.1.3.1. Using the create command

Actually, you do not have to edit the files in the previous section manually. You can use the create
command, which takes the following syntax:

create listname password

http://www.greatcircle.com/majordomo

where password is the administrative password used to administer Majordomo. Thus, to add the

group named telecaster, you would issue the following command:

create telecaster password

36.3.1.3.2. Customizing the list

Once a list has been created, you can view it using a command such as less or edit it using a text
editor, using a web configuration interface, or via email messages. By editing the configuration file,
you can do the following:

Enable or disable moderation

Require users to provide passwords for a moderated list

Set the administrator password for the moderator

Enable or disable message digesting

To add moderation to the Majordomo list, for example, add the following to the list's configuration
file:

moderate = yes

Once you have enabled moderation in the configuration file, use the newconfig command to enable
digesting for a particular list using the following syntax:

newconfig list_name-digest password

To create digests for the telecaster Majordomo group, you would issue the following command:

newconfig telecaster-digest password

End users can then ask for digests using the following syntax:

subscribe [listname]-digest

For example, if users wish to receive a digest for the telecaster list, they would place the following in
the body of their email messages:

subscribe telecaster-digest

The LPI Objectives do not discuss further configuration of the Majordomo list server.

36.3.2. Testing the Implementation and Monitoring Problems

Just like with network troubleshooting, you should start small when testing your Majordomo
implementation. First, see if the server is providing all of the lists you have configured. To do this,
enter the following command:

echo lists | mail majordomo

This command should send a list of the server's working Majordomo lists to your email account. You
can use a similar command to receive help messages from your Majordomo server:

echo help | mail majordomo

The preceding command helps you confirm that your Majordomo installation is working as expected.

You can subscribe yourself to the list by sending an email message to the Majordomo server with the
following line in the body (not the subject line) of the message:

subscribe telecaster

Review the subscribe reply for any problems, and send another message to confirm that you have
subscribed to this list.

Once you are fully subscribed, send a few test messages from separate user accounts and client
systems to determine whether the server is processing messages from all subscribers and systems.
You can then unsubscribe from the list by placing the following in the body of an email message:

unsubscribe telecaster

Review the unsubscribe reply for any problems, and confirm the fact that you have unsubscribed.

To test the contents of the information file you are using, send an email to the Majordomo server
with the following contents in the body:

info listname

The server will then send you a copy of the list's information page. If you wish to obtain a list of
current users of a list, place the following in the body of an email message and send it to the
Majordomo server:

who your_list_name

where your_list_name is the name of the group (e.g., telecaster).

Finally, consider the following tips and tricks:

Check the configuration file for any potential problems. Several years ago, several RPM-based
versions of Majordomo contained the following line in the majordomo.cf file:

$whereami = 'hostname'

The 'hostname' parameter stopped Majordomo from issuing messages. A simple change of the
file to specify the correct hostname directly resolved the problem. This and other "problems" in
the configuration file can cause an otherwise perfect server to fail.

Review the /var/log/messages file and any log files related to Majordomo that reside in the
/var/log directory. You will find that Majordomo's messages are relatively clear.

Verify that permissions are correct. Many times, directories and files should be marked
executable, but are not. Keep that in mind when reading Majordomo's error messages.

Check for problems in the alias file.

Review your MTA settings to ensure that they are not causing the problem.

Use the strace command when sending messages to the Majordomo server. It may help you
understand why the problem is happening.

Check for firewall settings that may be blocking messages.

36.4. Objective 4: Serving News

Knowledge about how to configure a news server is required for the LPI Level 2 Exams. However,
news servers receive even less emphasis than mailing lists. The LPI specifically mentions the
InterNet News service (INN), which is offered by the Internet Systems Consortium (ISC) at
http://www.isc.org. INN is currently in its second version, INN 2. Following is the essential
information you need to know about this topic.

36.4.1. Overview

The INN daemon uses the Network News Transfer Protocol (NNTP), which operates on TCP port 143
by default. The protocol was first outlined in RFC 977. The name of the INN program that serves
news is innd, the INN daemon. You can read more about INN at http://www.isc.org/index.pl?
/sw/inn.

News servers can operate locally, meaning that they can provide access to messages posted by
users on the LAN. It is also possible to connect an NNTP server to a newsfeed, which makes it
possible for the server to receive messages from all of the Usenet newsgroups on the Internet.
Thousands of newsgroups exist. They are organized hierarchically. Top-level discussion categories
include:

alt

By far the largest group, which includes an extremely wide variety of topics, from
alt.fan.letterman to alt.os.linux to alt.music.led-zeppelin.

comp

This category includes such computing-related groups as comp.lang.c, comp.lang.java, and
comp.software.testing. The comp.os.linux series of groups is especially relevant to readers of
this book.

humanities

Groups in this category include humanities.lit.authors and humanities.classics.

sci

Includes sci.physics and other science-related entries.

This type of access, though, often requires the ISP to pay a fee, and some ISPs have begun closing
down newsgroup and Usenet access. As a result, many INN administrators use local-only
configuration, which does not support Internet-based Usenet submissions.

http://www.isc.org
http://www.isc.org/index.pl?

In order to create your own NNTP group, you need an NNTP daemon such as innd. Table 36-9
describes some of the files and directories used by innd.

Table 36-9. Files and directories used by innd

File Description

innd The INN daemon.

ctlinnd Used to add and delete groups, allow and disallow NNTP clients, enable
or reject remote newsfeeds, and determine the status of a news server.
Also used to cancel postings to a list, as well as to stop and start INN.

/etc/news/inn.conf The primary INN configuration file.

/etc/news/readers.conf Used to control which users and hosts access the INN server.

/etc/news/newsfeeds Determines how postings on your system are distributed on the server
and to other peers.

/etc/news/incoming.conf Contains the names of the hosts that are allowed to connect to your
system and provide it with newsgroup postings. Controls what you
receive from upstream servers.

/etc/news/expire.ctl Used to determine when articles posted on your INN server expire.

/etc/news/control.ctl Determines how INN handles control messages sent from upstream INN
servers. Control messages can include notifications of new groups.

/etc/news/innwatch.ctl Determines what INN does to monitor its performance.

/var/log/news A directory containing all of the INN log files, including err.log (critical
errors), news.notice (daemon startup and shutdown), and errlog (errors
relating to the posting of messages).

NNTP is designed to create a decentralized communications system. It is possible for an INN server
to participate in downstream feeds, which means that it receives newsgroup lists and commands
from other servers. An INN server can also be an upstream server, which means that it feeds
information to other servers that reside beneath it. As decentralized as NNTP is, it is important to
understand that a failure of an upstream server can cause your INN server to not receive updated
information.

NNTP clients include:

Lynx (http://lynx.isc.org)

trn (http://trn.sourceforge.net)

Mozilla Mail (http://www.mozilla.org)

Netscape Mail (http:/www.netscape.com)

newsx (http://www.kvaleberg.com/newsx.html)

Outlook and Outlook Express (http://www.microsoft.com)

36.4.1.1. Installing INN

http://lynx.isc.org
http://trn.sourceforge.net
http://www.mozilla.org
http://www.kvaleberg.com/newsx.html
http://www.microsoft.com

You can install INN in various ways. Many precompiled packages do not have certain useful features
compiled into the binaries. If this is the case, search carefully for configuration files that may
override such limitations. If you cannot find these, then you will most likely have to configure from
source. You can obtain the source file from the ISC.

36.4.1.2. Configuring INN

Once you have installed INN, you can add users using the ctlinnd command. The syntax for adding
users is as follows:

ctlinnd newgroup new_group_name rest group_creator

The newgroup command informs ctlinnd that you are creating a new group. You then specify the new
group name and then the rest value, which indicates whether you wish to allow users to access this

group. Specify y to allow access or n to disallow access. You then specify the name of the creator.

For example, supposing you wished to create a local INN group named research. You would issue
the following command:

ctlinnd newgroup research y james

Once you issue the command, users can access the research NNTP user group on this server. In
some cases, you may want to specify n as the rest value, because you may want to further configure

INN before you actually start serving users.

The readers.conf file determines how INN handles control messages sent out to control news servers
across the Internet. Two configuration groups exist for the readers.conf file:

auth

Determines the users and hosts that are allowed to authenticate with the server

access

Determines the newsgroups that authorized users can access

As you configure the readers.conf file, remember that you have to create entries for each group.
Following is an example of a very simple readers.conf entry that opens full access to all groups on
the server:

auth "pub" {
 hosts: *
 default: ""
}

 newsgroups: *
access "full" {
}

The auth entry in this example contains two subheadings: hosts and default. The hosts entry
specifies the hosts that are allowed to authenticate with the system. In this case, the wildcard * is
used. Therefore, any host can access the server. The value for default has empty quotation marks
as its value, which means that any user can access INN on the host, because no name is given for
the default username.

Tip: In most Linux systems, INN does not allow remote access by default.

Each time you make a change to these configuration files, stop and restart innd. You can do this in
various ways, though the most universal method is to use the ctlinnd command. To stop INN, issue
the following command:

ctlinnd throttle reason

where reason is a particular reason for shutting down the server. To start INN again, issue the

following command:

ctlinnd go reason

where reason is the exact same word you used when you shut down INN. If you do not specify a
reason, you will still be able to start the server again, but the reason option allows you to restart

only those processes that will be affected by your change.

In some systems, you will find scripts in the /etc/init.d or /etc/rc.d/init.d directories that allow you
to stop and restart INN. Remember, though, that the LPI test generally looks for the most universal
solutions, not those that are specific to a particular distribution.

36.4.1.3. Customizing newsgroups

The following example is a more ambitious entry in readers.conf:

auth "public" {
 hosts: "*"
 default: ""
}

auth "localnet" {
 hosts: "10.45.99.0/24"
 default: ""

}

auth "localhost" {
 hosts: "localhost, 127.0.0.1, stdin"
 default: ""
}

auth "useraccounts" {
 auth: "ckpasswd -f /etc/news/nntp_passwd"
}

These entries make it possible to use the ckpasswd application, which ships with INN. This
application can check passwords found in a password file, in this case, nntp_passwd. The
nntp_passwd file is generated using the htpasswd command, as follows:

htpasswd -c /etc/news/nntp_passwd username

where username is the first INN user you wish to create in the file. You can then add more users with

commands such as the following:

htpasswd /etc/news/nntp_passwd sandi

You can create as many users as you wish using the htpasswd command.

Tip: You also use the htpasswd command to change the passwords of users you have already created.

You are not finished editing the /etc/news/readers.conf file yet, however. Remember, you must add
the access section. This section is something like the following:

access "users" {
 users: "sandi,james,jamey,jacob,joseph,joel"
 newsgroups: "*"
 access: RP
}

access "localhost" {
 users: ""
 newsgroups: "*"
 access: RPA
}

access "localnet" {
 users: ""
 newsgroups: "*"
 access: RP
}

access "public" {
 users: ""
 newsgroups: "research.*,alt.comp.research"
 access: RP

Now, clients accessing your INN server will have to authenticate in order to access your resources.
INN will use the ckpasswd command to read the /etc/news/nntp_passwd file and then authenticate
users.

Authentication occurs in cleartext, meaning that any usernames and passwords used can be easily
obtained off the network using a packet sniffer such as tcpdump or ethereal. To thwart password
sniffing attacks, it is possible to configure INN to use SSL. Configuring INN for SSL is beyond the
scope of the LPI Level 2 Exams, but all you need to do is use the openssl command or the CA.pl Perl
script (which relies on openssl) to generate a certificate. You then configure INN to recognize the
certificate. The result is SSL protection for your server.

36.4.1.4. Configuring downstream and upstream clients

To configure downstream access, edit the /etc/news/newsfeeds file. Entries in this file will receive
updates from your server and will become peers. Following is an example of a newsfeed entry that
forwards Usenet articles through the innfeed application that INN uses to update other servers, but
does not forward local articles:

news.uu.net/uunet\
 :*,!junk,!control*/!research\
 :Tm:innfeed!

Given this entry, any internal newsfeed whose name contains research will not be forwarded.

As you read earlier, the /etc/news/incoming.conf file allows you to determine which systems can
connect to yours and provide newsgroup articles. Consider the following entry:

peer goodsys.nntp.com {
 hostname: "nntp.com, nntp.com"
 }

This allows the nntp.com and nntp.com systems to provide articles to your system in a newsfeed.

36.4.1.5. Monitoring newsgroups

When it comes to monitoring INN, consider reviewing log files and configuring the
/etc/news/innwatch.ctl file. Table 36-10 explains the contents of the different log files.

Table 36-10. INN log files

File Description

errlog Contains entries relating to processing of messages, including the processing of
message digests.

news For problems relating to mail postings.

news.crit Records critical errors, such as when essential services fail and when connections are
no longer available.

news.err Reports errors in configuration files.

news.notice Describes the connections to the INN daemon. Includes local and remote connections.
The hostname, time of day, and associated actions are all reported. Includes
information concerning received and rejected messages, as well as when the server is
stopped and started.

rc.news Records server stops and restarts.

36.4.1.6. Using innwatch

News servers can quickly occupy large amounts of disk space and system resources, if many users
are configured to use them. After all, more than 14,000 Usenet groups exist. The creators of INN
realized that robust management had to rely on more than simply viewing log files. So you can use
the innwatch command to actively monitor the network host's load average and the amount of free
disk space on the host.

If innwatch finds that INN is using too many resources, innwatch will reduce INN's draw on system
resources to the point where it will shut the news server down. innwatch reports what it finds in the
innwatch.status log file.

The /etc/news/innwatch.ctl file determines the level of supervision performed by the innwatch
command. Using this file, you can determine how often innwatch runs, as well as the system
resources it checks.

36.5. Conclusion

You now have received a detailed review of what you need to know in regard to Sendmail, Procmail,
Majordomo, and INN. You will find that the best thing to do now is to install these daemons and
become familiar with the workings of each program. The LPI Exams are designed to test applied
knowledge, and the only way you can be sure to do well is to work as closely with the applications
and daemons as possible.

Chapter 37. DNS (Topic 2.207)

This Topic is dedicated to Domain Name System (DNS) servers. DNS is the service responsible for
managing the conversion of host and domain names to and from their corresponding IP addresses.
The server that does this on Linux and Unix is usually called named (pronounced "name-dee,"
because it stands for "name daemon"). This server is a part of the Berkeley Internet Name Domain
(BIND) package used on more than 85% of all DNS servers in the world.

This Topic contains 3 Objectives:

Objective 1: Basic DNS Server Configuration

The candidate should be able to configure BIND to function as a caching-only DNS server. This
Objective includes the ability to convert a BIND 4.9 named.boot file to the BIND 8.x
named.conf format and reload the service using kill or ndc. This Objective also includes
configuring logging and options such as directory location for zone files. Weight: 2.

Objective 2: Create and Maintain DNS Zones

The candidate should be able to create a zone file for a forward or reverse zone or root-level
server. This Objective includes setting appropriate values for the SOA resource record, NS
records, and MX records. Also included are adding hosts with A resource records and adding
the zone to the /etc/named.conf file using the zone statement with appropriate type, file, and
masters values. A candidate should also be able to delegate a zone to another DNS server.
Weight: 3.

Objective 3: Securing a DNS Server

The candidate should be able to configure BIND to run as a nonroot user and configure BIND
to run in a chroot jail. This objective includes configuring DNSSEC statements such as keys to
prevent domain spoofing. Also included is the ability to split DNS configuration using the
forwarders statement, and specifying a nonstandard version number string in response to
queries. Weight: 3.

37.1. Objective 1: Basic DNS Server Configuration

The main configuration file for BIND 8.x is /etc/named.conf. In it you can specify options such as the
default directory for named files and specify the zones for the named entries you are hosting. You
generally host two types of named files. The first is the database (db) entry for each domain you
host. These db entries are typically named either db.domain.com or domain.com.db, depending on the

naming scheme you use. The db entries are the forward DNS entries for your domain. The second
type of named file you host is the reverse DNS file, denoted typically by db.x.x.x.in-addr.arpa,
where x.x.x is the subnet you are hosting with its elements reversed. For example , if you host the

208.201.239 subnet, you would have a db.239.201.208.in-addr.arpa reverse DNS file.

It is common for your ISP to manage the reverse DNS on the IP addresses that they have assigned
to you, so in-addr.arpa entries may not always be necessary.

37.1.1. named.conf

The /etc/named.conf file is the main configuration file for named. Within the named.conf file, you will
specify options such as the default directory for named entries and zone entries for individual named
files. The following is a sample /etc/named.conf file:

options {
 directory "/var/named";
};

zone "." {
 type hint;
 file "named.ca"'
};

zone "1.168.192.in-addr.arpa" {
 type master;
 file "db.1.168.192.in-addr.arpa";
};

zone "example.com" {
 type master;
 file "db.example.com";
};

zone "example.net" {
 type slave;
 file "db.example.net";
 masters {
 192.168.0.100;
 };
};

The preceding sample /etc/named.conf has five different types of entries. The first two entries are
mandatory configuration options for BIND. The first entry specifies BIND options. In this example,
the directory option sets where all named files will be placed. By default, this option is set to
/var/named. Many DNS administrators are accustomed to keeping named files under /etc/named
and therefore change this directory option.

The second entry is a default zone entry to specify what file can be used as a "hint" for where to find
root name servers. By default, BIND 8 uses /var/named/named.ca. This second entry is required,
and it is not recommended to edit this entry or file unless necessary.

The third entry in the example is a reverse DNS zone entry. The zone specified is 1.168.192.in-
addr.arpa. The reverse DNS is a primary DNS record, so the type entry is set to master. The file with
the reverse DNS information is in /var/named/db.1.168.192.in-addr.arpa, so the file option is set
to db.1.168.192.in-addr.arpa.

The fourth entry in the example is a primary DNS zone entry. The zone specified is example.com.
Because the entry is a primary DNS entry, the type is set to master. The file for the entry is found in
/var/named/db.example.com, so the file option is set to db.example.com.

The fifth entry in the example is a sample secondary DNS zone entry. The zone specified in the
example is example.net. Because the entry is a secondary DNS entry, the type is set to slave. The
file for this secondary entry is found in /var/named/db.example.net, so the file option is set to
db.example.net. Because this entry is a secondary DNS entry, you must provide the primary DNS
server information where the DNS information is retrieved from. In this entry's case, the primary
DNS server is 192.168.0.100, so the masters option is set to 192.168.0.100.

37.1.2. Primary DNS

After you have a domain registered with the DNS server you specify as the primary DNS server, you
will need to set up your named files by following these steps:

Add the corresponding zone to /etc/named.conf. As a primary entry, your zone entry in
/etc/named.conf will look like this:

zone "example.com" {
 type master;
 file "db.example.com";
};

1.

Edit db.example.com. Create a file under /var/named named db.example.com. Add any
necessary token entries and change the file serial number to reflect the current date.

The serial number (by standard convention) should be 10 characters. The first four (1999)
reflect the year, the next two (08) reflect the current month; the next two (01) reflect the
current day, and the last two (01) reflect the number of times you changed that file that day
(for instance, if this is the first time you made a change, the digits would be 01, the second 02,
the third 03, and so on). It is important that you update the serial number upon every change,
because this tells named that changes have been made to a zone.

2.

3.

Set your primary and secondary DNS servers. Add any hosts for this domain with appropriate
tokens and so forth. Note that the hostname always ends with a period (.); one of the most
common errors made by DNS administrators is to leave off the trailing period. Your
db.example.com should look something like this:

 @ IN SOA ns.example.com. root.example.com. (
 1999080101 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (7 days)
 86400) ; minimum (1 day)
 IN NS ns1.example.com.
 IN NS ns2.example.net.
 IN A 192.168.0.212
www IN A 192.168.0.212
ftp IN CNAME www
node2 IN A 192.168.0.2
router IN A 192.168.0.254
ns1 IN A
 192.168.0.10

3.

Set up reverse DNS. Create the db.0.168.192.in-addr.arpa file under /var/named. Set up any
and all reverse entries for each node, as specified in the forward DNS file. (Remember to
change your file serial number accordingly!) Your reverse DNS file should look something like
this:

 @ IN SOA ns.example.com. root.example.com. (
 1999080101 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (7 days)
 86400) ; minimum (1 day)
IN NS ns1.example.com.
 2 IN PTR node2.example.com.
 10 IN PTR ns1.example.com.
 254 IN PTR router.example.com.

4.

Verify changes and restart named. Verify that your IPs, hosts, and serial number information
are correct. Then restart named by running /etc/rc.d/init.d/named restart. To verify that you
have your domain running properly, use nslookup (discussed in the "DNS Tools" section of this
chapter) by running nslookup www.example.comserver_IP_address and nslookup
192.168.0.212server_IP_address. Specifying the DNS server's IP address in the command

allows you to see exactly what information your server is delivering, helping to avoid caching
or misconfiguration issues. You should also run nslookup without the server IP address
argument, to help detect such issues. The command should return the appropriate IP address
and domain information, if DNS is set up properly.

5.

37.1.3. Secondary and Tertiary DNS

When a domain is registered, it must be registered with not only a primary DNS server, but also a
secondary DNS server. If the primary server is down, the secondary server will take over. For even
more failover support, a tertiary DNS server can be set up.

Setting up secondary DNS for a domain is even simpler than setting up primary DNS. Essentially,
you have to do only Steps 1 and 5 from the previous list that describes setting up primary DNS.
There is a difference, however, from Step 1 for primary DNS. The following steps explain how to set
up secondary DNS.

Add the zone to /etc/named.conf. As a secondary entry, your type is slave. With a slave entry
you have to specify the master (used to pull the DNS information for the domain from), which
in this example is 192.168.2.50. As a secondary entry, your zone entry in /etc/named.conf will
look like this:

zone "example.com" {
 type slave;
 file "db.example.com";
 masters {
 192.168.2.50;
 };
};

1.

Verify changes and restart named. Verify that your IPs and host information are correct. Then,
restart named by running /etc/rc.d/init.d/named restart.

2.

37.2. Objective 2: Create and Maintain DNS Zones

DNS zone files are used to resolve domain names to the domain's assigned IP addresses. These files,
by default, are found under the /var/named directory and are typically named db.domain.com or
domain.com.db . In these examples, we will use db.example.com . The following is a sample
forward DNS file for a master (primary) record:

@ IN SOA ns.example.com. root.example.com. (
 1999080101 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (7 days)
 86400) ; minimum (1 day)

 IN NS ns1.example.com.
 IN NS ns2.example.com.

 IN MX 0 mail.example.com.
 IN A 192.168.0.212
localhost IN A 127.0.0.1
www IN A 192.168.0.212
ns1 IN A 192.168.0.10
ns2 IN A 192.168.0.11
ftp IN CNAME www
mail IN CNAME www
irc IN CNAME irc.example.net.

The first section is the SOA (start of a zone authority) entry. The SOA entry contains the domain of
the originating host, the domain address of the maintainer, the file serial number, and various time
parameters (refresh, retry, expire, and minimum time to live).

The second section of the preceding sample /var/named/db.example.com specifies the domain's
primary and secondary DNS servers. These are denoted by the NS tokens. The first NS entry is the
primary DNS server, and the second NS entry specifies the secondary DNS server. You can also add
tertiary and further DNS servers with the same NS entries.

The third section includes other references, options, and settings for the domain entry. The A tokens
point to host addresses. For example, the A token in this example sets the domain example.com to
192.168.0.212. Another A token sets www.example.com to 192.168.0.212 as well. An additional
token used in this example section is CNAME (canonical name). The CNAME token points an alias to
the appropriate IP address or domain. In the above example, ftp.example.com points to the same
address as www , which was already defined as 192.168.0.212. Also, mail.example.com is directed
to www . There is also a CNAME pointer for irc.example.com that redirects the request to an Internet
Relay Chat (IRC) server, located in this example at irc.example.net .

The MX (mail exchange) token points to the mail exchange server for the domain. When the mail
server program, such as Postfix, processes an email message, it first looks for this record of the

destination address. If you want reliable mail delivery, you should specify an additional MX record
pointing to another mail server. While mail shouldn't be dropped if the single mail server is
unavailable for a while, it will be delayed.

MX 30 mailserver
MX 60 mailserver.backup.com
MX 90 mailserver.localdomain.org

The relative priority of an MX server is determined by the preference number (the second field) in
the DNS MX record. The smallest preference number has the highest priority and is the first server
to be tried.

Tip: The lower preference number is the higher priority!

Table 37-1 summarizes the types of heads you need to know in zone files.

SOA

Start of authority

NS

Authorized name server

A

Host address

CNAME

Canonical name

MX

Mail server exchange

PTR

Reverse name pointer

Table 37-1. Common registry types used in zone files

Type Description

37.2.1. Forward DNS Zones

Forwarding is very useful in many situations. It simply forwards all DNS queries or just specific
zones to other DNS servers, caching the results and speeding up future name resolutions.

It's possible to create DNS forwarding using the forwarders parameter at a global level or per-zone
basis in a zone section of the named.conf file.

The following example forwards all queries to two other nameservers (10.163.200.103 and
10.163.200.104):

options {
 directory "/var/named";
 forwarders {10.163.200.103; 10.163.200.104;};
};

A server can also be used as a forward-only DNS server that forwards all name server work. Just
add the forward only parameter to the file:

options {
 directory "/var/named";
 forwarders {10.163.200.103; 10.163.200.104;};
 forward only;
};

The following example shows a zone-specific forwarding parameter:

zone "example.com" IN {
 type forward;
 forwarders {10.163.200.103; 10.163.200.104;};
};

This way, all nameserver queries from example.com will be handled by another DNS server.

37.2.2. Reverse DNS Files

Reverse DNS files are used to resolve IP addresses to their assigned hostnames. Reverse DNS is set
up per subnet, meaning all 192.168.0.n addresses would have a single reverse DNS file defined, as
would 192.168.1.n , 192.168.2.n , and so on (where n is equal to all nodes from 0 through 255).

Reverse DNS files are named by the subnet address (in reverse order) followed by the in-addr.arpa
filename. For instance, the reverse DNS file for the 192.168.100.n subnet would be
db.100.168.192.in-addr.arpa , and the reverse DNS file for the 205.23.12.n subnet would be

db.12.23.205.in-addr.arpa .

Although the subnet and in-addr.arpa filenames are always used, many administrators replace the
db . with rev ., simply for clarification (for instance, rev.12.23.205.in-addr.arpa or 12.23.205.in-
addr.arpa.rev). Regardless of which naming convention you use, simply keep the same naming
convention throughout your environment, and make sure all appropriate references (such as in
/etc/named.conf) match.

The following is an example of the reverse DNS file db.0.168.192.in-addr.arpa . You will notice that

it looks similar to the forward DNS files, with the same SOA head entry, but uses different tokens in
the body of the file.

@ IN SOA ns.example.com. root.example.com. (
 199080101 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (7 days)
 86400); minimum (1 day)
 IN NS ns.example.com.
1 IN PTR gateway.example.com.
2 IN PTR boss.example.com.
3 IN PTR node3.example.com.
;4 IN PTR node4.example.com.
212 IN PTR www.example.com.
254 IN PTR router.example.com.

In this example, the first six lines are identical to the forward DNS files. The first six lines of the file
are the SOA entry information, which includes the host information, the file serial number, and
various time settings. The remaining body of the example differs greatly from the forward DNS file,
however. The remaining entries use the PTR (pointer) token. The PTR token resolves the specific
node on a subnet to a domain name. The first column of PTR entries in the example specifies the
node number on the subnet. For instance, 1 refers to 192.168.0.1, 2 refers to 192.168.0.2, and so
forth. You'll notice that nodes that aren't assigned are either not listed, or the ones that are disabled
are commented out. (For instance, the entry for 4 is commented out with the semicolon at the
beginning of the line.) Therefore, the entry for 1 will resolve 192.168.0.1 to gateway.example.com ,
the entry for 212 will resolve 192.168.0.212 to www.example.com , and so forth.

37.2.3. DNS Tools

A variety of DNS tools are available to help you utilize and test the DNS service. The ones you
should know are listed in Table 37-2 . DNS tools should be installed on every Linux workstation, not
just DNS servers. Tools such as dig and nslookup are a great help even for regular users who want
to look up an IP address or domain using a name server.

Tip: nslookup has been deprecated in favor of dig .

dig

dig @ nameserver domain

Queries nameserver for domain name packet information

dnsquery

dnsquery -n nameserver host

Queries domain nameserver for host using resolver

host

host domain

Looks up the host for a domain name

nslookup

nslookup record [server] or

nslookup ipaddress

Queries Internet name servers for IP address and domain information

Table 37-2. DNS tools

Tool Simple usage Description

Syntax

dig [@nameserver] domain

Description

dig is a powerful tool that can be used to retrieve detailed information from DNS name servers.

Frequently used options

server

Specifies the name server to query.

query-type

Specifies the registry type that you are querying. If omitted, the default is a . Available types
include:

a

Network address

any

Any (all) information about the specified domain

mx

Mail exchanger for the domain

ns

Name servers for the domain

soa

Zone of authority record

hinfo

Host information

axfr

Zone transfer

txt

Arbitrary text

-x

Specifies a reverse name resolution

+debug

Useful for name resolution troubleshooting

Example

You can make simple name resolution tests using different types of records. This is how to query
an SOA record:

dig @nameserver.petro.org.br. petro.org.br. soa

;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52650
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 13, ADDITIONAL: 6

;; QUESTION SECTION:
;petro.org.br. IN SOA

;; ANSWER SECTION:
petro.org.br. 3600 IN SOA nameserver.petro.org.br. admin.petro.org.br. 177
900 600 86400 3600

;; AUTHORITY SECTION:
petro.org.br. 3600 IN NS nameserver.petro.org.br.
petro.org.br. 3600 IN NS nameserver02.petro.org.br.

;; ADDITIONAL SECTION:
1 IN PTR gateway.petro.org.br.
2 IN PTR boss.petro.org.br.
3 IN PTR node3.petro.org.br.
212 IN PTR www.petro.org.br.
254 IN PTR router.petro.org.br.

;; Query time: 1 msec
;; SERVER: 164.85.216.64#53(nameserver)
;; WHEN: Tue Mar 21 19:27:48 2006
;; MSG SIZE rcvd: 512
And how to look for the MX records:
dig petro.org.br mx

; <<>> DiG 9.2.2-P1 <<>> petro.org.br mx
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 4842
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;petro.org.br.INMX

;; AUTHORITY SECTION:
org.br.900INSOAa.dns.br. hostmaster.registro.br. 2006032712 1800 900 604800 900

;; Query time: 152 msec
;; SERVER: 172.24.1.20#53(172.24.1.20)
;; WHEN: Mon Mar 27 15:55:42 2006
;; MSG SIZE rcvd: 92

37.3. Objective 3: Securing a DNS Server

As with any computer sitting on the Internet, you need to secure your DNS server . Here are a few
reasons:

Losing your DNS server can mean losing access to your web server and email server because,
without DNS, no one can find them, effectively creating a Denial of Service (DOS) scenario.

An attacker who breaks into your DNS server can get information about your internal network,
including the IP addresses of other servers, client machines, switches, and so on.

By poisoning the data in your DNS server or manipulating your DNS information, an attacker
can cause people attempting to connect to your servers to be rerouted to the attackers'
servers. Imagine what would happen if your clients typed their credit card information into a
server they thought was yours and wasn't.

Some of the things you can do to secure your DNS servers are:

Have redundant servers. If one goes down, you'll have a backup.

Use one or more dedicated servers for DNS. There should be no users logging in or any other
services on the system that can be used to attack it.

Restrict zone transfers so they can take place only between your DNS servers.

Use TSIGs (transaction signatures) to encrypt zone transfers between DNS servers.

Do not allow recursive queries to an Internet-facing nameserver. These servers should serve
only name information that they are explicitly told about.

Recursive queries should be allowed only from your internal network.

Run BIND in a chroot jail and/or as a user with the minimum privileges necessary.

Keep backups of your zone files in a separate environment, and monitor the information served
by your DNS servers.

Depending on your setup, there are other things you may be able to do. Also, as with any other
program, bug and security fixes for BIND are frequently publicized, so keep abreast of BIND
developments.

Let's look at some of the items just listed, one by one.

37.3.1. Dedicated Servers

Ideally, your DNS server should run only DNS. If you have your DNS server running on a computer
with SMTP and POP (email), user accounts, a dozen web sites, and so on, you have many attack

vectors open. A bare-bones computer that has only port 53 open is much more difficult to break into
than one that has open ports for Telnet, HTTP, SMTP, POP, and IMAP. You should also have separate
internal and external DNS servers. The internal servers should respond to queries only from internal
addresses. You do that with a command such as the following (the IP address is a typical internal
subnet address):

allow-query {192.168.1.0/24;};

You can chain multiple subnets together using semicolons (;).

If the internal servers need to resolve an address from outside the network, you can have them
forward the query to the external server with:

forwarders {200.200.1.17; 200.200.1.18;};

37.3.2. Restricting Zone Transfers

If an attacker can do a zone transfer (and anyone who has access to nslookup or dig can do a zone
transfer!), she can get a pretty good idea of how your network is laid out. Knowing how your
network is laid out lets her know where to attack.

Be sure that only your servers can do a zone transfer by putting a line like the following in your
/etc/named.conf files on each server:

options { allow-transfer {10.10.10.5;192.168.1.12;};}

where the 10.10.10.5 and 192.168.1.12 addresses are examples; substitute the addresses of your
other DNS servers. Another good idea is to use TSIGs (discussed next).

37.3.3. Using Transaction Signatures (TSIG)

Transaction signatures, or TSIGs, were introduced in BIND 8.2 and more fully fleshed out in BIND 9.
TSIGs encode the data whenever a zone transfer occurs. In BIND 9, TSIGs can also be used for
dynamic updating of zone records.

The process of using TSIGs is not complicated, but can be difficult to troubleshoot. One of the most
important things to keep in mind is that the clocks on the DNS servers must be synchronized. The
best and easiest way to do this is by using the Network Time Protocol (NTP). Additionally, all of your
DNS servers should use the same NTP server.

Here is the process for a server running BIND:

Generate the MD5 key using dnssec-keygen. It is customary to name the key after the two1.

servers involved:

dnssec-keygen -b 128 -a HMAC-MD5 -n ZONE server1-server2

This will create two files, Kserver1-server2.+157+55659.key and Kserver1-
server2.+157+55659.private, where the 157 represents the algorithm used (HMAC-MD5 in our
case) and 55659 represents the footprint of the file. In the next step, we will use the value in
the Key line of the second output file:

cat Kserver1-server2.+157+55659.private
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: 6tIpA0E/nTW677RqaBQLFQ==

1.

Create an entry on both servers. You can do it right in /etc/named.conf as follows:

key server1-server2 {
 algorithm hmac-md5;
 secret "6tIpA0E/nTW677RqaBQLFQ==";
}

Better yet, create the entry in a separate file, say /etc/named.key, and include it in
/etc/named.conf like this:

include "/etc/named.key";

In either case, make sure the permissions on the files are as restrictive as possible (through a
chmod 400 on the file).

2.

Use an ACL for each server and tell BIND which keys to use:

acl "myservers" { server1, server2; };
server server2 {
 transfer-format
 keys {server1-server2;};
}

3.

Restart both servers and check for errors in the log files.4.

37.3.4. Recursive Queries

Your DNS servers should do recursive queries only from your network. Not only will this allow for
better performance, but it can help prevent a DOS scenario known as DNS cache poisoning.

All DNS servers cache the replies to their queries. Some are (mis)configured to cache all replies,
even if they didn't send out a query. If an attacker sends a reply that says "www.oreilly.com is at
192.168.1.1" and the receiving DNS server accepts the reply and places it in the cache, the cache
has been poisoned.

In BIND, recursive queries are the default, so be sure to turn them off on your external servers with:

recursion no;

If you don't have separate external and internal servers (or you just don't want to turn off
recursion), you can restrict recursive queries to specific subnets with a section such as:

allow-recursion {192.168.1.0/24; 10.10.0.0/16;};

37.3.5. Running BIND in a chroot Jail/Reduced Privileges

Restricting which system resources BIND can access will make your server harder to break into and,
if someone does break in, make it harder for her to do damage.

The classic way of doing this is to run BIND in a chroot jail. The process is quite involved, so we
won't get into details here. The basic process is:

Create a chroot environment that contains all the files and directories that BIND will need to
run.

1.

Put BIND in the jail.2.

Run BIND.3.

The new -uusername and -tdirectory features of Bind 9 make it easier to run BIND in a chroot jail.

Once the command-line options are read, BIND will chroot itself in the directory directory as the
user username. This has the disadvantage that, for a short time during program startup, BIND is not

chrooted. Also, some people think the chroot code in BIND needs more testing. On the other hand, it
is much easier to use than a chroot jail.

Tip: If you're going to use the -u and -t options, do not run BIND as the root user (-u root), because on most Linux systems, root can break out

of a chroot jail.

Chapter 38. Web Services (Apache and
Squid, Topic 2.208)
Virtually every organization runs a web server, either for internal useto hold documents for the
organization's employeesor to serve content to the public at large. The Objectives on this part of the
test cover basic configuration of a secure Apache web server. They also cover Squid, a popular open
source (http://www.opensource.org) caching server. Despite the name of the section, the LPIC tests
do not cover Web Services of the SOAP variety, which implement applications over the Web. Only
basic web configuration is covered.

Objective 1: Implementing a Web Server

Candidates should be able to install and configure a web server. This objective includes
monitoring the server's load and performance, restricting client user access, configuring
support for scripting languages as modules, and setting up client user authentication. Also
included is configuring server options to restrict usage of resources.

Objective 2: Maintaining a Web Server

Candidates should be able to configure a web server to use virtual hosts and the Secure
Sockets Layer (SSL) and to customize file access.

Objective 3: Implementing a Proxy Server

Candidates should be able to install and configure a proxy server, including access policies,
authentication and resources usage.

http://www.opensource.org

38.1. Installing Apache

Like the majority of open source software, Apache gives you two choices when it comes to
installation: you can download the source and compile it yourself, or you can install a binary
package. The binary packages are precompiled versions of Apache that come either from your
software vendor (as is the case with most Linux distributions) or directly from the Apache
Foundation itself (see http://www.apache.org/dist/httpd/binaries). Your first decision is therefore
whether to choose a binary or a source distribution.

A source distribution has a number of advantages. First and foremost, it allows you to configure
exactly what you want compiled into Apache and what you don't want. The configuration options
before the actual compilation give you the ability to add or remove dozens of modules distributed
with Apache. Another good reason for going with a source installation is that you may have third-
party modules in source that must be compiled against the Apache source tree. If this is the case,
you have to use the Apache source code in order to compile these modules.

The biggest disadvantage of a source installation (other than the potential complexity of the
installation itself, if you are not familiar with such things) is package management. The easiest way
to maintain a Unix-based system is to utilize the built-in package management tools to install,
upgrade, and remove software for your operating system. If you install any package from source ,
you're bypassing the package management system. The onus then lies on you to ensure that the
package you've installed is upgraded and documented correctly. Too many times have systems been
migrated, only for users to discover that a certain compiled package was not included in the
migration because the sysadmin failed to document its existence and didn't include it in the
migration.

So although you may be in specific situations in which you need to maintain a source install of
Apache, in general it is recommended to go with your vendor's binary package, for maintainability's
sake. Because binary installation is usually trivialespecially when covered by package
managementthis chapter documents only the source installation.

38.1.1. Apache Installation from Source

The procedure for installing Apache from source follows the standard ./configure, make, make install
routine that should be familiar to most Linux users. The first decision you must make when
compiling Apache is which version you will use. At the time of this writing, there are two major
versions of Apache supported: Version 2.2.0 and Version 1.3.34. Version 1.3.34 is the latest version
of the Apache source that started life as a fork of the original web server, NCSA's httpd . The 2.0
Apache source was a major rewrite of Apache from the ground up, sharing little code with the 1.3
branch. The Apache Foundation recommends that all users use the latest version in the 2.0 branch,
although the 1.3 branch is still maintained for legacy purposes. This section will focus on compiling
Apache 2.2.0, although the procedure given here will work with Apache 1.3 as well.

The Apache source code can be downloaded from http://httpd.apache.org . Select the Download
from a mirror link and you will see a link to the latest source code. The file will be either httpd-
2.2.0.tar.gz or httpd-2.2.0.tar.bz , representing the two popular compression methods used in the
Unix world, gzip and bzip2 . If you're unsure of which to get, download httpd-2.2.0.tar.gz , as
gunzip has been around longer and is more likely to be installed. Once you have downloaded the
file, go to a shell prompt as the root user and type:

tar -xvzf httpd-2.2.0.tar.gz

This will extract the contents of the archive into the directory httpd-2.2.0 . Change to this directory
and run the configure --help command to view the compile-time options :

cd httpd-2.2.0
./configure --help | more

'configure' configures this package to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See
below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
 -h, --help display this help and exit
 --help=short display options specific to this package
 --help=recursive display the short help of all the included packages
 -V, --version display version information and exit
...
Some influential environment variables:
 CC C compiler command
 CFLAGS C compiler flags
 LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
 nonstandard directory <lib dir>
 CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have
 headers in a nonstandard directory <include dir>
 CPP C preprocessor

Use these variables to override the choices made by 'configure' or to help
it to find libraries and programs with nonstandard names/locations.

The output was drastically shortened here; there are many compile-time options for Apache . For
complete documentation on all of the options, visit
http://httpd.apache.org/docs/2.2/programs/configure.html . We will touch here on some of the
more important options that you probably want to enable.

The majority of the Apache compile-time options deal with modules . Modules are parts of the
Apache source code that can be either compiled directly into the httpd binary or compiled as a
separate, shared object file. Apache refers to these as DSOs, or Dynamically Shared Objects. The
advantages of compiling options as DSOs are that they can be dynamically loaded or unloaded from
memory when they are not needed and that third-party modules compiled as DSOs do not
necessarily have to be upgraded when Apache itself is upgraded. Modules can be enabled
individually or enabled in one configure option as either built-ins or DSOs. Here are some common
configure options:

http://httpd.apache.org/docs/2.2/programs/configure.html

--prefix= pref

Specifies where you want Apache installed. Common options are /opt/apache and
/var/opt/apache . If not specified, defaults to /usr/local/apache .

--enable-so

Enable the loading of DSOs in Apache . Without this option enabled, all your modules will have
to compiled directly into the binary.

--enable-headers

Allows you to manipulate HTTP headers in your Apache configuration.

--enable-proxy

Turns Apache into a proxy server. It is not a full-featured proxy server and lacks the
sophistication of a package like Squid (discussed later in this chapter), but it does work.

--enable-ssl

Allows Apache to handle connections encrypted with SSL, the Secure Sockets Layer.
Recommended if you will serve web pages with sensitive information or if you require
authentication (username/password).

--enable-http

Required if you want Apache to speak the HTTP protocol (as you probably do).

--enable-dav

Enables the WebDAV module, which allows you to use special client software to edit web
pages directly through Apache. For example, with the WebDAV client built into Microsoft
Windows, you can connect to a WebDAV-enabled Apache server and map a drive to the web
server, editing HTML pages as if they were on a local drive.

--enable-cgi

Enables the execution of Common Gateway Interface scripts. These are often written in
scripting languages such as Perl or a shell.

--enable-rewrite

Enables the Apache rewrite engine. This gives you the ability to apply regular expression
based rules to redirect HTTP requests. This is a very powerful module and is quite useful.

Now that we've discussed some common options, we're ready to run the configure script:

./configure - prefix=/opt/apache --enable-so -enable-headers --enable-proxy

 --enable-ssl --enable-http --enable-dav --enable-cgi --enable-rewrite

This configure line will enable all of the modules previously listed and, when we run the make
command, will cause all the modules to be compiled directly into the Apache binary. If we want to
compile them all as DSOs instead, our configure line looks like this:

./configure -prefix=/opt/apache -enable-so -enable-http \
 -enable-mods-shared="headers proxy ssl dav cgi rewrite"

Note that so and http cannot be compiled as DSOs. Now that our configure command is complete
and without errors (we hope), we are ready to compile Apache. The configure command has created
a Makefile in the current directory. This file contains all of the instructions that are necessary to build
Apache from source. The make command reads this file and follow the instructions. Note that the
make command is not shipped with Apache; it comes with your Linux distribution as part of the
program development tools.

make

Depending upon the speed of your system, this process can take some time. Be sure to pay attention
to any warnings or errors that are output. If the make command generates a fatal error, it is
probably because a module you enabled requires certain software that is not available on your
system. If this is case, either install that software and run make again, or rerun the configure
command, removing the offending option.

Assuming the make command completed with no errors, you are now ready to complete the final
step and install Apache onto your system:

make install

In our case, this will create the directory /opt/apache and copy everything necessary to it.

Once the make install command is complete, change to the /opt/apache/bin directory and verify that
you have a binary file called httpd there:

cd /opt/apache/bin
file httpd
httpd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), not stripped

This is the actual Apache binary. It has some command-line options that give you more information:

./httpd -h

Usage: ./httpd [-D name] [-d directory] [-f file]
 [-C "directive"] [-c "directive"]
 [-k start|restart|graceful|graceful-stop|stop]
 [-v] [-V] [-h] [-l] [-L] [-t] [-S]
Options:
 -D name : define a name for use in <IfDefine name> directives
 -d directory : specify an alternate initial ServerRoot
 -f file : specify an alternate ServerConfigFile
 -C "directive" : process directive before reading config files
 -c "directive" : process directive after reading config files
 -e level : show startup errors of level (see LogLevel)
 -E file : log startup errors to file
 -v : show version number
 -V : show compile settings
 -h : list available command line options (this page)
 -l : list compiled in modules
 -L : list available configuration directives
 -t -D DUMP_VHOSTS : show parsed settings (currently only vhost settings)
 -S : a synonym for -t -D DUMP_VHOSTS
 -t -D DUMP_MODULES : show all loaded modules
 -M : a synonym for -t -D DUMP_MODULES
 -t : run syntax check for config files

These options are particularly useful if you find yourself maintaining an Apache installation that you
yourself did not compile.

Now change to the /opt/apache/modules directory to see the DSOs that we compiled:

cd /opt/apache/modules
ls -1
httpd.exp
mod_dav.so
mod_proxy_ajp.so
mod_proxy_connect.so
mod_proxy_http.so
mod_rewrite.so
mod_cgi.so
mod_headers.so
mod_proxy_balancer.so
mod_proxy_ftp.so
mod_proxy.so
mod_ssl.so

Here we see all of the options that we compiled as modules. We see from the file command that
these are shared objects, ready to be loaded into memory:

file mod_cgi.so
mod_cgi.so: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV), not stripped

Now that we've verified that we've compiled Apache the way we want, it's time to do a test run. As
noted before, the file /opt/apache/bin/httpd is the actual Apache binary, so you can start the web
server simply by running this command:

/opt/apache/bin/httpd

The process will fork to the background and return you to a shell prompt. However, this is not the
recommended way to manage the Apache process. Most Linux systems will provide you with a
standard set of shell scripts that you can use to start and stop processes on your system. These shell
scripts are usually called from the various runlevels, which means they start processes when the
system boots and stops them when it shuts down. The advantage to this approach is that although
you may have software on your system from many different sources, written in many different ways,
the controlling shell scripts allow you to manage each process as if it were written in the same
format. The shell scripts all take the same arguments, hiding the various command-line intricacies of
the individual processes. While these scripts are usually provided by your Linux distribution, a very
similar script ships with the Apache source code. It is /opt/apache/bin/apachectl and it takes three
arguments: start, stop and restart . This is the preferred way to manage your Apache process.

/opt/apache/bin/apachectl start

If all goes well, you will be immediately returned to a prompt. How do you know whether the web
server is running? There are three easy ways to figure that out: verify the process exists, check the
log file, and look for open network ports.

To verify the Apache process exists, we use the ps command. The following set of options is valid on
most Linux systems:

ps -aux | grep http
root 21640 0.3 0.6 7756 3232 ? Ss 21:58 0:00 /opt/apache/bin/httpd -k start
daemon 21641 0.0 0.6 7756 3264 ? S 21:58 0:00 /opt/apache/bin/httpd -k start
daemon 21642 0.0 0.6 7756 3260 ? S 21:58 0:00 /opt/apache/bin/httpd -k start
daemon 21643 0.0 0.6 7756 3260 ? S 21:58 0:00 /opt/apache/bin/httpd -k start
daemon 21644 0.0 0.6 7756 3260 ? S 21:58 0:00 /opt/apache/bin/httpd -k start
daemon 21645 0.0 0.6 7756 3260 ? S 21:58 0:00 /opt/apache/bin/httpd -k start

We see from this output that there are six copies of the httpd binary currently running.

To check the log files, change to the directory /opt/apache/logs and run the tail command on
error_log , which is where Apache not only logs its errors, but also records every time it is stopped,
started, or restarted.

cd /opt/apache/logs
tail error_log
[Tue Jan 03 21:58:18 2006] [notice] Apache/2.2.0 (Unix) mod_ssl/2.2.0 OpenSSL/0.9.7f
DAV/2 configured -- resuming normal operations

Finally, we can verify that Apache is listening on a network port. By default, Apache listens on TCP
port 80, which is the default port used for HTTP communication. To verify this, we use the netstat
command:

netstat -anp | grep -i httpd
tcp 0 0 :::80 :::* LISTEN 21640/httpd

This tells us that the httpd binary (process ID # 21640) is listening on TCP port 80.

Success! We have successfully installed and started the Apache web server! Now, how do we
configure it to do our bidding?

38.2. Configuring Apache

The Apache web server is controlled by configuration files that live in the directory /opt/apache/conf
. The main configuration file is httpd.conf , and like most configuration files for Unix services, it is a
plain text file that can be edited by your favorite text editor. The configuration file is broken down
into three main sections:

Global section

This contains configuration options that apply to every host on the server.

Main section

The configuration options here apply to any virtual host that is accessed and does not have its
own section.

Virtual host section

Each virtual host that is hosted on the server gets its own configuration section.

You may be asking "What is a virtual host?" While the Apache web server is perfectly capable of
serving the web pages for a single web site (such as www.example.com), its real strength lies in its
ability to serve pages for many different web sites, all from the same machine. Each of these web
sites is called a virtual host, because it appears that each of them has Apache all to itself. This
allows companies or ISPs to host many (often thousands) of web sites on a single Apache
installation. Virtual host syntax will be covered later in the chapter.

The global configuration section gives directives that affect the entire Apache installation, including
any virtual hosts. Let's look at one of the simplest Apache httpd.conf files you'll ever see, Example
38-1 . It's all global directives; we're not defining any virtual hosts. This is a complete httpd.conf file
and is probably sufficient if you're just using Apache in a testing environment.

Example 38-1. Apache configuration file

ServerRoot "/opt/apache"
Listen 80
LoadModule headers_module modules/mod_headers.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule dav_module modules/mod_dav.so

LoadModule cgi_module modules/mod_cgi.so
LoadModule rewrite_module modules/mod_rewrite.so
User daemon
Group daemon
ServerAdmin you@example.com
DocumentRoot "/opt/apache/htdocs"
<Directory "/opt/apache/htdocs">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
DirectoryIndex index.html
ErrorLog logs/error_log
LogLevel warn
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
CustomLog logs/access_log combined
ScriptAlias /cgi-bin/ "/opt/apache/cgi-bin/"
DefaultType text/plain
TypesConfig conf/mime.types
AddHandler cgi-script .cgi

Most of these lines are pretty self-explanatory. ServerRoot defines where you installed Apache ; all
directory paths given after this directive can be given relative to this root. Listen 80 tells Apache
what TCP port to listen for connections on. The LoadModule lines ensure that the modules we
compiled as DSOs get loaded into memory every time Apache starts. The User and Group directives
dictate the security context under which the Apache binary will run. The ServerAdmin directive
indicates the email address that is shown to web browsers when an error is encountered, and the
DocumentRoot directive tells Apache where to look for pages to serve.

The <Directory> line indicates the start of a container object. Anything between the <Directory
/opt/apache/htdocs> and </Directory> tags applies only to the directory /opt/apache/htdocs . As
you can see, we're turning on some options and dictating who can request content from this
directory (in this case, anyone). The Options directive is a complicated one and can be a potential
security risk. For more information, visit the Apache documentation at
http://httpd.apache.org/docs/2.2/mod/core.html#options . For our simple example here, Indexes
and FollowSymLinks are two pretty safe and popular options.

DirectoryIndex defines what files Apache should look for when a directory is requested instead of a
file. For example, if our site is www.example.com and our index page is
/opt/apache/htdocs/index.html , we want to make sure that when someone requests either
http://www.example.com or http://www.example.com/index.html they see the same resource. So
the line:

DirectoryIndex index.html

handles this for us. You can add additional filenames here if you want Apache to search for them (in
order) every time it serves files out of a directory. A common global option would be:

DirectoryIndex index.html index.htm index.php

http://httpd.apache.org/docs/2.2/mod/core.html#options
http://www.example.com

to try and catch most of the different ways people would name their index files.

The next three lines deal with how and where Apache saves log files. All errors will go to the file
defined in the ErrorLog directive. All regular traffic will be logged to the file defined in the CustomLog
directive, using the filter indicated, which is combined in this case. As you can see from the
LogFormat directive, you have complete control over the formatting of your log files. However,
because it's very common to use third-party tools to parse your Apache log files and generate
reports for you, you probably want to stick with a standard format that these tools are expecting.
The different standards for log file formatting are defined at
http://httpd.apache.org/docs/2.2/logs.html#accesslog .

Finally, the last four lines deal with how Apache handles certain "special" content. The ScriptAlias
directive tells Apache that when a file is requested from this directory, instead of sending the file
directly to the requestor's web browser, the file is executed and the output is sent to the web
browser. This is the most common way to allow public users to execute programs on your server.
These programs are known as Common Gateway Interface (CGI) scripts. They are often written in
scripting languages, such as Perl or Python, but they can also be written in C, Ruby, or any other
language that you can run on your server.

The Default Type and Types Config lines tell Apache what to do with certain files. Unlike operating
systems such as Microsoft Windows, where file types are usually determined by filename extensions,
Apache relies on MIME types to determine the content of a file. These configuration lines tell Apache
where to find the MIME types definition file and what the default MIME type should be for files that it
serves. Finally, the AddHandler line allows you to have CGI programs anywhere in your web
directory structure, not just limited to the cgi-bin directory. As long as your CGI program has a
name that ends in .cgi , Apache will execute it and send the results to the web browser.

The main section of the Apache configuration file is used to define default settings for requests that
come in that do not match a virtual host. If you are running Apache without any virtual hosts (so it's
serving content for only one domain name) this is the only other section you'll need. All your
configuration options for that one domain will go here. If you have virtual host containers later,
however, this section will be used only when no virtual host matches the request.

To understand that a little better, we need to discuss the difference between name-based and IP-
based virtual hosts. Years ago, when the Web was young, if you wanted to host multiple web sites
on one system, you had to have a unique IP address for every domain you wanted to host. For
example, if you were hosting the domains www.example1.com and www.example2.com , the IP
addresses for them might be 192.168.1.1 and 192.168.2.1, respectively. If that were the case, your
virtual host containers might look something like this:

<VirtualHost 192.168.1.1>
DocumentRoot /opt/apache/www.example1.com
ServerName www.example1.com
</VirtualHost>

<VirtualHost 192.168.2.1>
DocumentRoot /opt/apache/www.example2.com
ServerName www.example2.com
</VirtualHost>

For every web request that came in on 192.168.1.1, Apache would serve files out of the

http://httpd.apache.org/docs/2.2/logs.html#accesslog

/opt/apache/www.example1.com directory. For every web request that came in on 192.168.2.1,
Apache would serve files out of the /opt/apache/www.example2.com directory.

This works fine, but the problem is that IP addresses are becoming harder and harder to come by.
The solution is instead to use name-based virtual hosts, which allow multiple domain names to
resolve to the same IP address, while still allowing Apache to figure out what domain is being
requested and serve web pages from the appropriate place. A name-based virtual host setup looks
like this:

NameVirtualHost *:80
<VirtualHost *:80>
ServerName www.example1.com
ServerAlias example1.com
DocumentRoot /opt/apache/www.example1.com
</VirtualHost>

<VirtualHost *:80>
ServerName www.example2.com
ServerAlias example2.com
DocumentRoot /opt/apache/www.example2.com
</VirtualHost>

Notice that the first directive is NameVirtualHost . This tells Apache to expect name-based virtual
hosts. We also tell Apache here to expect name-based requests coming in on port 80 (as specified by
*:80). This is not required if your implementation of Apache is going to listen only on port 80 (if
that's the case, you can just put NameVirtualHost *), but it's good practice anyway, because web
servers often listen on additional ports.

In this case it's assumed that www.example1.com and www.example2.com both resolve to the same
IP address. When a request comes in, Apache will look in the HTTP headers to determine what
virtual host is being requested and will search the ServerName and ServerAlias directives to find a
match. If a match is found, content is served from the corresponding DocumentRoot . If no match is
found, the default virtual host is used.

Name-based virtual hosts treat the different sections of the configuration file in a special way you
need to understand. In an IP-based setup, if there is no virtual host match (which means that a
request came in on an IP address that was not defined in a virtual host container), the main section
is used. However, with name-based virtual hosts, if no match is found, the first defined VirtualHost
container becomes the default. Essentially, therefore, named-based virtual hosting overrides the
main section of the Apache config file. Even if that section is there, the directives will never be
honored.

You can put any directive in a VirtualHost container that you would normally put in the main
section. Here is a better example of what a VirtualHost container would often contain:

<VirtualHost *:80>
ServerName www.example1.com
ServerAlias example1.com
CustomLog /opt/apache/logs/www.example1.com.log combined
DocumentRoot /opt/apache/www.example1.com/
ScriptAlias /cgi-bin/ /opt/apache/www.example1.com/cgi-bin/
Alias /image/ /opt/apache/image/
Options FollowSymLinks

ErrorDocument 404 /404.htm
</VirtualHost>

In this example, we're defining a custom log file, a unique script alias, and a unique error document
for this virtual host.

38.2.1. Access Control

It's common to use the Apache configuration to restrict access to certain directories. The two
components of this process are the configuration directives and the username and password source.

Apache has the ability to query many different sources to get authentication information. It's very
common to have Apache query your existing LDAP or MySQL database if you already have user
account information stored there. You can even have Apache query your Microsoft Windows Active
Directory server for authentication information. Setting up this kind of advanced authentication is
beyond the scope of this book. However, simple authentication with a manually maintained file of
usernames and passwords is easy to do and is sufficient for most situations.

The standard authentication mode for Apache is called basic authentication. Basic authentication
reads a file created by the htpasswd program that ships with Apache. This program allows you to
create and maintain a file containing usernames and passwords that Apache can use to enforce
authentication on directories.

Here is an example of creating an authentication file with htpasswd :

/opt/apache/bin/htpasswd -c /opt/apache/password.list demouser
New password:
Re-type new password:
Adding password for user demouser

Note that the password you type at the prompt is not echoed back to the screen. We can now look at
the contents of this file:

cat /opt/apache/password.list
demouser:RRm8uBOYINC.s

It contains our username (demouser), a colon as a delimeter, and the encrypted version of the
password we typed.

Now that we have this file in place, we can add security to one of our virtual hosts. Let's say that we
want to allow all users to access the top level of www.example1.com without a password, but the
subdirectory /protected will require a username and password and will restrict access to the
demouser user listed in the file we just created (of course, we can add more users later). Here is our
new VirtualHost container to accomplish this:

<VirtualHost *:80>
ServerName www.example1.com

ServerAlias example1.com
CustomLog /opt/apache/logs/www.example1.com.log combined
DocumentRoot /opt/apache/www.example1.com/
ScriptAlias /cgi-bin/ /opt/apache/www.example1.com/cgi-bin/
Alias /image/ /opt/apache/image/
Options FollowSymLinks
ErrorDocument 404 /404.htm
<Directory /opt/apache/www.example1.com/protected>
AuthName "Authorized Users Only"
AuthType Basic
AuthUserFile /opt/apache/password.list
require valid-user
</Directory>
</VirtualHost>

After we add this directory container to the Apache config file at /opt/apache/conf/httpd.conf , we
must restart Apache (/opt/apache/bin/apachectl restart). Like most other Unix services, the Apache
server reads its config file only at startup, so any change to the config file will go into effect only
when Apache restarts.

Now when we go to www.example1.com/protected in our web browser, we get a pop-up box that is
entitled Authorized Users Only and asks for our username and password. If our authentication as
demouser is successful, we will be shown the content. If not, we'll be asked three times (this
behavior is client-specific) before finally being shown an error page stating that our authentication
failed.

38.2.2. Third-Party Modules

As stated earlier, the existence of third-party modules is one of the reasons that the Apache web
server has remained so popular. In this section, we will look at configuring three of the most popular
third-party modules: mod_php, mod_perl , and mod_ssl .

38.2.2.1. mod_php

The mod_php module integrates the PHP (Pre-Hypertext Processing) scripting language into Apache.
Like most other web scripting languages, PHP works in this manner:

A PHP file is requested by a web client.1.

Apache loads the PHP script into memory and passes it to the PHP parsing engine.2.

The PHP parsing engine parses the script, generating HTML code.3.

The resulting HTML code is passed to the web browser via HTTP and is displayed to the end
user.

4.

This is the same model that is used for CGI scripts, but in this case the parser is not a separate
program that Apache calls; it will be built into Apache itself.

Like the Apache web server, you have the choice of installing either the binary version or the source
version of PHP. If you're using a binary version of Apache that accompanies your distribution,
chances are good that the distribution also has a version of mod_php that will work with your

version of Apache. If you're using a source installation of Apache, as we are in our examples, you'll
need to download the source code for PHP and compile it.

You can get the latest version of PHP from http://www.php.net . As of this writing, the latest version
is 5.1.1. Download the file php-5.1.1.tar.bz2 from a mirror listed on the php.net site and save it to a
directory on your hard drive. The procedure for compiling PHP is very similar to the procedure for
compiling Apache: we will run ./configure with options, then run make , and finally run make install .

The first step is to uncompress the PHP source code and run ./configure -help to see all the compile-
time options available.

tar xjf php-5.1.1.tar.bz2
cd php-5.1.1
./configure -help

There are too many compile-time options to list them all here. You can find detailed instructions on
each configure option at http://www.php.net/manual/en/configure.php . A couple of important
configuration options are described here:

--with-apxs

Enable the building of PHP as a DSO instead of directly into the Apache binary. This is the
recommended way to build PHP for the reasons stated earlier, primarily so that you can
upgrade PHP independently of Apache if you compile it as a DSO.

--with-mysql

Enable PHP to connect to a MySQL database. One of the more popular platforms for running
web applications has been dubbed LAMP (for Linux/Apache/Mysql/PHP). The tight integration
with the popular MySQL database makes PHP a smart choice when you're looking to develop
database-driven dynamic web sites. MySQL installation is not covered in this chapter.

Although there are many more options, these two will get you off and running with a basic PHP
installation that you can become familiar with.

./configure --with-apxs=/opt/apache/bin/apxs --with-mysql

If this command generates any errors, check your settings and try again. It's common to see errors
when you're attempting to compile PHP with modules for which you don't have the necessary
libraries installed. For example, if you try to enable LDAP support in PHP with the --with-ldap flag,
but you don't have any LDAP libraries or headers installed on your system, the configure script will
detect this and fail.

Assuming the configure command completes successfully, you will now have a Makefile that will be
read by the make command.

make

make install

The make install command not only copies all of the necessary PHP files onto your system, but also
modifies your Apache httpd.conf file to load the PHP module. This line is added to
/opt/apache/conf/httpd.conf :

LoadModule php5_module modules/libphp5.so

In order for Apache to know how to identify PHP scripts , you also need to add this line to the global
section of your Apache httpd.conf file:

AddType application/x-httpd-php .php .phtml

This tells Apache that any file ending in .php or .phtml will be assigned the MIME type
application/x-httpd-php , which will be in turn handled by the PHP interpreter.

Now we're ready to restart Apache and verify that PHP is working.

/opt/apache/bin/apachectl stop
/opt/apache/bin/apachectl start

Since we're loading a new module, it's not sufficient just to tell Apache to reread its configuration file
(which is what the restart option does). We actually need to stop it and then start it again.

The easiest way to verify our PHP installation is to create a simple PHP script and try to view it in our
web browser. Save this text file in /opt/apache/www.example1.com/test.php :

<?php
phpinfo();
?>

Now go to http://www.example1.com/test.php in your browser. You should see a long table with a
blue background that says PHP Version 5.1.1 at the top. You can scroll down this page to see all the
different PHP settings that are currently set. Congratulations! You have a working installation of
Apache and PHP!

38.2.2.2. mod_perl

Installing the mod_perl module is not much different than installing the mod_php module. mod_perl
allows you to run Perl scripts from your web server using a Perl interpreter that is integrated into
Apache.

Do you need mod_perl in order to run Perl scripts on your web server? No. You can just as easily
configure Apache to run Perl scripts as CGI programs, calling your system's Perl interpreter every
time a web request is made for a Perl script. However, this can potentially place a very high load on
your web server, because every time a Perl script is requested, the web server must load the
complete Perl interpreter in memory, pass the script to the interpreter, and then unload the
interpreter from memory. It's much more efficient to keep the interpreter in memory all the time,
which is what mod_perl provides. It also gives you much tighter integration with Apache itself,
including the ability to extend the functionality of the web server with Perl code.

Download the latest version of mod_perl from http://perl.apache.org . As of this writing, the latest
version is 2.0.2. Uncompress the file and go through the normal compile routine. The syntax is
slightly different since this is a Perl package, but the concept is the same.

tar xvf mod_perl-2.0-current.tar.gz
cd mod_perl-2.0.2
perl Makefile.PL MP_APXS=/opt/apache/bin/apxs
make
make install

We are compiling mod_perl as an Apache DSO, just as we did for PHP. After the make install is
complete, we need to add this line to our Apache httpd.conf file:

LoadModule perl_module modules/mod_perl.so

Now we can stop and start Apache and verify that mod_perl is successfully loaded. In addition to the
test script like the one we used earlier for PHP, you can also get information on the currently active
modules by looking in the error_log after you restart Apache. Every time Apache starts, it writes a
line to the error_log showing what version it is and what modules are loaded, along with their
versions. After stopping and starting Apache, look in the error_log and you should see a line that
reads something like this:

[Wed Jan 04 14:39:18 2006] [notice] Apache/2.2.0 (Unix) mod_ssl/2.2.0 OpenSSL/0.9.7f DAV/2
PHP/5.1.1 mod_perl/2.0.2 Perl/v5.8.6 configured -- resuming normal operations

This tells us all of the modules that are configured. We see that we're using mod_perl 2.0.2 which
was compiled against Perl Version 5.8.6.

38.2.2.3. mod_ssl

mod_ssl allows Apache to encrypt HTTP connections with the Secure Sockets Layer encryption
libraries. SSL was originally developed by Netscape and has become the de facto standard for
secure, encrypted communication over the World Wide Web.

mod_ssl is an Apache module that allows Apache to interface with the openssl libraries, which are
open source implementations of SSL.

Apache versions before 2.0 required that mod_ssl be downloaded and installed separately, similarly

to what we did for mod_php and mod_perl . You can get the latest code from
http://www.modssl.org . As of this writing, the latest version is 2.8.25 for Apache 1.3.34. Apache
2.0 and above have mod_ssl built in, so there is no extra compilation process; all you need to do is
configure it.

In order to understand the process of encrypting your web traffic with mod_ssl , we need to go into
the basics of certificate-based cryptography. SSL provides us with two basic pieces of connection
security: authentication and encryption.

The authentication piece works like this: when your web browser connects to an SSL-enabled web
site (usually by using the https:// protocol in your browser, which tells your browser to attempt to
connect to the web server on TCP port 443 instead of port 80 and to expect an encrypted
connection), the web server presents the web browser with a certificate. This certificate has detailed
information about the web site, including the official fully qualified domain name, contact
information, and the Certificate Authority that is vouching for the identity of this web site. Because
this is still the authentication phase, we are concerned with proving that this web site really is who it
claims to be. And because there is no easy way to trust this company, we instead look to a third
party that we do trust in order to vouch for this company.

This is where the Certificate Authority (CA) comes into play. All of the major web browsers include a
list of trusted Certificate Authorities. If a web site presents a certificate that has been signed by one
of these trusted CAs, the browser accepts the certificate and the encrypted communication can
begin. If the certificate was not signed by a trusted CA, the web browser will usually pop up a
window warning the end user of this situation and asking if they'd like to proceed. (A lot of CAs are
recognized by some popular web browsers but not others, so the warning box can often pop up for
legitimate sites.) If the end user agrees to trust the CA that signed the certificate, an encrypted
connection is made. If not, the connection is aborted.

Examples of trusted CAs are Verisign, Thawte Consulting, and GeoTrust, to name a few. In order to
get a signed certificate from one of these companies, you create a certificate request and then send
it to one of these companies. For a fee, they will sign the certificate and send you back a file you can
use to handle the authentication piece on your web server. Let's go through the process of creating a
certificate signing request and submitting it to a CA.

In order to accomplish this task, you must have the openssl program installed on your system. As of
this writing, the latest version is 0.9.7. This should have come from your vendor in a standard
package.

Create an RSA private key for your web server. This will be used during the encryption phase.

openssl genrsa -des3 -out server.key 1024

You will be asked for a passphrase during this process. You cannot create the key without
giving a passphrase. The passphrase will be required every time you attempt to use this key.
As you can imagine, this can be a little problematic, because Apache reads this key every time
it restarts. If you left this passphrase in place, you would have to give the password every time
you restarted Apache, which is unworkable if Apache is restarting from an unattended script.
So the recommended second step is to remove this passphrase. You must understand the
security implications of this! After you remove this passphrase, anyone who gets hold of the
server.key file can masquerade as your web server over SSL connections. So keep the file safe
from prying eyes.

1.

http://www.modssl.org

To remove the passphrase, first make a copy of the key:

cp server.key server.key.passphrase

Then, remove the passphrase:

openssl rsa -in server.key.passphrase -out server.key

The server.key file now has no passphrase.

Create a certificate signing request (CSR) using your newly created RSA key. This file will be
sent to a trusted CA for signing.

openssl req -new -key server.key -out server.csr

You will be asked a series of questions about your organization. It is important to answer these
questions correctly, as this information will be incorporated into your certificate and will be
viewable by all web users visiting your site. In particular, make sure you use the correct fully
qualified domain name by which your encrypted site will be referred. SSL certificates are
specific to fully qualified domain names, so even though www.example1.com and
example1.com give you the same content, you'll have to either decide on one to be your SSL
site or buy a separate certificate for each.

2.

Send the CSR to a trusted Certificate Authority.

Most CAs have web forms that you can use to submit your CSR. After they collect their fee from
you (usually anywhere from $150 to $900), you will receive a signed certificate via email. Once
you receive this email, store the certificate in a file called server.crt .

3.

Configure Apache.

Now that you have an RSA private key and a signed certificate from a trusted CA, you're ready
to set up Apache to handle encrypted SSL connections. You need to make changes to two
places in the Apache configuration file. In the global section, enable Apache's SSL functionality
and set some global variables. Then create a specific virtual host section for SSL connections .
There are other ways to accomplish this with Apache, including running two copies of Apache,
one listening on port 80 to serve unencrypted pages and the other listening on port 443 to
serve encrypted pages, but the virtual host option is much more elegant and easier to
maintain. Here are the lines required in the global section of Apache's httpd.conf file:

SSL Global Options
Listen 443
SSLPassPhraseDialog builtin
SSLSessionCache dbm:/opt/apache/logs/ssl_scache
SSLSessionCacheTimeout 300
SSLMutex file:/opt/apache/logs/ssl_mutex
SSLRandomSeed startup builtin

4.

SSLRandomSeed connect builtin

More information on what SSL options are available can be found at
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html .

The easiest way to set up Apache to handle SSL connections is to create a VirtualHost container
that handles all traffic coming in on port 443. Adding onto our example Apache httpd.conf from
before for www.example1.com , we can create a container for SSL connections to
www.example1.com that looks like this:

<VirtualHost *:443>
DocumentRoot "/opt/apache/www.example1.com"
ScriptAlias /cgi-bin /opt/apache/cgi-bin
ServerName www.example1.com
ServerAdmin webmaster@example1.com
ErrorLog /opt/apache/logs/ssl_error_log
CustomLog /opt/apache/logs/ssl_access_log combined
Options FollowSymLinks
SSLEngine on
SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL
SSLCertificateFile /opt/apache/ssl/server.crt
SSLCertificateKeyFile /opt/apache/ssl/server.key
</VirtualHost>

The SSLCipherSuite line lists all of the SSL encryption methods that you will support. This is a pretty
standard list; consult the mod_ssl documentation for more encryption options.

Once you've restarted Apache, you are ready to serve pages over an encrypted connection. When
you point a browser to https://www.example1.com , you'll have an SSL-secured web connection.

But what if you just want to set up an internal SSL site and don't want to have to pay a fee to a
trusted CA? Can you still have an SSL-secured site? The answer is yes. Just because your web
browser has a short list of Certificate Authorities it inherently trusts doesn't mean you can't sign
your own certificate. Use this command to create a self-signed certificate file:

openssl req -new -x509 -nodes -sha1 -days 365 -key server.key \
 -out server.crt

Copy the resulting server.crt file to /opt/apache/ssl and restart Apache. Now when you point your
web browser to https://www.example1.com , you'll probably get a box that looks something like
Figure 38-1 .

Figure 38-1. Browser accepting certificate from web server

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

As you can see, the default option is to accept this certificate temporarily for this session. If you
select Accept this certificate permanently, you are telling the browser to accept this certificate from
now on, even though it is not from a trusted CA. Clicking on Examine Certificate shows us Figure 38-
2 .

Figure 38-2. Certificate from web server displayed

You can see that this certificate contains the information we entered when we signed the certificate
ourselves. So why use a trusted CA at all and pay the money when you can sign your own
certificates? There are two reasons:

End users don't like to see this error box. It makes them nervous, and they may abort the
connection.

Even though the rest of the world doesn't necessarily trust you, they probably trust one of the
companies on the short list of trusted Certificate Authorities. So you're basically paying these
companies to vouch for you.

SSL support has become a very common option for Apache users, as security issues become more
important on the Web. We encourage anyone who operates a web site that takes personal
information (even usernames and passwords) to consider the benefits of SSL encryption.

38.2.2.4. mod_rewrite

The mod_rewrite module was mentioned during our initial compilation of Apache. mod_rewrite
allows you to apply regular expression patterns to HTTP requests and manipulate them as you see
fit. This gives you the ability to redirect incoming requests, directing users to different pages or
replacing content on the fly. mod_rewrite is one of the most powerful Apache modules and is widely
used by webmasters wanting more control over the content and layout of their site.

The complete documentation for mod_rewrite can be found at
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html . Let's look at a few examples to see how
mod_rewrite works.

In this example, we'll use our standard web site www.example1.com . Let's say our company just
purchased another company called example2.com . We are now hosting web sites for both
companies, but we want to redirect people who try to go to example2.com to example1.com . This is
easy to do with a VirtualHost container, as we have seen before. We could just make sure our
VirtualHost container looked something like this:

<VirtualHost *:80>
ServerName www.example1.com
ServerAlias example1.com www.example2.com example2.com
DocumentRoot /opt/apache/www.example1.com
CustomLog /opt/apache/logs/www.example1.com.log combined
</VirtualHost>

Now, any request that comes in for any of these four web sites (www.example1.com , example1.com
, www.example2.com , or example2.com) will display the content that lives in
/opt/apache/www.example1.com . However, we have two problems with this setup. First, if
someone accesses this site with www.example2.com , the URL in his web browser stays
www.example2.com throughout his visit to the site. Since we now own this company, we want to
change that automatically to www.example1.com . Also, we may want to know how many people
come into our site through www.example1.com and how many come in through www.example2.com
. Since we have only one log file in this situation, we won't see a breakdown of traffic between the
domains.

A better solution would be to use mod_rewrite . We set up a separate VirtualHost container for
www.example2.com and use mod_rewrite to redirect traffic to www.example1.com :

<VirtualHost *:80>
ServerName www.example2.com
ServerAlias example2.com
DocumentRoot /opt/apache/www.example1.com
CustomLog /opt/apache/logs/www.example2.com.log combined
RewriteEngine On
RewriteRule ^(.+) http://www.example1.com [R]
</VirtualHost>

The ServerName and ServerAlias lines ensure that requests coming in for these domains are handled
by this VirtualHost container (assuming we removed www.example2.com and example2.com from

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

the example1.com VirtualHost container). The DocumentRoot can essentially be any valid directory,
because we're not actually going to serve any content from it. The CustomLog will be a specific log for
this VirtualHost so we know how many requests are coming in for www.example2.com . The
RewriteEngine On line tells Apache to turn on the rewrite rule-processing engine for this VirtualHost
. This is a necessary step, because the rewrite engine does incur some overhead, and you don't want
Apache wasting memory on it if you're not going to use it. Finally, the RewriteRule line does the
actual work for us. The format of the RewriteRule syntax is:

RewriteRule pattern substitution [options]

The pattern can be any valid regular expression that will be applied to the requested URL. The
substitution is what the URL is replaced with. The options are ways to modify the behavior of
RewriteRule and are not always required. In our example, we want to redirect every request for
www.example2.com to www.example1.com . We also want to ensure that if someone had
bookmarked a deep-linked page of www.example2.com (for example,
www.example2.com/products/1/a/product.html), she is redirected to the home page of
www.example1.com . Since we want our initial regular expression to catch everything, we use a
catchall regular expression:

^(.+)

The ^ character indicates the start of a line. The parentheses enclose the rest of our regular
expression. The period (.) matches any single character, and the plus sign (+) is a modifier for the
period, meaning one or more instances of the preceding character. So this regular expression
essentially means "match anything."

The substitution section is what we are going to replace the URL with. In this case, we want to
replace every URL with our home page of www.example1.com . The only option we're using in this
case is the R option, which forces an external redirect. When you're redirecting from one domain to
another, you need to use this R option so Apache prepends the http:// to your rewrite destination.
This option is not required if you're simply redirecting to another file in the same DocumentRoot .

Another, more complicated example takes advantage of the RewriteCond expression to query more
than one variable before rewriting occurs. RewriteCond is also used to query something other than
the URL before a rewrite. In this example, we've done some site redesign, but we don't want to
break any bookmarks that web users may already have for our site. In the past, people accessed our
pages through a CGI script, so requests looked like this:

http://www.example1.com/cgi-bin/go.cgi?page1

and

http://www.example1.com/cgi-bin/go.cgi?page2

http://
http://www.example1.com/cgi-bin/go.cgi?page1
http://www.example1.com/cgi-bin/go.cgi?page2

We have changed our web layout, so the URLs should now be:

http://www.example1.com/page1.html

and

http://www.example1.com/page2.html

How can we handle this with mod_rewrite so the old URLs still work?

<VirtualHost *:80>
ServerName www.example1.com
ServerAlias example1.com
DocumentRoot /opt/apache/www.example1.com
CustomLog /opt/apache/logs/www.example1.com.log combined
RewriteEngine On
RewriteCond %{QUERY_STRING} ^page.+
RewriteRule ^(.+) /%{QUERY_STRING}.html
</VirtualHost>

In our RewriteCond line, we're looking at the value of the environment variable QUERY_STRING . The
complete list of variables that you can query can be found in the mod_rewrite instructions at
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html and includes variables such as
HTTP_USER_AGENT, REMOTE_USER , and REMOTE_HOST . In this case, we're interested in performing a
rewrite only if our QUERY_STRING variable matches the regular expression:

^page.+

Again, this is similar to our last regular expression. The ^ means the start of the line, and the .+
means "match anything," so we will perform a rewrite only if our query string starts with page and
has anything else after it. If that is the case, the RewriteRule will be executed. It says "replace any
URL with /%{QUERY_STRING}.html ." So a URL of the form http://www.example1.com/cgi-bin/go.cgi?
page1 would be redirected to http://www.example1.com/page1.html .

Be sure to watch the Apache log files when you are troubleshooting your mod_rewrite rules. The
error_log file in particular will give you a good idea of exactly what is going on if Apache is not
behaving as you think it should.

38.2.2.5. Apache performance tuning

So far, we have looked at how to install and configure the Apache web server. We have touched on
many different options, including DSO, SSL, mod_php , and mod_rewrite . This final Apache section
deals with performance tuning.

http://www.example1.com/page1.html
http://www.example1.com/page2.html
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

The Apache web server process follows the common Unix parent/child model. When you start the
Apache web server, you are starting a parent process. This parent process will spawn a number of
children to handle incoming HTTP requests. If the number of web requests exceeds the number of
children currently available, Apache will spawn more, up to a specified limit. As you can imagine, the
spawning of new children while HTTP requests are pending not only places overhead on the web
server itself, but can adversely affect the web browsing experience, as web surfers sit and wait for
the web server to honor their request. There are a number of options that you can set in the global
httpd.conf section to maximize the performance of your Apache install:

StartServers

This option tells Apache how many children to spawn when it initially starts up. You want to
ensure that this number is a few more than the average number of connections you see on
your web site. If your web site averages 10 simultaneous HTTP requests at all times, it's
probably a good idea to set StartServers to at least 15.

MinSpareServers

This option sets how many idle child processes should be kept around. Idle children are useful
when traffic spikes. You don't want to be in a situation in which your web surfers have to wait
for Apache to spawn new children to handle their requests. Making this value between 5 and
20 (depending upon how busy your site is) ensures that your site handles spikes in traffic
gracefully.

MaxSpareServers

This option sets the maximum number of idle children. This is useful to save memory on your
web server. If you have a sudden spike in traffic that causes 50 children to spawn, but then
traffic goes back down to 5 connections, you don't want 45 idle children taking up memory
and doing nothing. This value needs to be higher than MinSpareServers . It's usually a good
idea to set this between 5 and 10 values higher than MinSpareServers .

MaxClients

This option sets how many simultaneous HTTP requests your server can handle. If this value is
reached, no new HTTP requests will be handled, resulting in an error on the web browser end.
The purpose of this option is to prevent Apache from attempting to handle so many requests
that it consumes all the resources on the server itself. By default, Apache won't let you set this
higher than 256, but that limit can be extended by modifying the code before you compile
Apache.

Performance tuning can be a challenge. Careful monitoring of your Apache installation is essential in
order to identify what the correct values should be for the parameters listed in this section. For more
information on Apache monitoring, the mod_status module can be very useful. You can read its
documentation at http://httpd.apache.org/docs/1.3/mod/mod_status.html .

38.3. Squid: History and Overview

Squid is a caching proxy server. It normally sits "between" a web surfer and a web server. The
surfer requests a web page from the proxy server. The proxy server either makes the request for the
surfer to the web server (a proxy request) or serves the client the page directly if it's already saved
in the proxy server's disk cache. Because the proxy server is between the client and the server, a
number of options are available, including logging, filtering, and other access control. Squid can do
all of these things and more.

Squid was originally based on the Harvest project, which is an ARPA-funded set of tools for building
a standards-compliant web crawler. Squid is currently maintained by open source programmers
around the world and is licensed under the GNU General Public License. For more information on
Harvest, visit http://webharvest.sourceforge.net/ng , and for more information on Squid, visit the
Squid home page at http://www.squid-cache.org .

You can choose to install Squid from either source or a binary included with your distribution. As of
this writing, the latest recommended version of Squid is 2.5STABLE12. Unlike Apache, Squid does
not have nearly as many compile-time options that you might be interested in. A binary Squid
package from your Linux distribution usually works fine. If, however, you are interested in
discovering exactly what compile-time options are available to you, you can read about them in the
Squid documentation at http://squid-docs.sourceforge.net/latest/html/x220.html .

If you've installed a Squid package from your Linux distribution, the files are probably laid out in
your filesystem like this:

/etc/squid

Squid configuration directory and home to the main configuration file, named Squid.conf or
squid.conf

/usr/lib/squid

Programs that Squid uses to communicate with external authentication sources

/usr/sbin/squid

The Squid binary itself

/usr/share/doc/squid-2.5/

Squid documentation

/usr/share/squid

Locale-specific errors and icons

/var/log/squid

Squid log directory

/var/spool/squid

Home of the Squid disk cache

We will go through some basic options in the Squid.conf file. By default, a relatively sane set of
options is chosen already. If you just want to use Squid as a basic caching proxy server, with no
access control, you need to change only a few defaults. For more advanced configurations, greater
tweaking of the configuration file is required.

38.3.1. http_port option

The default port on which Squid listens for connections is TCP port 3128. This can be anything you
want, but you must make sure that each of your clients is configured to talk to Squid on this port.
For example, in the Firefox web browser, select Edit Preferences Connection Settings. Then,
assuming your Squid server is named squidserver , you set the proxy options shown in Figure 38-3 .
These settings will cause your Firefox browser to make all requests through squidserver at port
3128.

Figure 38-3. Setting proxy options in Firefox to use Squid proxy

38.3.2. cache_dir option

This option dictates not only where Squid stores its cache, but also what kind of storage system is
used, how much disk Squid is allowed to use, and how the directory structure is set up. The format
is:

cache_dir storage_type directory-name megabytes L1 L2 [options]

The default storage type is ufs , which is the original Squid storage setup. There are other options

available, but they are really necessary only if you have some specific problem with ufs . For most
purposes, ufs is sufficient.

The default amount of space used is 100 MB, which you almost certainly want to change. For any
reasonably sized disk cache (and considering that hard drives have never been cheaper), you
probably want to allocate at least a couple of gigabytes to Squid. Squid won't be able to work
effectively as a cache if it doesn't have enough disk space.

L1 sets how many top level subdirectories are created in the cache_dir directory (the default is 16)
and L2 sets how many second-level subdirectories are created (the default is 256).

So a standard line would look like this:

cache_dir ufs /var/spool/squid 10000 16 256

This sets a ufs cache directory at /var/spool/squid and allocates 10 GB to it.

38.3.3. cache_mem option

This option lets you designate how much memory Squid can use. The more memory, the more
responsive your cache is. If Squid hits this limit, it will start swapping to the disk, which decreases
performance dramatically.

38.3.4. cache_access_log option

This option lets you designate a logfile that will keep a record of every request processed by Squid.
The format of the logfile is configurable (you can even make it look like a standard Apache logfile),
but it is recommended that you leave the format in the default Squid format. There are a number of
good third-party reporting tools that can parse Squid log files and provide you with reports.

38.3.5. acl option

This is probably the most complex part of the Squid setup process. Access control lists allow you to
determine not only who gets to use your proxy server (via IP address, domain name, or username
and password) but also what sites they get to visit. Once you understand the concept, the
implementation is relatively straightforward. The most important thing to remember is that, by
default, the Squid.conf file is configured with ACL lines that will deny access to everything except the
localhost. In order to allow anyone to use your cache, you're going to have to create some ACLs and
allow them access.

In our test office environment, let's say that you have a Linux box with two network cards installed.
One network card is connected to a DSL router, and the other one to a switch. Also connected to this
switch are 10 office computers. You want to set up Squid on this system to cache web requests for
the office to save on bandwidth. You also want to log all access, require authentication, and block
access to certain web sites. The external IP address of the DSL router is dynamic, and the internal IP
address is 192.168.1.1/255.255.255.0.

Here is an example Squid.conf file for this setup. This offers some default access control (all intranet
users can access the cache) and enables cache access and logging.

http_port 192.168.1.1:3128
cache_mem 128M
cache_access_log /var/log/squid/access.log
cache_dir ufs /var/spool/squid 1000 16 256
acl all src 0.0.0.0/0.0.0.0
acl manager proto cache_object
acl localhost src 127.0.0.1/255.255.255.255
acl to_localhost dst 127.0.0.0/8
acl intranet src 192.168.1.0/24
acl SSL_ports port 443 563
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 # https, snews
acl Safe_ports port 70 # gopher
acl Safe_ports port 210 # wais
acl Safe_ports port 1025-65535 # unregistered ports
acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl CONNECT method CONNECT
http_access allow manager localhost
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
http_access allow localhost
http_access allow intranet
http_access deny all

The three key lines related to ACLs in the file are:

acl intranet src 192.168.1.0/24
http_access allow intranet
http_access deny all

The first ACL line defines an access control list named intranet that includes all systems with a
source IP address in the range 192.168.1.0 through 192.168.1.255. This defines all of our internal
office machines. The next line applies that ACL to a directive, in this case the http_access directive.
This allows any system that matches the intranet ACL to have HTTP access to the cache. Finally, the
last line denies access to any system not already explicitly allowed. This is usually good practice
when setting up an ACL list, whether it's for a proxy cache, a firewall, or a router. Always have a
"default deny" rule at the end, forcing you to explicitly allow anything that you want to provide
access to. If your default policy is to allow, it's too easy to make a mistake in your configuration and
let more through than you intend.

Now that we have a working configuration, let's add some settings to it. The first thing you might
want to do is to restrict access to certain web sites. Whatever your company Internet access policy
is, there are probably some web sites that you don't want your employees visiting. This is easy to
implement in Squid , using an ACL. Here is an example ACL that defines some potentially
nondesirable web sites:

acl blocked_sites dstdomain .espn.com espn.go.com .hotmail.com

Now that you've defined the ACL, apply it to the http_access directive:

http_access deny blocked_sites

Directives are processed in order, so you must ensure that your http_access deny all directive is
last ; otherwise, it will stop processing and override any following allow directives.

After you've added these two lines to your Squid.conf file, restart Squid and attempt to access
www.espn.com . You should see a screen like Figure 38-4 .

Figure 38-4. Access denied by Squid on host basis

Also, you should see a line like this in your Squid access.log :

1136490718.221 870 192.168.1.33 TCP_DENIED/403 1419 GET http://www.espn.com/ - NONE/-
text/html

You can add as many domains as you wish to a directive like this. You can also filter on IP address
and strings in URLs.

38.4. Squid Authentication

Now that we know how to set up our cache and allow (and deny) access to it, the next step is to
consider authentication . The major advantages to requiring authentication to your cache are
logging and access restriction. With authentication required, every HTTP request from evey user will
be logged with a timestamp and the username. You can then easily run a report on this logfile to
find out what web sites users are visiting. Squid supports many different kinds of external
authentication (similarly to Apache). You can have Squid authenticate against your LDAP server,
your RADIUS server, or your Microsoft Windows Active Directory server. For our purposes, we're
going to demonstrate how to configure Squid to authenticate against a standard Apache
authentication file created with the htpasswd program.

First, you must ensure that the ncsa_auth command came with your version of Squid. If you have a
binary package from your vendor, ncsa_auth is probably in either /usr/sbin or /usr/lib/squid . If you
compiled Squid from source, you have to go back to the Squid source tree and follow these steps:

cd auth_modules/NCSA
make
make install

The next step is to create an authentication file with the htpasswd program. We already have
htpasswd on our system at /opt/apache/bin/htpasswd from our Apache install, so we can run this
command:

/opt/apache/bin/htpasswd -c /opt/squidusers.htpasswd demouser

Enter the password twice for demouser and we have our authentication file. Now we configure Squid
to require all users to authenticate against this file. First we add these two lines:

auth_param basic program /usr/sbin/ncsa_auth /opt/squidusers.htpasswd
acl passwd proxy_auth REQUIRED

The auth_param line defines the program that will be used to read our password file. The ACL line
creates an ACL called passwd that requires authentication. Finally, we modify our http_access line to
look like this:

http_access allow intranet passwd

This provides access to the intranet ACL as long as the passwd ACL is satisfied. After restarting
Squid, we try to go to www.google.com and we get a username and password dialog box. If we are
unable to authenticate here, we'll see a screen that looks like Figure 38-5 .

Figure 38-5. Access denied by Squid on user/password basis

Once we successfully authenticate, we don't need to reauthenticate until we restart our web
browser. The Squid access.log file now has a line that looks like this:

1136492351.742 162 192.168.1.33 TCP_MISS/200 1642 GET http://www.google.com/ demouser
DIRECT/64.233.167.147 text/html

As you can see, the username demouser is now logged with every request.

38.5. Squid as Web Accelerator

In addition to the proxying aspects of Squid, it can also be used as a web accelerator. This is very
similar in concept to Squid as a proxy server, but in this case, Squid is "closer" to the web server
that is being queried. Squid sits "in front" of the web server, and when a request is made from any
web browser for content that is on the web server, that request is handled by Squid. If Squid has the
requested content in the cache, it is served directly to the client. If the content is not in the cache,
Squid gets the content from the web server and then serves it to the client. This is useful in a
number of situations:

If the original web server is too slow to handle all the requests

Because this setup puts less load on the web server itself (and more on Squid), performance
increases.

If the original web server is on a slow line, which can't handle all of the traffic

If the Squid system is on a faster line, requests can come into Squid, and Squid will query the
web server over the slow line only when a request cannot be fulfilled from the cache.

Let's look at an example configuration that would allow a Squid system to sit "in front" of a web
server and handle incoming requests for it. Assume the Squid system has two network cards, one
connected to a DSL router with an IP address of 1.1.1.1/255.255.255.0 and one connected to a
switch with an IP address of 192.168.1.1/255.255.255.0. The web server we want to handle
requests for is connected to the same switch and has an IP address of 192.168.1.2/255.255.255.0.
It's running Apache, which is listening on port 80. Here is our example Squid.conf:

http_port 80
forward incoming requests to 192.168.1.2, port 80
httpd_accel_host 192.168.1.2
acl acceleratedHost dst 192.168.1.2/255.255.255.255
httpd_accel_port 80
acl acceleratedPort port 80
httpd_accel_with_proxy on
acl all src 0.0.0.0/0.0.0.0
acl intranet src 192.168.1.0/255.255.255.0
Allow requests when they are to the accelerated machine AND to the
right port
http_access allow acceleratedHost acceleratedPort
http_access allow intranet
http_access deny all

Let's look at what each of these lines does:

http_port

Tells Squid to listen for requests on TCP port 80, because that is the default port over which
web browsers will attempt to communicate

httpd_accel_host

What internal web server we are handling requests for

acl accelerated Host

Create an ACL that identifies our internal web server

httpd_accel_port

What port our internal web server is listening on

acl acceleratedPort

Create an ACL for the internal web server port

acl all

Define the catchall ACL, referred to in a later http_access statement

acl intranet

Define the local intranet ACL, referred to in a later http_access statement

http_access allow acceleratedHost acceleratedPort

Allow requests for our internal web server

http_access allow intranet

Allow proxy requests from the intranet

http_access deny all

Deny everything else

This configuration has the added bonus of allowing the Squid system to act as a proxy server for the
internal network, as well as a web accelerator for the web site .

Once we are satisfied that this configuration works, we need to ensure that the DNS entry for our
web site points to the Squid system, since it will be handling all of the incoming web requests.

Squid is a powerful tool and can make your web surfing much more efficient and easier to manage.
For more information, be sure to visit the official Squid web site at http://www.squid-cache.org. You

http://www.squid-cache.org

might also be interested in some of the Squid add-on tools. These tools include log file parsers and
web site blacklists, to name a few. You can find a good list at
http://en.wikipedia.org/wiki/Squid_cache.

http://en.wikipedia.org/wiki/Squid_cache

Chapter 39. Network Client Management
(Topic 2.210)
This Topic focuses on the tools required for network client management . This includes client network
addressing, password management, and login authentication.

This Topic contains four Objectives:

Objective 1: DHCP Configuration

The candidate should be able to configure a DHCP server and set default options, create a
subnet, and create a dynamically allocated range. This Objective includes adding a static host,
setting options for a single host, and adding bootp hosts. Also included is configuration of a
DHCP relay agent and reloading the DHCP server after making changes. Weight: 2.

Objective 2: NIS Configuration

The candidate should be able to configure an NIS server and create NIS maps for major
configuration files. This Objective includes configuring a system as an NIS client, setting up an
NIS slave server, and configuring ability to search local files, DNS, NIS, and so on, in
nsswitch.conf. Weight: 1.

Objective 3: LDAP Configuration

The candidate should be able to configure an LDAP server. This Objective includes configuring
a directory hierarchy and adding group, hosts, services, and other data to the hierarchy. Also
included is importing items from LDIF files and adding items with management tools, as well
as adding users to the directory and changing passwords. Weight: 2.

Objective 4: PAM Authentication

The candidate should be able to configure PAM to support authentication via traditional
/etc/passwd, shadow passwords, NIS, or LDAP. Weight: 2.

39.1. Objective 1: DHCP Configuration

DHCP is a superset of bootp and a replacement for that earlier protocol; both are used to assign IP
addresses to clients on a network. DHCP is used for dynamic hosts that can move, connect, and
disconnect from networks. DHCP can dynamically assign IP addresses from preassigned IP ranges in
/etc/dhcpd.config and set up static IP addresses based on the network interface card's Media Access
Controller (MAC) address. DHCP can even restrict access by accepting requests only from specified
MAC addresses.

39.1.1. Setting Up a DHCP Server

To set up a DHCP server, first ensure you have your DHCP package installed. Also read the README
file, because it's full of useful information. Next, follow these steps:

Configure your /etc/dhcpd.conf file (an example for setting random IPs for clients is in the next
section).

1.

Start the DHCP server in debug mode (/usr/sbin/dhcpd -d -f) to verify that DHCP is working
properly.

2.

To start the server for actual use, enter /etc/init.d/dhcpd start or just /usr/bin/dhcpd, sending
it into the background as a daemon.

3.

39.1.1.1. Configuring DHCP options

The DHCP protocol has a vast number of options that it can pass to clients to configure them
correctly. Some of the most important are shown in the following example:

default-lease-time 21600;
max-lease-time 43200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-name "example.com";
option ntp-servers 192.168.1.1;

Most of these should be self-explanatory. The lease times are how long the client can hold on to the
IP address it is given without reconfirming with the server, in seconds. With the default-lease-time
set to 21600, the client is instructed to contact the DHCP server at least every 6 hours. If it has not
been in touch within 43,200 seconds, 12 hours, it should consider itself to be out of a lease.

39.1.1.2. Configuring dhcpd for random IP assignment

To set up DHCP to assign random IP addresses to DHCP clients on the network, you will need to
configure the /etc/dhcpd.conf file, which is the main configuration file for DHCP. The following listing
contains sample settings for the /etc/dhcpd.conf that will allow DHCP to randomly assign IP
addresses on your network between 192.168.1.10 and 192.168.1.100, as well as in the range
192.168.1.150 through 192.168.1.200:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.100;
 range 192.168.1.150 192.168.1.200;
}

If you want to change the options for one subnet while leaving the global options unchanged for
other subnetsfor example, because one subnet is served by a different routersimply supply the
options inside the subnet stanza.

With the options and subnet declarations shown, you have a working DHCP configuration.
Remember to reload dhcpd, such as by running /etc/init.d/dhcp reload (or restart, depending on the
distribution).

39.1.1.3. Fixed addresses in dhcpd

Sometimes you want hosts to get the same address all the time. One trick to accomplish this is to
set the lease time in the dynamic range very high (a month, perhaps). That way, a host needs to be
off the net more than a month to not receive the same address.

A surer way to keep a host at a desired fixed address is to use static address assignment. This is
done based on the Ethernet NIC's MAC address. In dhcpd.conf, insert something like this:

host roke {
 hardware ethernet 00:60:1D:1f:1e:ef;
 fixed-address 192.168.1.9;
}

When a client comes along that has an Ethernet address matching this, it will receive a lease on the
192.168.1.9 address. The address must be outside the dynamic ranges.

This host stanza is also how options are set for single hosts. Simply supply options for the host
within the stanza.

39.1.1.4. bootp support

As noted earlier, bootp is the predecessor of DHCP. The ISC DHCP server can also support bootp,
which is handy to support some Unix machines and network components. Each host that needs

bootp must be listed explicitly. A declaration might look like the following.

host bootproke {
 hardware ethernet 08:00:2b:4c:59:23;
 fixed-address 192.168.1.105;
 filename "/tftpboot/bootproke.boot";
}

39.1.1.5. dhcpd.leases

This file is a log of all the leases the dhcpd server has given out. It includes only addresses in the
dynamic ranges, and every time a dynamic lease is given, details about it are written to the end of
this file. The most likely location for this file is /var/lib/dhcp/dhcpd.leases. If you're installing DHCP
service for the first time on this server, you need to make the initial lease database by just creating
an empty file like this: touch /var/lib/dhcp/dhcpd.leases. An example entry is shown here:

lease 192.168.1.17 {
 starts 5 2004/01/02 10:53:18;
 ends 5 2004/01/02 20:13:57;
 hardware ethernet 00:02:2d:5e:74:8c;
 client-hostname "lookfar.langfeldt.net";
}

39.1.2. Using DHCP Clients

On Linux there are three DHCP clients , but dhclient and pump are the most common. Both are
available on Debian and Red Hat systems. People are not in agreement about which of them works
best, but this author has never been failed by pump. Both distributions' scripts should work with
both clients. Using the DHCP client directly can be quite helpful in troubleshooting.

39.1.2.1. Using pump

The pump package comes with a usable default configuration that you will seldom want to override.
The most likely reasons to change it are to stop it from modifying your DNS setup or overriding the
settings given by the DHCP server. The standard configuration is in /etc/pump.conf and looks like
this:

domainsearch "example.com"

script /sbin/pump.script

device eth0 {
 nodns
}

The first line just overrides the domain list that pump would use to update /etc/resolv.conf. The
nodns keyword for eth0 stops pump from changing the resolv.conf at allat least based on DHCP
answers received on eth0. Answers to eth1 can still do it.

To get a DHCP lease for eth0, issue dhcp -i eth0. To check the status of your DHCP lease, enter:

pump --status
Device eth0
 IP: 172.22.12.88
 Netmask: 255.255.252.0
 Broadcast: 172.22.15.255
 Network: 172.22.12.0
 Boot server 172.22.12.10
 Next server 172.22.12.10
 Gateway: 127.22.12.1
 Domain: example.com
 Nameservers: 172.22.12.5 172.22.12.1
 Renewal time: Tue Jan 15 04:53:49 2004
 Expiration time: Wed Jan 16 01:53:49 2004

Other important operations are -r (release lease) and -R (renew lease).

39.1.2.2. Using dhclient

dhclient can act pretty much on its own, but it is extremely configurable, and it may have more
functions than you ever dreamed ofcertainly too many for us to get into here. If it is started without
a configuration, it finds all your network interfaces and sends out DHCP requests on all of them.
Once it has received a lease and configured an interface, it goes into the background. In the
background it will maintain your leases and keep your interface configured. Depending on the
packager, it may or may not update your DNS configuration and configure your network based on
options in the DHCP protocol. To release your lease, run the client again with -r. The background
dhclient process will exit.

As with pump, you will most likely not need a configuration file. But if you do, you can set up
something like the preceding pump configuration very simply as shown here:

supersede domain-name "example.com";
prepend domain-name-servers 127.0.0.1;

39.1.2.3. Configuring Red Hat as a DHCP client

To configure your Red Hat host to be a DHCP client, use the intuitive neat command. Red Hat works
with either dhclient or pump.

To make sure you are connected to the DHCP server, run ifconfig. The eth0 section of the output

should have an inet addr: entry with your DHCP-assigned network address.

Alternatively, change your interface network script /etc/sysconfig/network-scripts/ifcfg-eth0 from:

DEVICE=eth1
ONBOOT=yes
BOOTPROTO=none
HWADDR=00:0B:6A:10:49:5A
NETMASK=255.255.255.0
USERCTL=no
PEERDNS=yes
GATEWAY=10.163.45.254
TYPE=Ethernet
IPADDR=10.163.45.210

to the following, editing it to fit your needs:

DEVICE=eth1
ONBOOT=yes
BOOTPROTO=dhcp
HWADDR=00:0B:6A:10:49:5A

After that you need to reload your configuration to validate the modifications using the script
provided: /etc/init.d/network reload.

39.1.2.4. Configuring Debian as a DHCP client

You can configure a Debian host's networking during installation. After installation, the simplest way
to do it is to edit /etc/network/interfaces directly. If you want eth0 to be managed by a DHCP client,
simply make sure that the iface line, shown in the following example, is in the configuration. The
auto line makes sure that the card is taken up when booting.

auto eth0
iface eth0 inet dhcp

39.1.3. DHCP Relay

Since DHCP uses Ethernet broadcast to get in touch with the DHCP server, it cannot get in touch
with a server on another subnet, because broadcasts are not routed. In a large network, it's not very
practical to put a DHCP server on each subnet, so instead you can use DHCP relay . This is most
often done by routers. Cisco routers, for example, offer ip helper-address to set the address to relay
DHCP requests to. If your routers do not support relaying, any Unix or Linux host can do the job. To
relay all requests seen on eth0 to the DHCP server at 192.168.1.5, relaying can be started as
follows. It will then catch all requests and relay them to the server, the server will answer back to

the relay agent, and the relay agent will send the answer back to the requester.

dhcrelay -i eth0 192.168.1.5
Internet Software Consortium DHCP Relay Agent V3.0pl2
Copyright 1997-2000 Internet Software Consortium.
All rights reserved.
For info, please visit http://www.isc.org/products/DHCP
Listening on LPF/eth0/00:03:93:ce:2f:c0
Sending on LPF/eth0/00:03:93:ce:2f:c0
Sending on Socket/fallback

39.2. Objective 2: NIS Configuration

NIS is Sun's Network Information Service. It was formerly known as Yellow Pages, but after a
trademark dispute with British Telecom, Sun changed the name to Network Information Service. The
history of Yellow Pages is why many NIS-related commands begin with yp.

NIS is a simple directory service whose main purpose is to allow remote authentication for systems
on local network systems. NIS allows information such as passwd and group files, sendmail aliases,
automount maps, and hosts files to be kept on a central server. Each system in the NIS domain runs
the NIS client, ypbind, to find a server and retrieve the appropriate maps from it.

NIS uses a master/slave server configuration that resembles DNS. The master NIS server holds the
NIS map files. Changes to the maps are then pushed to any slave servers. While an NIS domain can
operate with only one server, it is best to have at least one slave server for redundancy.

You must run the RPC portmapper (/usr/sbin/portmap) to run NIS . The RPC portmapper servers
convert the RPC program numbering to TCP/IP or UDP/IP protocol port numbers.

Most Linux distributions ship with NIS Version 2. NIS Version 3 is known as NIS+ and is not in
widespread use.

Before setting up servers or clients, you must decide on a domain name for your NIS setup. The
domain is used to ensure that you're talking to the right NIS servers . This domain name has nothing
to do with DNS, your DNS domain name, or your hostnames. Most directory administrators use the
same domain in NIS as in DNS to simplify network administration, but the NIS domain could be
completely different from the DNS domain. The command domainname or ypdomainname are
usually links to the hostname binary and can be used to set the NIS domain. This has nothing to do
with the hostname command.

39.2.1. NIS Master Server

You should have at least two NIS servers, one master and one slave. If one of them fails, the clients
using it will switch to the other automatically. To set up a server, start by installing the NIS and/or
YP packages in your distribution. On the server side, you have the tools shown in Table 39-1:

Table 39-1. NIS server-side tools

Tool Description

ypserv The NIS server program

yppasswdd Server that handles the NIS password changes

yppush Notifies the slave servers when changes are made to master databases

ypinit Installs and builds an NIS database

Sometimes some of these have an rpc. prefix in their filenames. After having the server tools
installed, you must configure and initialize them. Do the following to get a master server :

All planned NIS servers, masters, and slaves must be present in your /etc/hosts file. Following
the IP address, place the fully qualified domain name, which is the hostname including the DNS
domain, then the bare name and any aliases, like this:

10.0.0.5roke.example.com roke mailserver nisserver

1.

Configure your domain name. On Debian, simply put the name in the /etc/defaultdomain file.
On Red Hat you must set the NISDOMAIN variable to your domain name in
/etc/sysconfig/network.

2.

Set the correct networks in /etc/ypserv.securenets. If your internal network uses the
10.0.0.0/255.255.255.0 subnet, for instance, the file should look something like this:

Always allow access for localhost

255.0.0.0 127.0.0.0

This line gives access to ourselves
255.255.255.010.0.0.0

3.

Start the master server processes. On Debian, you simply set NISSERVER=master in
/etc/default/nis and start the needed services with /etc/init.d/nis start. On Red Hat you must
start all the master server services one by one, using the scripts installed in /etc/init.d:

ypserv start
yppasswdd start
ypxfrd start
ypbind start

You can execute ypserv -d to run the process in the foreground and stream debug messages to
console output. If you type ypserv without the -d option, the process will run in the background
and just report errors (access violations, dbm failures) using the syslog facility.

4.

Initialize the server maps or databases. Before doing this, you need an /etc/networks file, even
if it's empty. Then you can do the initialization of the master server:

/usr/lib/yp/ypinit -m

This populates the databases from the contents of your master server system files. The work is
done in /var/yp/Makefile. By customizing this file, you can change the location of the master

5.

files. Most often people change the location of the master passwd and groups files. If you do
that, you should take a look at the yppasswdd manpage to tell that command where the
master files are.

If you run ypcat passwd now, you should get a listing of all or some of the entries from your
/etc/passwd file.

Now you have to set up the master as a client as well.6.

39.2.2. NIS Client

The tools provided for manipulating clients arelisted in Table 39-2.

Table 39-2. NIS client-side tools

Tool Description

ypwhich Returns the name of the NIS server used by the NIS client

ypcat Prints the values of all keys in the specified NIS map

yppoll Returns the version and master server of the specified NIS map

ypmatch Prints the values of specified keys from an NIS map

ypdomainname Prints or sets the name of the NIS domain

yppasswd Changes passwords in the NIS server

yppasswd is needed because the standard passwd command can change only passwords in
/etc/passwd and /etc/shadow, but that is not very well-suited for a network information service. You
need a special command that is aware of NIS to update the password on the master server.

Setting up an NIS client is simple. The following steps cover the process:

Set the NIS domain name. On Debian, /etc/defaultdomain should contain the domain name. On
Red Hat, set NISDOMAIN in /etc/sysconfig/network.

1.

Start ypbind. On Debian, set NISSERVER=false in /etc/default/nis (unless you're on your master
server, of course) and then run /etc/init.d/nis start. On Red Hat, simply run /etc/init.d/ypbind
start. If your server is not on the same IP subnet, you must customize /etc/yp.conf and set the
server name there.

2.

Customize /etc/nsswitch.conf. All the name services that should get information from NIS
should have nis somewhere on the line. This includes the whole of the NIS map contents. On
the passwd, group, and shadow lines, you should always put file in front of nis.

NIS offers an access control method based on users and groups. The entries for passwd, group,
and shadow accept a special compat option, which enables you to use a + in the corresponding
files. This is described later.

3.

When you now enter getent passwd, you should see the contents of your local passwd file as4.

well as the contents of the NIS passwd file.
4.

After ypbind is running, you can see what NIS server it has bound itself to with ypwhich. ypcatmap
lists the contents of the specified map. ypmatchkeymap lists just the specified entry of the specified

map.

39.2.2.1. compat

When compat is listed as the passwd, shadow, and group source in nsswitch.conf, you can use a
special syntax in the files. We'll use the password file as an example, but the same goes in the other
files, save for the number of colons.

To allow access to the system to the users janl and killroy, the two first lines in the followng example
do the job. The third line illustrates group access, allowing an NIS netgroup called ftpusers in as FTP
users only. Note that even if janl and killroy are members of this netgroup, they still get full access,
because they are listed in the password file before the netgroup line. The last line includes all the
other users in NIS but sets their password to * and shell to /etc/nologin, barring them from using
the system.

+janl::::::
+killroy::::::
+@ftpusers::::::/etc/ftponly
+:*:::::/etc/nologin

Most often, only the last form is used in group files. But it is easier and faster to just put groups:
files, nis in nsswitch.conf.

39.2.2.2. NIS slave server

Once a host is an NIS client, it can be set up as a slave by performing these steps:

Ensure that your slave server is listed in the master's /etc/hosts file and vice versa.1.

Configure the slave's /etc/ypserv.securenets file.2.

The master must know that it has slaves. On the master, set NOPUSH to false in
/var/yp/Makefile.

3.

On the master, run /usr/lib/yp/ypinit -m again. Add your slave when it asks for it.4.

Back on the slave, start the slave server processes. On Debian, set NISSERVER=slave in
/etc/default/nis and run /etc/init.d/nis stop;/etc/init.d/nis restart (using restart because it's
already started as a client). On Red Hat, start the server process with: /etc/init.d/ypserv start.

5.

Initialize the slave server by running /usr/lib/yp/ypinit -smaster-server.6.

Run ypcat -h localhost passwd to verify that the slave works correctly.7.

Because NIS servers do not autosynchronize, you need to configure synchronization on the8.

7.

master. Put the following in /etc/cron.d/nis to ensure that it updates the slaves regularly:

10 * * * * root /usr/lib/yp/ypxfr_1perhour >/dev/null 2>&1
20 6,18 * * * root /usr/lib/yp/ypxfr_2perday >/dev/null 2>&1
40 5 * * * root /usr/lib/yp/ypxfr_1perday >/dev/null 2>&1

The hourly job transfers the passwd, shadow, and group maps. The twice daily job transfers
hosts, netgroups, and the networks maps. The once daily file just transfers the protocols, RPC,
and services maps. Of course, there is nothing wrong with running these more often, but they
always transfer the complete maps, so on large sites with thousands of entries in the maps and
multiple slave servers, they're going to take some time.

These map transfer scripts and cron times should be modified to meet your needs, such as
including new maps and excluding old ones, as in this example:

[root@pirarucu yp]# cat ypxfr_1perhour
#! /bin/sh

YPBINDIR=/usr/lib/yp

MAPS_TO_GET="passwd.byname passwd.byuid shadow.byname publickey.byname
hosts.byname hosts.byaddr netgroup netgroup.byuser netgroup.byhost
group.byname group.bygid protocols.byname protocols.bynumber
networks.byname networks.byaddr rpc.byname rpc.bynumber services.byname
ypservers auto.home seismic_users"

for map in $MAPS_TO_GET
do
 echo "Syncing map: $map ..."
 $YPBINDIR/ypxfr -c -s ep.bc.nismaster.gov.br -d ep.bc.nisslave.gov.br $map
done

8.

Don't forget to make all the NIS processes start when the system boots.

39.2.3. NIS Maps and Tools

39.2.3.1. Map lookups and nicknames

During the previous setup, you may have noticed that NIS does not have a passwd file, but it does
have passwd.byname and passwd.byuid. If you look in /var/yp/domain_name, where domain_name is

the NIS domain name, you'll see the map names that NIS has as shown in a listing like this:

ls /var/yp/nismaster.gov.br
group.bygid netgroup.byhost protocols.byname services.byservicename
group.byname netgroup.byuser protocols.bynumber shadow.byname
hosts.byaddr netid.byname rpc.byname ypservers

hosts.byname passwd.byname rpc.bynumber
netgroup passwd.byuid services.byname

These files are provided for the standard Unix and Linux system calls that do name resolution, such
as getpwnam and getpwuid. When getting information from files, these functions have to iterate
through the whole /etc/passwd file to find the given name or UID. In NIS, instead, they do a lookup
into the map indexed by the username or the UID, namely passwd.byname and passwd.byuid. The
same goes for the lookup functions for the other system files that are in NIS. The following example
demonstrates a lookup by name and UID in the NIS passwd files.

ypmatch killroy passwd.byname
killroy:x:1002:100::/home/killroy:/bin/bash
ypmatch 1002 passwd.byuid
killroy:x:1002:100::/home/killroy:/bin/bash

To obtain the complete NIS passwd file, one can iterate through the whole map, and any of the
maps will do. That is what ypcat does. To make using NIS a bit more like the system files, there are
map aliases so that you can refer to the databases by the name you're used to. passwd is a alias for
passwd.byname, and so on for all the other maps. Table 39-3 shows these aliases, or nicknames.

Table 39-3. NIS map aliases

Alias Map name

aliases mail.aliases

ethers ethers.byname

group group.byname

hosts hosts.byname

networks networks.byaddr

passwd passwd.byname

protocols protocols.bynumber

services services.byname

Check the map nickname translation table with the command ypwhich -k.

39.2.3.2. Keeping maps up to date

If you ever suspect that your NIS maps are out of sync, you can do what the master server does:
poll their versions to compare them:

yppoll -h localhost passwd.byname

Domain example.com is supported.
Map passwd.byname has order number 1076234245. [Sun Feb 8 10:57:25 2004]
The master server is debian.example.com.
yppoll -h roke passwd.byname
Domain example.com is supported.
Map passwd.byname has order number 1076234245. [Sun Feb 8 10:57:25 2004]
The master server is debian.example.com.

These maps are the same. But if the slave is not up-to-date and you want to force updating just one
map on one or more servers, use yppush. On the master, enter something like this:

yppush -h roke passwd.byname

If you do not include the -h option, the map will be pushed to all the slaves. You can also enter
several -h options to push it to several named slaves.

39.2.3.3. Netgroups

Netgroups have been mentioned before in this chapter and also in relation to NFS. They are most
useful as a mechanism to support access control for machines (in the password file as shown earlier)
and for restricting NFS shares to certain hosts. The general format is as follows:

netgroup (host,user,domain) | netgroup [, ...]

The actual use may be clearer from the following example:

nfsservers (server1,,), (server2,,)
nfsclients (client1,,), (client2,,), nfsservers
serverusers (,user1,), (,user2,)

If you use compat for passwd: in /etc/nsswitch.conf, you can now enter +@serverusers:::::: at the
end of the /etc/passwd to allow the NIS users user1 and user2 access. You may need to put the
equivalent entries in your /etc/shadow file as well.

On NFS servers you can use @netgroup syntax in /etc/exports instead of hostnames. For instance:

/var/export @nfsservers(rw,no_root_squash) @nfsclients(rw,root_squash)

If you try to use ypcat on the netgroup map, it won't tell you much, because the netgroup names
are only stored as keys and won't be shown. Add the -k option to se the keys as well, as shown
here:

ypcat -k netgroup
nfsservers (server1,,), (server2,,)
serverusers (,user1,), (,user2,)
nfsclients (client1,,), (client2,,), nfsservers

39.2.3.4. RPC calls

The utility rpcinfo can be used to detect and debug a variety of failures. Just type rpcinfo -p
hostname to check how the things are going in your NIS server. Here's an output of a functional NIS
server:

rpcinfo -p localhost
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 390011 4 tcp 32772
 390008 1 tcp 32776
 100004 2 udp 852 ypserv
 100004 2 tcp 855 ypserv
 100007 2 udp 725 ypbind
 100007 2 tcp 728 ypbind
 100011 1 udp 840 rquotad
 100011 1 tcp 857 rquotad
 100003 2 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100021 1 udp 33745 nlockmgr
 100021 4 tcp 36331 nlockmgr
 100005 1 udp 853 mountd
 100005 1 tcp 865 mountd
 100005 2 udp 853 mountd
 100024 1 udp 32768 status
 100024 1 tcp 32769 status

The output from rpcinfo shows the RPC program and version numbers, the protocols supported, the
IP port used by the RPC server, and the name of the service. If rpcinfo times out while attempting to
reach the remote machine and reports an error, check whether the portmapper service is alive.

/etc/init.d/portmap status
portmap (pid 2124) is running...

39.3. Objective 3: LDAP Configuration

LDAP is an open standard protocol for accessing directory information services. The LDAP protocol
runs over TCP protocols and other Internet transport protocols. LDAP can be used to access either
standalone directory services or X.500 directories. The hardest part about LDAP is its X.500
heritage. X.500 was part of the now failed OSI network protocol suite. There are many good reasons
for the OSI suite failing, and one of them is complexity. The suite was designed by a committee, and
the old joke "a camel is a horse designed by a committee" is not without justification. From X.500,
the IETF (Internet Engineering Task Force) derived and specified LDAP (Lightweight Directory Access
Protocol).

LDAP provides the same kind of services as DNS and NIS. When it is combined with SSL (Secure
Sockets Layer) and some tricks, it should also be quite secureunlike DNS and NIS.

LDAP directory service is based on a client/server model, quite similar to NIS. One (or more) LDAP
servers contain the data used to make up the LDAP directory tree or backend database. An LDAP
client connects to the LDAP server to make a request. The server responds to the request with either
an answer or a pointer to where the client can get an answer to its request. One of the biggest
benefits of LDAP over NIS is that LDAP servers synchronize in increments that can be pushed
immediately to slave servers, whereas NIS synchronizations transfer all the data every time.

The LDAP implementation used on Linux is OpenLDAP. The OpenLDAP project is a collaborative effort
to provide an open source LDAP suite of applications and tools. Like Netscape's Directory Server,
OpenLDAP is based on the original University of Michigan LDAP server project.

Most LDAPs mirror DNS in how they are structured. At example.com, they store their LDAP data
under dc=example,dc=com. The dc attribute is a domain component, referring directly to a part of a
DNS domain. As in DNS, the order is significant, and the names are hierarchical with the rightmost
element being the top of the tree (the start of the tree, because like all trees in computing, the LDAP
tree grows from the top down).

39.3.1. Setting Up OpenLDAP Server

The OpenLDAP package provides the server slapd, which is complete in itself. There is also an X.500
gateway called ldapd. OpenLDAP accomplishes replication with slurpd.

slapd

This is the standalone LDAP daemon. It listens for LDAP connections on default port 389 (636
for SSL).

slurpd

This propagates changes from one LDAP database to another using a master/slave topology.
OpenLDAP multimaster replication support is under development.

The configuration file that sets up LDAP server behavior is /etc/openldap/sldap.conf. The
following example file is a good start:

include %SYSCONFDIR%/schema/core.schema

pidfile %LOCALSTATEDIR%/run/slapd.pid
argsfile %LOCALSTATEDIR%/run/slapd.args

Load dynamic backend modules:
modulepath %MODULEDIR%
moduleload back_bdb.la
moduleload back_ldap.la
moduleload back_ldbm.la
moduleload back_passwd.la
moduleload back_shell.la

Sample security restrictions
Require integrity protection (prevent hijacking)
Require 112-bit (3DES or better) encryption for updates
Require 63-bit encryption for simple bind
security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:
Root DSE: allow anyone to read it
Subschema (sub)entry DSE: allow anyone to read it
Other DSEs:
Allow self-write access
Allow authenticated users read access
Allow anonymous users to authenticate
Directives needed to implement policy:
access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
by self write
by users read
by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!

###
BDB database definitions
###

database bdb
suffix "dc=my-domain,dc=com"
rootdn "cn=Manager,dc=my-domain,dc=com"
Clear text passwords, especially for the rootdn, should
be avoided. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.
rootpw secret
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.

Mode 700 recommended.
directory %LOCALSTATEDIR%/openldap-data
Indices to maintain
index objectClass eq

Here is the same file customized for a particular installation:

include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema
include /etc/openldap/schema/openldap.schema
include /etc/openldap/schema/solaris.schema

pidfile /var/lib/run/slapd.pid
argsfile /var/lib/run/slapd.args

database bdb
suffix "dc=company,dc=com"
rootdn "cn=Manager,dc=company,dc=com"
rootpw {SSHA}qBhyzgbrdg2HFEA4oy9S0VfxLfVlZCuaa
directory /var/lib/openldap-data
index objectClass eq

And the following command validates the customized configuration:

slaptest
config file testing succeeded

The following list describes the directives in the file:

include

Specifies that slapd should read additional configuration information from the given file.

pidfile

Specifies the file that will contain the slapd server's process ID if it is not running in the
foreground.

argsfile

Specifies the file that will contain the slapd daemon parameters.

database

Specifies which database backend to use to store directory information. Currently, the types
listed in Table 39-4 are supported:

Table 39-4. Databse backends supported by OpenLDAP

Type Description

bdb Berkeley DB transactional backend

dnssrv DNS SRV backend

ldap LDAP Proxy backend

ldbm Lightweight DBM backend

meta Meta directory backend

monitor Monitor backend

passwd Provides read-only access to passwd

perl Perl programmable backend

shell Shell (external program) backend

sql SQL programmable backend

suffix

Specifies the DN suffix of queries that will be passed to the backend database.

rootdn

Specifies the directory administrator's username.

Warning: The user specified in rootdn can read and write everything.

rootpw

Specifies the hash of the password for the rootdn user.

Warning: Never use an empty or clear password here.

A strong hash can be generated using slappasswd with the CRYPT, MD5, SMD5, SSHA, or SHA
schemes. The default, and strongest, scheme is SSHA.

slappasswd -h {SSHA}
New password:
Re-enter new password:
{SSHA}qBhyzgbrdg2HFEA4oy9S0VfxLfVlZCuaa

directory

Specifies the database files. Typical contacts are:

ls -l /var/lib/openldap-data
total 548
-rw------- 1 root root 8192 Dec 29 2004 _ _db.001
-rw------- 1 root root 270336 Dec 29 2004 _ _db.002
-rw------- 1 root root 98304 Dec 29 2004 _ _db.003
-rw------- 1 root root 368640 Dec 29 2004 _ _db.004
-rw------- 1 root root 24576 Dec 29 2004 _ _db.005
-rw------- 1 root root 8192 Feb 17 19:26 dn2id.bdb
-rw------- 1 root root 32768 Feb 17 19:26 id2entry.bdb
-rw------- 1 root root 118789 Feb 17 19:26 log.0000000001
-rw------- 1 root root 8192 Mar 10 2005 objectClass.bdb

Tip: All these files should be backed up frequently.

index

Specifies the indexes to maintain for the given attribute.

With the file in place, start the slapd daemon in debug mode to check whether things are
working properly:

/usr/lib/openldap/slapd -4 -d10 -f /etc/openldap/slapd.conf
@(#) $OpenLDAP: slapd 2.2.26 (Feb 16 2006 16:42:31) $
bdb_db_init: Initializing BDB database
slapd starting
daemon: added 6r
daemon: select: listen=6 active_threads=0 tvp=NULL

Create organizational units using the ldapadd command and an LDIF file like the following:

dn: dc=example,dc=com
objectClass: dcObject
objectClass: organization
dc: example
o: Corporation
description: Corporation

dn: cn=Manager,dc=example,dc=com
objectClass: organizationalRole
cn: Manager
description: Directory Manager

Commit your entries to the directory tree:

ldapadd -f file.ldif -x -D "cn=Manager,dc=example,dc=com" -w password

39.3.2. Setting Up Client Tools

Setting up an LDAP client requires several steps, which we'll lay out in this section. Some of the
tools available to LDAP clients include:

ldapmodify

Opens a connection to an LDAP server, binds to it, and modifies or adds entries.

ldapadd

Adds an entry. Implemented as a hard link to the ldapmodify tool.

ldapdelete

Deletes one or more entries in a database.

ldappasswd

Changes the password of an LDAP entry.

ldapsearch

A powerful LDAP search tool.

ldapwhoami

Implements the LDAP "Who Am I?" extended operation.

First, enter the information in the LADP client configuration file needed to be retrieved by these
tools. This file should be world-readable, but not world-writable.

BASE dc=example, dc=com
URI ldap://ldap.example.com ldap://ldap-master.example.com:666

Now verify the entries added to the directory server:

ldapsearch -x -b 'dc=example,dc=com' '(objectclass=*)'

This will retrieve every entry in the directory.

39.4. Objective 4: PAM Authentication

PAM is the Pluggable Authentication Modules system. It enables the addition of a number of
advanced security features across the whole Linux system without the need to recode individual
services. All security conscious programs (such as login, su, and ftp) are configured by PAM to do a
variety of authentication and security checks.

When a service such as login is used, PAM will check its configuration files to determine how to
authenticate the user. For instance, PAM may authenticate by checking shadow passwords,
Kerberos, Winbind, Samba, and so on. After the method of authentication is determined, PAM
returns an answer to the service to indicate whether the user was authenticated.

39.4.1. PAM Configuration

All the PAM configuration files are located in /etc/pam.d. Every application or service that can use
PAM has a file entry in /etc/pam.d as well. Some of the most common entries that can be found
under /etc/pam.d include chfn, chsh, halt, linuxconf, login, passwd, ppp, reboot, rexec, rlogin, rsh,
shutdown, su, xdm, and xscreensaver. If installed, you may even find KDE, Samba, and SSH here as
well. Looking at these files, you will see four columns of information: module-type , control-flag,
module-path, and arguments. Take a look at the following example of the login entry under
/etc/pam.d:

#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth required /lib/secuirty/pam_pwdb.so shadow nullok
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so
password required /lib/security/pam_pwdb.so nullok use_authtok
session required /lib/security/pam_pwdb.so
session optional /lib/security/pam_console.so

The following subsections describe each field.

39.4.1.1. module-type

There are currently four types of modules that you will find under the module-type column in your
PAM configuration files, shown inTable 39-5.

Table 39-5. Module types

Module Description

auth This module type provides two ways of authenticating the user. First, it establishes that
the user is indeed who the user claims to be. It does this by instructing the application to
prompt the user for a password. The module can then grant group membership
(independent of /etc/groups) or other privileges through its credential granting
properties.

account This module restricts authentication-based account management. It is typically used to
restrict or permit access to a service based on the time of day, the maximum number of
users, or even the location of the user (for instance, allowing user root to log in only from
the console).

session This module performs duties that need to be done for the user before she can be given
access. Services that are affected by this include the logging of information about a user,
mounting directories, and so on.

password This module is required for updating the authentication token associated with each user.
There is typically one module for each challenge or response, based on the authentication
(auth) module type.

39.4.1.2. control-flag

The control-flag column is used to indicate how the PAM library reacts to the success or failure of
the module with which it is associated. The four flags that are used to specify the module actions are
shown in Table 39-6.

Table 39-6. Control flags

Flag Description

optional This flag marks the module as not being critical to the success or failure of the user's
application for service. In fact, Linux-PAM will ignore such a module when determining
whether the module stack succeeds or fails.

required This indicates that the success of the module is required for the module-type facility to
succeed. But if this module fails, the failure will not be apparent to the user until all the
modules of the same module type have been executed.

requisite This is similar to required, but if this module fails, control is immediately returned to
the application. This flag is useful to protect against the possibility of a user being
allowed to enter a password over an unsafe medium.

sufficient This indicates that the Linux-PAM library is satisfied that this module type has
succeeded in its purpose. If no previous module has failed, no more stacked modules
of this type are invoked. If this module fails, the result is not deemed fatal to the
application.

39.4.1.3. module-path and arguments

The module-path is the pathname to the dynamically loadable module. The default directory

containing the module defaults to /lib/security, unless another path is mentioned. Typically, the full
path /lib/security is listed regardless.

The argument column of each entry lists arguments that are passed to the module when the module
is invoked. Typically, these arguments are optional and are specific to each given module. If an
argument is invalid, the module ignores it. If such an error is made, the module is required to write
the error to syslog, the system log daemon. The five generic arguments that are often used and
understood by most modules are shown in Table 39-7.

Table 39-7. Arguments

Argument Description

debug Use the syslog call to log debugging information to the system log files.

no_warn Instruct the module not to give warning messages to the application.

try_first_pass The module should attempt authentication with the previously typed password
from the preceding auth module. If that does not work, the user is prompted for
a password.

use_first_pass The module should not prompt the user for a password. Instead, it should
obtain the previously typed password from the preceding auth module. If that
does not work, the user will not be authenticated.

use_mapped_pass Instructs the module to take the clear text authentication token entered by a
previous module and use it to generate an encrypted (or decrypted) key to
safely store or retrieve the authentication token required for the module.

The use_mapped_pass argument is not currently supported by any of the
modules in the Linux-PAM distribution because of possible consequences
associated with U.S. encryption restrictions. Developers within the United
States (or their own country) may implement it freely within their country.

A special argument listed in the example for auth was shadow. This refers to support for shadow
passwords, which is supported by pam_pwdb.so. Shadow passwords utilize several methods to
increase system security. They make system password files more difficult to break into for system
password information, by replacing the password field of /etc/passwd (with an x) and creating the
file /etc/shadow, readable only by root, to contain the password hash.

39.4.2. LDAP Client Authentication Using PAM

One of the best uses of LDAP is to centralize your authentication information base. It makes user
administration easier and smarter. The authentication method should be changed in the PAM
mechanism, and you need to change the way to search the tree where the user's information
(password, UID, GID, home, shell) is placed. Multiple client platformsSolaris, Linux, AIX, and so
oncan use an LDAP server for authentication

Tip: The following examples require a fully functional OpenLDAP server, a posix account object already created in your directory, and properly

working client-side queries.

39.4.2.1. Packages for LDAP and PAM

Two packages are needed to get LDAP auhentication working:

nss_ldap

Used by nsswitch.conf to retrieve information from LDAP servers

pam_ldap

The PAM module that can be used to take advantage of LDAP in many PAM-aware applications

Both are available under GPL license at the maintainer's site, www.padl.com. The configuration,
compilation, and installation process is simple and can be determined from the site's documentation.

Debian, Red Hat, and many other distributions make available precompiled nss_ldap and pam_ldap
packages.

39.4.2.2. Configuring nss_ldap and nsswitch.conf

With the packages installed, change the nsswitch.conf file to the following:

passwd: files ldap
group: files ldap
shadow: files ldap

To test whether nss_ldap is retrieving LDAP information, try:

getent passwd

... (you should see the /etc/passwd accounts here)
cxp7:x:2645:347:JACQUELINE:/u/cxp7:/bin/bash
d026:x:1130:672:CARLOS:/u/d026:/bin/bash
ima3:x:548:224:PIERRE:/u/ima3:/bin/bash
...

39.4.2.3. Configuring pam_ldap and /etc/pam.d files

Now change the /etc/pam.d/login file:

auth required pam_securetty.so
auth required pam_nologin.so
auth sufficient pam_ldap.so
auth required pam_unix_auth.so try_first_pass

account sufficient pam_ldap.so
account required pam_unix_acct.so

password required pam_ldap.so

session sufficient pam_ldap.so
session required pam_unix_session.so

For users who log in using Gnome Display Manager, the file /etc/pam.d/gdm has to be modified:

auth sufficient pam_ldap.so
auth required pam_nologin.so
auth required pam_env.so
auth required pam_unix_auth.so

account sufficient pam_ldap.so
account required pam_unix_acct.so

password required pam_ldap.so

session sufficient pam_ldap.so
session required pam_unix_session.so

There are many configurable files under /etc/pam.d. It's possible to authenticate FTP, su, SSH, and
lots of other stuff over LDAP. This is outside the scope of LPI, however.

Chapter 40. System Security (Topic 2.212)
This Topic focuses on the methods used to secure Linux servers and workstations. The breadth of
system security topics would require an entire exam to fully test, so LPI focuses only on routers, FTP
servers, using OpenSSH, TCP wrappers, and ipchains/iptables.

This Topic contains five Objectives (numbered 2 through 6 instead of 1 through 5, because of
changes during test development):

Objective 2: Configuring a Router

The LPIC-2 candidate should be able to configure ipchains and iptables to perform IP
masquerading and state the significance of network address translation (NAT) and private
network addresses in protecting a network. This objective includes configuring port
redirection, listing filtering rules, and writing rules that accept or block datagrams based upon
source or destination protocol, port, and address. Also included are saving and reloading
filtering configurations, using settings in /proc/sys/net/ipv4 to respond to DOS attacks, using
/proc/sys/net/ipv4/ip_forward to turn IP forwarding on and off, and using tools such as
PortSentry to block port scans and vulnerability probes. Weight: 2.

Objective 3: Securing FTP Servers

The candidate should be able to configure an anonymous download FTP server. This Objective
includes configuring an FTP server to allow anonymous uploads, listing additional precautions
to be taken if anonymous uploads are permitted, configuring guest users and groups with
chroot jail, and configuring ftpaccess to deny access to named users or groups. Weight: 2.

Objective 4: Secure Shell (SSH)

The candidate should be able to configure sshd to allow or deny root logins, and to enable or
disable X forwarding. This Objective includes generating server keys, generating a user's
public/private key pair, adding a public key to a user's authorized_keys file, and configuring
ssh-agent for all users. Candidates should also be able to configure port forwarding to tunnel
an application protocol over ssh, configure ssh to support the SSH protocol Versions 1 and 2,
disable nonroot logins during system maintenance, configure trusted clients for SSH logins
without a password, and make multiple connections from multiple hosts to guard against loss
of connection to remote host following configuration changes. Weight: 2.

Objective 5: TCP wrappers

The candidate should be able to configure TCP wrappers to allow connections to specified
servers from only certain hosts or subnets. Weight: 1.

Objective 6: Security Tasks

The candidate should be able to install and configure Kerberos and perform basic security

auditing of source code. This objective includes arranging to receive security alerts from
Bugtraq, CERT, CIAC, or other sources. It also includes being able to test for open mail relays
and anonymous FTP servers and installing and configuring an intrusion detection system such
as Snort or Tripwire. Candidates should also be able to update the IDS configuration as new
vulnerabilities are discovered and apply security patches and bug fixes. Weight: 3.

40.1. Objective 2: Configuring a Router

This Objective is perhaps a bit misnamed. It might better be called "configuring a firewall," which is
what all the activities listed in this Objective turn out to be. (A router usually contains firewall
software, though, and effectively does firewall-like work while it filters traffic.)

To be able to set up a good firewall, you'll have to study a book or two on firewalls; this section of
the book is only an overview of key tasks. First we'll get the Linux box to do routing, then protect
the network it routes with firewall rules and NAT.

40.1.1. The Example Networks

For this objective, we'll use a quite simple example throughout. The small company Example
Incorporated (motto: "Set an example") has a cheap SDSL subscription with one fixed IP address
and a very simple internal network on which they house one web server, a file and network server,
and some clients. A network diagram is shown in Figure 40-1.

Figure 40-1. Network diagram for example network

When working with a firewall and doing routing, it's quite important to have a network diagram. It
helps you check that you got all the directions, routings, filters, and so on straight. It's also very
good to have when you are called in at odd hours to fix an urgent problem, because someone may
well be working to a deadline and need you to fix a broken Internet connection as quickly as
possible.

Before establishing a firewall/router, as well as all the time afterward, you should keep a written list
of what the configuration should be like, so as to have something to compare your configurations
and rulesets with if things seem to be broken. You can then follow the flow of a web connection
through the rulesets rule by rule, checking that all the needed rules are there and that no rule that
has no business in the firewall rules got in there by accident. Keep records somewhat along these
lines:

Outside the firewall

Firewall outside interface: eth0, address 172.20.12.88.

Network: 172.20.12.0/255.255.252.0 (/22)

Default router: 172.20.12.1

Name servers: 62.179.100.29, 62.179.100.30, 213.46.243.88

Inside the firewall

Firewall inside interface: eth1, address 10.0.0.1

Network: 10.0.0.0/255.255.255.0 (/24)

Web server: 10.0.0.2

File server: 10.0.0.5

DHCP range: 10.0.0.130-10.0.0.200

Outgoing traffic

Allow all outgoing traffic

Incoming traffic

Deny all incoming traffic, except:

TCP port 80 (Web): Forward to web server

TCP port 22 (ssh): Forward to file server

TCP port 443 (IMAPS, IMAP over SSL): Forward to file server

40.1.2. Getting Routing Working

This is the first thing to do before setting up a firewall on your Linux machine. If you start filtering
traffic before you even start routing, you won't know whether the routing works, and then you can't
be sure whether it's the routing or the firewall ruleset biting you when traffic fails to flow. For

routine, you need two working network interfaces, with networks on both. The networks should be
minimally configured. There should also be a routing table making it possible for the firewall to
reach both the outside network and the inside network. Keep in mind that there is no security yet, so
make sure there are no production hosts connected to the router or the Internet. Use only hosts that
you are confident are secure and that do not contain sensitive data.

You should be able to verify your hardware and network software as follows:

ifconfig
eth0 Link encap:Ethernet HWaddr 00:10:5A:FB:F0:D2
 inet addr:172.20.12.88 Bcast:80.111.71.255 Mask:255.255.252.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:4408974 errors:3 dropped:0 overruns:3 frame:3
 TX packets:3558877 errors:0 dropped:0 overruns:0 carrier:0
 collisions:248 txqueuelen:100
 RX bytes:1628403600 (1.5 GiB) TX bytes:293411709 (279.8 MiB)
 Interrupt:3 Base address:0x300

eth1 Link encap:Ethernet HWaddr 00:02:2D:49:D7:05
 inet addr:10.0.0.1 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:3823262 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4693316 errors:78 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:265557294 (253.2 MiB) TX bytes:2232883546 (2.0 GiB)
 Interrupt:5 Base address:0x100
...
netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.0.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
172.20.12.0 0.0.0.0 255.255.252.0 U 40 0 0 eth0
0.0.0.0 172.20.12.1 0.0.0.0 UG 40 0 0 eth0

If you compare this to the network diagram, it should match neatly.

If you now execute the following command, your router will start routing. But since you use a
private address space on the inside, the outside will not know how to send traffic back to you, so it
won't be working for any practical purposes. Still, if you use tcpdump on the outside interface, you
should see packets from the inside leave the interface on their way into the world. It won't start
working for real until you have NAT configured later in this objective.

echo 1 > /proc/sys/net/ipv4/ip_forward

40.1.3. Firewall Rulesets

With Linux 2.2 kernels, firewalls were set up with ipchains. This is pretty much obsolete by now, as
2.4 and 2.6 kernels dominate the Linux world, and these kernels use iptables. Many things are about
the same with these firewall implementations, but there are also significant differences that concern

even a novice firewall administrator.

40.1.3.1. ipchains versus iptables

At the user level, the main differences between ipchains and iptables is the way packets are
processed when they're routed from an input interface to an output interface. The flow of traffic in
ipchains is shown in Figure 40-2, whereas the flow for iptables is shown in Figure 40-3.

Figure 40-2. Chains and traffic flow in ipchains

Figure 40-3. Chains and traffic flow in iptables

Considering ipchains first, you can see from Figure 40-2 that a packet from the inside network
destined for the Internet will hit the input chain first. Here it will be accepted or denied. It then hits
the packet router, which sees that the packet is not for local delivery and finds that the packet's
destination fits the default routing, which leads it to eth0. The packet then passes the forward chain,
unless it's rejected there, before it is sent to the output chain, where it again is checked and passed
or dropped.

If the packet was destined for the local host, it gets to the receiving process directly from the packet
router. When a process on the host wants to send traffic, it is checked against the output chain.
Note that traffic to and from local processes do not pass the forward chain; only packets in transit
do. In our example, the forward chain would contain a rule to masquerade outgoing trafficin other
words, make it look as if all outgoing traffic comes from the firewall. This is because the firewall has
a public IP address, so the return traffic will find its way back to the firewall, and then the
demasquerade mechanism will translate the addresses back to the original, internal addresses and
pass the traffic directly to the firewall's output chain. In other words, with masquerading, the return
traffic bypasses the forward filter.

It is worth noting that ipchains does not support stateful packet processing. In other words, you
can't say: "Let all related traffic pass" or "Let the return traffic for all established connections pass."
This valuable feature was developed for iptables .

As Figure 40-3 shows, iptables packet processing is quite a bit simpler than ipchains. The PREROUTING
and POSTROUTING tables are the first and last tables to touch traffic, and they process all traffic. They
are used for address translation. For example, changing the destination (port forwarding) of an
incoming packet is done in PREROUTING, while different kinds of NAT are usually done in POSTROUTING.
The destination of the packet when it hits the router determines its later fate: either local delivery
through the INPUT chain or forwarding through the FORWARD chain. Any traffic originated locally is
sent through the OUTPUT chain.

Given iptables supports stateful packet processing, as mentioned earlier, and that there are protocol
agents that understand FTP and other complex protocols, so you can support them easily, there is
not much reason to keep using ipchains.

40.1.3.2. Antispoofing

Attacks done by spoofing, or forging, the source addresses of packets to get past security
mechanisms crop up in many contexts. For example, quite some time ago a security problem
involving NFS was discovered. A security exploit was published that managed to alter NFS exported
files by sending just one UDP packet to an NFS server. No answer was needed back; this one packet
just had to be sent and accepted. NFS relies on IP authentication, but forging a source address is not
hard, so the attack was quite deadly. There are many interesting new and old ways to use spoofing,
and you should do your best to stop it at your firewall. On Linux, a shell loop like the following
enables antispoof checking on all interfaces:

for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done

When this value is set, Linux checks the source address of packets against the routing table.
Referring back to our example network, the checks work like this: a packet arriving at eth1 is
supposed to be on the internal network and therefore can have only source addresses in the
10.0.0.0/255.255.255.0 subnet. A packet arriving at eth0, which has the default or "any" routing,
can have any source address except those allowed on the other interfaces on the machine. This
mechanism is unchanged since at least Linux 2.2. If this is not correct in your network, however,
this antispoof mechanism cannot be used and you will have to write explicit rules against spoofing
yourself.

40.1.4. Using ipchains

The older Linux firewalling system used ipchains for packet filtering and ipmasqadm for
masquerading.

40.1.4.1. ipchains

The general syntax for ipchains is:

ipchains main_option chain [specification] [-j target]

A variety of subcommands can be issued within ipchains. Table 40-1 lists the six most common
options, their usage, and descriptions of what the options do. For a complete list, view the ipchains
(5) manpage.

Table 40-1. Options for ipchains

Main
option Usage Description

-A ipchains -A
chainrule

Append a rule specification to end of specified chain. This is what you
usually want.

-D ipchains -D
chainrule

Delete a rule from specified chain.

-n -L ipchains -n -L
[chain]

List all rules in selected chain. If no chain is specified, all rules are
listed. The -n option stops ipchains from trying to resolve IP numbers
and ports to names, which usually slows it down a lot.

-F ipchains -F
chain

Flush all rules from selected chain.

-P ipchains -P
chaintarget

Set the policy of the specified chain to the given target.

-h ipchains -h Print a help message.

Rule specifications are required when you add (-A) or delete (-D) a rule. Several parameters can be
used for rule specifications . Five popular rule specifications are:

-p

Specifies a protocol. The protocol can be tcp, udp, icmp, or all.

-s

Specifies the source address. The source can be name of host or network, or an IP address.

-j

Specifies a target to a rule, meaning what to do if a packet matches.

-i

Specifies the interface the packet source came from.

-y

The packet is a SYN packet generated as part of an opening TCP handshake. SYN+ACK will not
match this.

When specifying your rule, you can specify several types of targets. The target is what happens
when your rule specifications are matched. The most common target values are explained in Table
40-2.

Table 40-2. ipchains targets

Target Description

ACCEPT Allow packet through.

DENY Drop packet without attempted to notify the sender.

REJECT Similar to DENY, but send an ICMP message back to sender stating that the packet was
dropped.

MASQ Used only in forward chains (or user-defined chains). Requires CONFIG_IP_MASQUERADE
to be compiled in the Linux kernel. Packets are masqueraded as if they originated from
local host. (Reverse packets are also demasqueraded automatically, bypassing the
forwarding chain.) Masquerading is described in more detail later in "ipmasqadm."

Then there is one special usage to masquerade the inside network:

ipchains -P forward DENY
ipchains -A forward -s 10.0.0.0/24 -j MASQ

Because masquerading bypasses the forward chain, you can close that chain entirely. But if you
have any public addresses on the inside network that are not masqueraded, you must set the
forward policy to ACCEPT or insert detailed rules to forward the traffic from those systems.

40.1.4.2. ipmasqadm

ipmasqadm allows port forwarding of different kinds. Only one kind is interesting to us here. The

command to do port forwarding looks like this:

ipmaswadm portfw -a -P tcp -L local_address local_port \

 -R remote_address remote_port

The local address must be the firewall's own address, and the port must be the port the traffic is
addressed to on the firewall. The traffic will be forwarded to the remote address and port.

40.1.4.3. Sample ipchains setup

The following is a complete script matching our example setup . The comments in the file should be
enough to let you understand it. The one extra syntax issue worth noting is that an exclamation
point (!) reverses the effect of the following clause. For instance, because -y means "match a TCP
SYN packet, ! -y means "match any packet that is not a TCP SYN packet."

#!/bin/sh

Useful variables
ALL="0.0.0.0/0"# Anything

OUTSIDE INTERFACE
OUTIF=eth0
OUTIFA=172.20.12.1# Outside interface address
OUTNA=80.11.68.0# Outside network address
OUTNM=255.255.252.0# Outside netmask
OUTNET="$OUTNA/$OUTNM"# Outside subnet

INSIDE INTERFACE
INIF=eth
INIFA=10.0.0.1 # Inside interface address
INNA=10.0.0.0 # Inside network address
INNM=255.255.255.0 # Inside netmask
INET="$INNA/$INNM"# All addresses on the inside

WEBSERV=10.0.0.2
FILESERV=10.0.0.5

Enable antispoofing.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done

Flush ipchains rules.
ipchains -F

Default Policies
ipchains -P input REJECT
ipchains -P forward REJECT
ipchains -P output ACCEPT

Masquerade the internal network; all outgoing traffic will get the

firewall's address.
ipchains -A forward -s 10.0.0.0/24 -j MASQ

All TCP traffic from the inside is acceptable.
ipchains -A input -p TCP -s $INET -j ACCEPT

Web is always allowed and forwarded to the web server.
ipchains -A input -p TCP -d $ALL 80 -j ACCEPT
ipmasqadm portfw -a -P tcp -L $OUTIFA 80 -R $WEBSERV 80

And SSH is always allowed and forwarded to the file server.
ipchains -A input -p TCP -d $ALL 22 -j ACCEPT
ipmasqadm portfw -a -P tcp -L $OUTIFA 22 -R $FILESERV 22

IMAPS is always allowed and forwarded to the file server.
ipchains -A input -p TCP -d $ALL 443 -j ACCEPT
ipmasqadm portfw -a -P tcp -L $OUTIFA 443 -R $FILESERV 443

Let ICMP through to enable ping, path mtu discovery,
ECN, and other good things.
ipchains -A input -p ICMP -j ACCEPT

Accept DNS answers from the outside.
ipchains -A input -p UDP -s $ALL 53 -j ACCEPT
ipchains -A input -p TCP -s $ALL 53 -j ACCEPT

Put these at the end: Incoming TCP SYN is not allowed except
on connections opened earlier.
ipchains -A input -i $OUTIF -p TCP -d $DMZNET -y -j DENY
ipchains -A input -i $OUTIF -p TCP -d $INET -y -j DENY
But we must allow incoming TCP non-SYN, because that is the return
traffic from outgoing traffic.
ipchains -A input -p TCP -d $DMZNET ! -y -j ACCEPT
ipchains -A input -p TCP -d $INET ! -y -j ACCEPT

Rules set, we can enable forwarding in the kernel.
echo "1" > /proc/sys/net/ipv4/ip_forward

The hardest part about using ipchains is remembering that openings for traffic in one direction are
not enough, as the comments on the closing rules say. Due to the lack of state in the system, you
actually have to let in all traffic that comes knocking on the outside interface, because it includes
return traffic from outgoing connections. The only packets that can be barred are incoming SYN
packets. This at least stops outsiders from starting new TCP connections, except at the ports opened
previously: 22, 80, and 443, along with 53 for DNS.

Warning: These commands just illustrate some of the possibilities and typical uses for ipchains. Don't just copy the ruleset and configure it on

a real firewall. It would not be very secure or easy to work with. It would not be secure because there are many more things that should be

blocked. Nor would it be easy to work with, because you want more logging to help you find out where this or that packet ended up when

debugging the rules.

40.1.5. Using iptables

While people usually refer to the Linux's firewall code by the name of the command used to
manipulate the rules, such as ipchains and iptables, the more proper name for the iptables
implementation is Netfilter; that refers to the firewalling subsystem the kernel developers work on.

40.1.5.1. The iptables command

The iptables command is a lot like the ipchains command, which is not too surprising because the
same person wrote both. The general format is:

iptables -main_option chain [specification] [-j target]

The main options are the same as ipchains: -A, -D, -n -L, -F, -P and -h.

The specifications are pretty much the same, but long alternatives are now present, which can make
reading the rules much easier. Furthermore, built-in chain names are in all uppercase.

-p, --protocol

Specifies the protocol. The protocol can be tcp, udp, icmp, or all.

-s, --source

Specifies the source address. It can be a hostname or network or an IP address.

-d, --destination

Specifies the destination address. It can be a hostname or network or an IP address.

-j, --jump

Specifies what to do if the specification matches the packet being processed.

-i, --in-interface

Specifies the interface the packet came from. This is allowed only in the INPUT, FORWARDING,
and PREROUTING tables.

-o, --out-interface

Specifies the interface the packet will be sent out from. This is allowed only in OUTPUT,
FORWARDING, and POSTROUTING tables.

--dport, --destination-port

Specifies the destination port of the packet.

-m state, --state state

The -m option ties into a module. Here we discuss only the state module, which keeps
connection state. When you select this, rules can specify connection states such as
ESTABLISHED, INVALID, or RELATED or a comma-separated list of such states.

The rule targets in iptables will be familiar: ACCEPT, DROP, DENY, and MASQUERADE. DENY is used
instead of REJECT. An additional target used for port forwarding is DNAT. A rule that uses DNAT takes
an additional option that specifies the address to redirect to and optionally the port, if that too is to
be changed. An example use of DNAT is:

iptables -t nat -A PREROUTING ... --jump DNAT --to address[:port]

40.1.5.2. Example netfilter configuration

As with the ipchains example, you should be able to understand what the following script does from
the previous explanation:

#!/bin/sh

IN_IF=eth1
OUT_IF=eth0

modprobe ip_conntrack

Establish antispoofing
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done

IN_NET=10.0.0.0/24
IN_NW=10.0.0.0
IN_BC=10.0.0.255
ANY=0/0

FILESERV=10.0.0.5
WEBSERV=10.0.0.2

NEW connections to the inside network that should be accepted
iptables -N new_net
iptables -A new_net -p tcp --dport imaps --destination $FILESERV \
 --jump ACCEPT
iptables -A new_net -p tcp --dport ssh --destination $FILESERV \
 --jump ACCEPT
iptables -A new_net -p tcp --dport 80 --destination $WEBSERV \
 --jump ACCEPT
iptables -A new_net --jump RETURN

INPUT traffic is for the firewall
iptables -A INPUT -m state --state INVALID --jump DROP
iptables -A INPUT -m state --state ESTABLISHED,RELATED --jump ACCEPT
We basically trust our loopback-interface
iptables -A INPUT -i lo --jump ACCEPT
Not much that is acceptable :-)
iptables -A INPUT --jump DROP

Packets to and from the network
iptables -A FORWARD -m state --state INVALID --jump DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED --jump ACCEPT
Accept all traffic from the inside interface
iptables -A FORWARD -i $IN_IF -m state --state NEW --jump ACCEPT
Traffic from the outside interface is checked by new_net
iptables -A FORWARD -i $OUT_IF -m state --state NEW --jump new_net
All else is junked
iptables -A FORWARD --jump DROP

iptables -A OUTPUT -m state --state INVALID --jump DROP
iptables -A OUTPUT -m state --state ESTABLISHED,RELATED --jump ACCEPT
Connections allowed from the firewall: all UDP, but only DNS over UDP
iptables -A OUTPUT -p tcp --jump ACCEPT
iptables -A OUTPUT -p udp --dport domain --jump ACCEPT
Also allow ping
iptables -A OUTPUT -p icmp --icmp-type echo-request --jump ACCEPT
Again: trust the loopback interface
iptables -A OUTPUT -o lo --jump ACCEPT
iptables -A OUTPUT --jump DROP

NAT
Masquerade all packets passing out from internel network

echo Masquerading
iptables -t nat -A POSTROUTING -o $OUT_IF --jump MASQUERADE

IMAPS and SSH traffic is meant for file server
iptables -t nat -A PREROUTING -i $OUT_IF -p tcp --dport imaps \
 --jump DNAT --to $FILESERV
iptables -t nat -A PREROUTING -i $OUT_IF -p tcp --dport 22
 --jump DNAT --to $FILESERV
Web traffic is for web server
iptables -t nat -A PREROUTING -i $OUT_IF -p tcp --dport 80 \
 --jump DNAT --to $WEBSERV

echo Enabeling forwarding
Enable packet forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward
echo Done

Things worth noting in this configuration include:

As long as the rules regarding ESTABLISHED,RELATED are in place, all return traffic will be
accepted, including the ICMP messages related to TCP connections.

The ruleset does not need to contain a rule to accept DNS responses, because responses to
outgoing DNS are accepted as part of the ESTABLISHED state.

If connection tracking for FTP was enabled (it is not, in the rules shown), both passive and
active connections would be allowed in as RELATED. The same goes for the other protocol
agents available in Linux 2.4 and 2.6.

As with the earlier ipchains example, this ruleset is not complete. On a real firewall, you should do a
lot more to protect yourself, as documented in many books and manpages.

40.1.6. Firewalling Miscellanea

There are a few more points to add to the firewall discussion before you go on to the next Objective.

40.1.6.1. /proc/sys/net/ipv4

Besides ip_forward, the kernel IP stack offers a lot of security-related tuning in the
/proc/sys/net/ipv4 directory. By using sysctl or a simple echo command (see Chapter 28) to change
these settings, you can do considerable benefit (or damage) to your firewall and network. Linux 2.4
has more than 50 options you can change. The complete list, with very complete descriptions, can
be found in the kernel source tree, in Documentation/networking/ip-sysctl.txt. Some of the more
useful are:

tcp_ecn

Whether to use explicit congestion notification (ECN). This is a way to signal that there is
network congestion. Unfortunately, it breaks brutally if a firewall blocks too many ICMP
messages. Therefore the default is still 0, and most administrators should keep it that way.

icmp_ignore_bogus_error_responses

Whether bogus error responses are logged. Usually they are, but that can grow tedious if
some device you can't fix is sending them.

ip_dynaddr

If your firewall uses dynamic IP, such as managed by DHCP, PPP, or diald, you should set the
value in this file to 1.

tcp_syncookies

When a system is inundated with new connections, it can either be because it is popular or
because it is being attacked. An attack known as SYN flooding can cause your TCP state tables
to fill up with illegitimate connections, stopping legitimate connections from getting through. If
you're fairly sure this is happening and you compiled your kernel with CONFIG_SYNCOOKIES
enabled, you can enable a defense to SYN flooding by setting this to 1. It is off by default.

However, note that the syncookies defense breaks the official TCP/IP specification, disables

TCP extensions, and renders some clients unable to connect at all.

To help your system cope with too many legitimate connections, look at
tcp_max_syn_backlog, tcp_synack_retries, and tcp_abort_on_overflow.

tcp_max_syn_backlog

This sets the maximum of connections remembered while no ACK is received on them. It is
1024 on hosts with more than 128 MB memory, 128 on those with less. Increasing the value
may help if you're getting connections faster than they can be completed.

tcp_synack_retries

When a SYN packet is received and a starting connection is in the SYN backlog, this is how
many times a SYN+ACK will be retried as long as no corresponding ACK is received. The
default of 5 causes the connection to be retried five times, which works out to 180 seconds.
You may want to lower this a bit if your system is suffering.

tcp_abort_on_overflow

Zero (disabled) by default. If enabled, your host starts sending RST packets back to clients if a
service, such as Apache, is not accepting new connections quickly enough. Doing this may
disrupt your clients.

icmp_echo_ignore_broadcasts

Echo broadcasts are sometimes used in DDOS (Distributed Denial of Service) attacks, for a
method known as network amplification. For obvious security reasons, all traffic from the
outside that is directed to broadcast addresses within your local network should be blocked on
an outer firewall (unless you are using this to find out how many hosts on your network are
up).

conf/all/accept_source_route

Source routing can be used in attacks involving IP spoofing and has been considered generally
harmful for more than 10 years. The default is off.

conf/all/log_martians

A Martian is a packet whose sender the router does not know how to route. A router with a
default routing should never see Martians.

40.1.6.2. Saving and reloading rulesets

The ipchains and iptables packages typically include two commands, one to save the ruleset after
changes and the other to restore it after a reboot. For the iptables commands, usage is very simple:

iptables-save > firewall-rules

iptables-restore firewall-rules

Many administrators prefer to write an init script that contains a commented and nicely formated
ruleset, such as the ones shown earlier in this chapter, to install a known ruleset at each boot. That
way, it's easier to relate your current configuration to the documented specifications.

40.1.6.3. NAT and security

While NAT was conceived to solve the problem of running out of IP numbers, and not security, many
peope consider sites more secure if internal networks are hidden and use a private IP space.

If a router has no firewall rules, the internal hosts in the network will be unreachable from the
outside even if forwarding is enabled (barring tricks with spoofed source addresses and source
routing). To allow access to the internal network, firewall rules have to be configured to activate port
forwarding and masquerading rules. And once the firewall rules are activated, you will also have
protective filtering.

40.1.6.4. Dynamic routing

In an environment that uses dynamic routing , Linux has several ways to manage it. routed uses a
mutation of an old Xerox routing protocol, which is not very useful outside pure Unix environments
in which all routers support routed. On the upside, routed is pretty automatic and requires only
minimal configuration.

Another vintage dynamic routing implementation on Unix is gated, but neither Red Hat nor Debian
supports it. If you want standards-based dynamic routing on Linux now, you should install Zebra
(known as Quagga on some distributions), which supports dynamic routing protocols of every stripe:
specifically, RIPv1, RIPv2, RIPng, OSPF, OSPF6, BGP4+, and BGP4-.

If you're going to run any of these routing systems, remember to make openings for their packets in
the ruleset.

40.2. Objective 3: Securing FTP Servers

There is a wider variety of FTP server implementations than most like to think about. This LPI
Objective is tailored for WU-FTPD, which just a few years ago was the standard ftpd . However, it is
no longer included in any Red Hat or Debian distribution due to it's rather poor security record. In
upcoming versions of the Level 2 LPI Exams, the only FTP daemon likely to be covered is vsftpd
(Very Secure FTP Daemon), which is both popular and the only one included in both Debian and Red
Hat.

vsftpd comes with a very good default configuration, which allows only anonymous FTP. It chroots to
the ftp user account (which must already exist on the system) and everything just works. Unlike
other software that uses chroot, vsftpd does not need a chroot environment to be painstakingly set
up.

vsftpd reads its configuration from /etc/vsftpd.conf . Here are some highlights:

Allow anonymous FTP?
anonymous_enable=YES

Uncomment this to allow local users to log in.
#local_enable=YES

These lines indicate what users to allow. The choice here is anonymous only by default. The last line
can be commented out to allow regular users. For a regular user to be allowed access, his shell must
be listed in /etc/shells . However, the ftp user account can have a "nologin" shell and anonymous
FTP; that user will still be allowed in.

Uncomment this to enable any form of FTP write command.
#write_enable=YES

Uncomment this to allow the anonymous FTP user to upload files. This
has an effect ony if the preceding global write enable is activated. Also, # you will
obviously need to create a directory writable by the FTP user.
#anon_upload_enable=YES

Uncomment this if you want the anonymous FTP user to be able to create
new directories.
#anon_mkdir_write_enable=YES

Setting write_enable to yes gives local users permission to upload files and create directories. The
anonymous user needs the two other settings as well to be able to upload files. And as the comment
says, you must create a directory writable by the ftp user, with the right filesystem permissions.

If you want, you can arrange for uploaded anonymous files to be owned by
a different user. Note! Using "root" for uploaded files is not
recommended!
#chown_uploads=YES
#chown_username=whoever

By enabling these commented-out lines, you stop the anonymous user from deleting and overwriting
previously delivered files. This is often a very good idea. Be sure to use a user that has no other
roles than being the anonymous FTP upload user. Using the nobody account is not quite as good,
because any service or process running as nobody will then be able to change or delete those files.

Chroot local users as well?
chroot_local_user=YES
#
You may specify an explicit list of local users to chroot() to their home
directory. If chroot_local_user is YES, then this list becomes a list of
users to NOT chroot().
chroot_list_enable=YES
(default follows)
#chroot_list_file=/etc/vsftpd.chroot_list

As long as the regular users do not need to access one another's accounts or system directories, you
may as well chroot them too. As you see, you can get finer control over this by using the chroot list
file.

If you enable this nonanonymous logins are mapped to the guest
account given by guest_username. The default guest user name is "ftp".
guest_enable=YES
guest_username=whoever

If this is enabled, a user willafter giving a username and correct passwordhave access to only the
given account, not to her own account.

If you set userlist_deny, then users will be allowed access only if they
they are listed in the userlist_file.
userlist_deny=YES
#
If you enable userlist_enable, then any user listed in the userlist_file
will be denied access before even being asked his password. Denying
at this early stage stops the user from transmitting his password
in clear text for no purpose.
userlist_enable=YES
#
This is the default userlist_file:
userlist_file=/etc/vsftpd.user_list

And finally, this is where you enable or deny access for specific users.

40.3. Objective 4: Secure Shell (SSH)

SSH, also known as Secure Shell, is an encrypting version of the old rsh/rlogin/rcp suite. The
primary use for SSH is encrypted shell sessions to remote hosts, but it can also be used to copy files
and to tunnel other protocols.

SSH is a server/client protocol offering sshd as the server and the ssh command as the client. The
client connects to the server, they establish an encrypted session, and then the server demands
authentication before finally logging in the client. For file copying in the manner of RCP, the secure
replacement is the scp command.

In addition to simple login sessions and file copying, SSH can also provide transparent port
forwarding, and as an extension of this, X authentication and forwarding. When you have an SSH
session , you can start an X client on the remote machine, and the X Window System protocol will
travel encrypted over your connection and display on your local machine without the need for
settings such as DISPLAY=foo:0 or the xhost or xauth commands.

The implementation of SSH generally used on Linux systems is OpenSSH.

40.3.1. Installation and Configuration

OpenSSH may or may not be installed on your system by default. When it is installed, it generates a
host key for your machine. This key will serve to authenticate your host in subsequent SSH sessions.
Then you will typically want to create SSH authentication keys for your own personal account, as
well as the root account. After that, you as the administrator should review the configuration of
sshd, to see that you are comfortable with it.

The standard place for the central configuration of OpenSSH is the /etc/ssh directory. Here you will
find the server configuration in sshd_config and default client configuration in ssh_config. Here are
some highlights from the server configuration as installed on Debian:

What ports, IPs and protocols we listen for
Port 22
Protocol 2

Port 22 is the standard port for the SSH protocol. Version 2 of the protocol is the most secure,
whereas Version 1 has some flaws that were hard to overcome. It is recommended to accept only
Version 2 now. To support both versions, put 2, 1 on the Protocol line.

Authentication:
PermitRootLogin yes

PubkeyAuthentication yes

rhosts

 authentication
 should not be used
RhostsAuthentication no
Don't read the user's ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
For this to work you will also need host keys in /etc/ssh_known_hosts
(for protocol version 2)
HostbasedAuthentication no

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication yes

OpenSSH ignores the host operating system setting for permitting root logins on nonconsole
terminals. Instead, OpenSSH has its own setting in PermitRootLogin. The PubkeyAuthentication
setting allows or denies login authentication based purely on public-key cryptography. You can trust
this as far as you can trust the host on which the private parts of those keys are stored (unless they
are protected by passphrases, in which case you can trust them a bit further). IgnoreRhosts allows
or denies the old-fashionedand very insecurerhosts authentication, used by the rsh/rlogin/rcp suite.
This way of authenticating connections is not only insecure, but also made obsolete by public-key
authentication. If you combine rhosts authentication with public-key authentication of the connecting
host, on the other hand, it's immediately a lot more securebut host keys cannot be protected by
passphrases. That is what HostbasedAuthentication is for. It is still not recommended, but in some
settings it is appropriate. PasswordAuthentication allows or denies authentication by those old-
fashioned passwords. You can trust this if you can trust your users to not use silly passwords and to
not jot them on Post-it notes and hang them on their screens.

X11Forwarding yes

If X11 forwarding is enabled on the server and your client requests it (using the -X option), the
client and server will forward traffic from a port on the server side to your DISPLAY. The server sets
the remote DISPLAY to the local port that sshd forwards to your local screen. To make this secure,
the server will install an xauth authentication token that it will enforce for all new connections. This,
in addition to port forwarding, which we'll return to, makes OpenSSH a very versatile remote
terminal program.

40.3.2. Generating and Using Keys

In most cases, you will want to generate SSH keys for your own accounts and perhaps your root
account. Use ssh-keygen for this. A reference for the needed commands is at the end of this section
(the short of it is: run ssh-keygen -t dsa and press the Enter key at all the prompts). This key allows
passwordless remote logins, as long as PubkeyAuthentication is enabled.

In ~/.ssh/id_dsa.pub you can find the public key you've generated through ssh-keygen. You need to
transport this key to the remote machine. Because it's a public key, it does not need to be secure.
On the remote machine, put the key into ~/.ssh/authorized_keys. Once the key is in that file, all
users who have the private-key counterpart will be able to log in to that remote account without a
password.

Sometimes it makes sense to let users log in to other machines without having to set up

authentication themselves. The easiest way to do this is to create and modify all the files on one
machine, as described in the following procedure, and then use tar and ssh in a pipe to transfer
them to the other hosts.

Enable HostbasedAuthentication in /etc/ssh/sshd_config configuration files on all hosts.

Your client configuration is in /etc/ssh/ssh_config. All hosts should have
HostbasedAuthentication yes set there, and if they have a PreferredAuthentications
statement, it should list hostbased first.

The hosts' private keys should be readable only by root (otherwise the key would not be all
that secret). Exactly what is needed to get SSH access to the keys depends on the version. If
your SSH package includes an executable called ssh-keysign, it must be SUID root (it may not
be installed that way, so you must make sure it is manually) and must provide the signing
service that proves the host's identity in the key exchange. If the package does not contain
ssh-keysign, make sure the ssh executable is SUID root through chmod u+s /usr/bin/ssh.

1.

On each host, create /etc/ssh/shosts.equiv. This file defines the hosts with equivalent security
levels. In these files, enter the hostnames of all the hosts as they appear in reverse lookups.
You can check that with the command getent hostsip-address. If the names you enter are not

the right ones, the command will fail.

2.

On each host, create /etc/ssh/ssh_known_hosts. This file must contain the host key of all the
hosts involved, under the names you used in the previous item. The easiest way to do this is to
connect to all the hosts using the right names. After doing that, the user account that made the
connections will have all the correct entries in his ~/.ssh/known_hosts file. Simply transfer the
entries to the system file.

3.

After the previous steps are carried out on all the hosts, all ordinary users should be able to use ssh
back and forth between all the nodes with no other authentication. However, this is not true for the
root user; she still needs user key or password authentication. Trusting a remote root is far more
serious than trusting a mundane remote user.

Syntax

ssh-keygen [-b bits] -t type

ssh-keygen -p [-t type]
ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C '' -N ''
ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''
ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''

Description

ssh-keygen generates keys to identify hosts or users in the SSH protocol, Versions 1 and 2.

The first form creates a key. For Version 1 of the protocol, the type should be rsa1. For Version
2, it can be either rsa or dsa. The -b option sets the number of bits in the keys: 512 is the
minimum while 1024 bits is the default and is considered "sufficient" today. In general, you
can use as many bits as you like. During key generation, you will be asked to give a

passphrase. A passphrase is different from a password in that it is a phrase, not simply a
word, and is expected to be long. It is recommended that you pick a good long one.

The second form is used to change your passphrase.

The three last forms are used to generate the three different kinds of host keys. The first is for
Version 1 of the protocol, the two others for Version 2. The -f option sets the output filename;
if you omit the option, you will be prompted for the name. The -C option sets a comment on
the key and -N sets the passphrase.

Examples

Generate a private key and then change its passphrase:

$ ssh-keygen -t dsa -b 2048

Generating public/private dsa key pair. Enter file in which to save the key
(/home/janl/.ssh/id_dsa): Press the Enter key

Created directory '/home/janl/.ssh'.Enter passphrase (empty for no passphrase):
passphraseEnter same passphrase again: passphrase

Your identification has been saved in /home/janl/.ssh/id_dsa.

Your public key has been saved in /home/janl/.ssh/id_dsa.pub.

The key fingerprint is:

c2:be:20:4a:17:2e:3f:b2:73:46:5c:00:ef:38:ca:03 janl@debian

$ ssh-keygen -p -t dsaEnter file in which the key is (/home/janl/.ssh/id_dsa): Press

the Enter key Enter old passphrase: passphrase

Key has comment '/home/janl/.ssh/id_dsa'Enter new passphrase (empty for no
passphrase): passphraseEnter same passphrase again: passphrase

Your identification has been saved with the new passphrase.

40.3.3. ssh-agent

ssh-agent makes it practical to use passphrases on your private keys. The principle is to use ssh-
agent to add your keys to a background agent on the system that will hold them in escrow. You give
your passphrase only once: when you add the key. The agent will give the keys out to other
processes owned by you that request the keys. You should be aware that the root user can also
request the keys without your noticing, so you must trust the root user.

The process is quite simple; start the agent and then add the passphrase you used to create the
key:

$ eval 'ssh-agent'
Agent pid 11487
$ ssh-add
Enter passphrase for /home/janl/.ssh/id_dsa: passphrase

Identity added: /home/janl/.ssh/id_dsa (/home/janl/.ssh/id_dsa)

By default, all your keys will be added. If several of your keys have the same passphrase, they will
all be added without further questions. If they have different passphrases, ssh-add will be prompted
for them. If you include a file on the ssh-add command line, the key in that file will be added and
the command will not prompt for keys.

ssh-agent works by setting two environment variables: SSH_AUTH_SOCK, which names the socket on
which to communicate with the agent, and SSH_AGENT_PID, which makes it easy to kill the agent.
That is also why the PID shows up in the previous listing. The agent emits a shell script which, when
evaluated, sets those variables correctly.

Since using passphrases makes remote logins immeasurably more convenient, it may be a good idea
to make it simple for your users to use passphrases by starting ssh-agent in their login scripts. It is
probably not a good idea to put it in users' .bashrc or .login scripts, nor in the system /etc/profile. A
good place to put it is in the systemwide Xsession scripts. Exactly which script is used to start an X
session depends on which distribution and which desktop people use (KDE, GNOME, classical X, their
own custom session). But on Debian and Red Hat, there are standard ways to do it.

On Debian, if you put use-ssh-agent on a line by itself in /etc/X11/xdm/xdm.options, then when you
log in with the X Window System, the script /etc/X11/Xsession.d/90xfree86-common_ssh-agent is
run. It is reproduced here for convenience:

STARTSSH=
SSHAGENT=/usr/bin/ssh-agent
SSHAGENTARGS=

if grep -qs ^use-ssh-agent "$OPTIONFILE"; then
 if [-x "$SSHAGENT" -a -z "$SSH_AUTH_SOCK" -a -z "$SSH2_AUTH_SOCK"]; then
 STARTSSH=yes
 if [-f /usr/bin/ssh-add1] && cmp -s $SSHAGENT /usr/bin/ssh-agent2; then
 # use ssh-agent2's ssh-agent1 compatibility mode
 SSHAGENTARGS=-1
 fi
 fi
fi

if [-n "$STARTSSH"]; then
 REALSTARTUP="$SSHAGENT $SSHAGENTARGS $REALSTARTUP"
fi

This script first looks for the systemwide use-ssh-agent setting, then very carefully checks whether
any of the ssh-agent-related variables are set already, because if they are set, an agent should
already be running. Finally, it redefines REALSTARTUP so that the agent will be started later in the
Debian scripts. The script could just as well have run eval 'ssh-agent' directly. On Red Hat, you can
do the same by adding the preceding script to /etc/X11/xinit/xinitrc.d, but it should be changed to
run the agent directly, and Red Hat does not set up all those environment variables. In Fedora Core
1, the agent is started automatically.

But none of these automated systems adds any keys to the agent. That means that users will still be
prompted for a passphrase. Users can run ssh-add (perhaps in their .bashrc files) and enter their

passphrases once into a shell terminal, each time X starts.

It may be a good idea to doctor the automated X setup further with an ssh-add command. If run
without a terminal, ssh-add pops up a graphical passphrase input box.

40.3.4. Other ssh Tricks

OpenSSH respects TCP wrapper configurations, described in the following Objective.

sshd, like the Linux login program, denies logins when the file /etc/nologin exists. When remotely
maintaining hosts in a way that may disrupt user activities, you should create this file with a helpful
explanation of what is happening. This will stop all nonroot logins, by whichever method, so you can
do your maintenance undisturbed. The file is usually created by the shutdown command as well, to
keep users from logging in while the machine is shutting down. The file is removed after a complete
boot.

cat >/etc/nologin

If there is any reason to suspect that your maintenance work can disconnect you or break the login
mechanism, you should keep multiple login sessions open while doing the work. Test logging in
again before closing them. Otherwise, doing a tiny PAM change that breaks all authentication could
force you to reboot the machine into single-user mode to recover.

Consider scheduling an at job to remove /etc/nologin at a particular time, in the event you log
yourself out. Such a job can be handy when restarting sshd from a remote location as well.

The only thing left in this Objective is one of the handiest features of SSH: port forwarding.

Syntax

ssh -R|L port:host:host_port [user@]hostname [command]

Description

When the main option is -L, ssh redirects traffic from the local port port to the remote
machine and port given by host:host_port. The host is resolved by the resolver on the host

you connect to. For security reasons, it binds only to the localhost address, not to any Ethernet
or other interfaces you may have.

When a program connects to the localhost port, the connection is forwarded to the remote
side. A very useful application for this is forwarding local ports to your company's mail server
so you can send email as if you were at the office. All you have to do then is to configure your
email client to connect to the right port on localhost. This is shown by the example in the
following section.

When using -R, the reverse happens. The port port of the remote host's localhost interface is

bound to and connections to it will be forwarded to the local machine given by
host:host_port.

Example

Log in to login.example.com. Then forward connections to localhost port 2525 to port 25 on
mail.example.com, which would otherwise reject relaying for you. The reason for binding to
port 2525 is that one needs to be root to bind port 25.

ssh -L 2525:mail.example.com:25 login.example.com

40.4. Objective 5: TCP Wrappers

TCP wrappers allows you to check the origin of a connection when another machine connects to your
own, because you may not want to talk to that machine. Using the /etc/hosts.allow and
/etc/hosts.deny configuration files, you can specify who can and cannot use specific services. TCP
wrappers is most commonly used to protect services that are controlled by inetd, but other services
such as SSH and the portmapper, as well as most of the NFS service suite, also respect the settings.
If you use xinetd instead of inetd, there is another way to restrict access, described later in this
Objective.

To activate checks by TCP wrappers of access to services, make sure that your /etc/inetd.conf has
tcpd in the command line, as shown here:

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/vsftpd

When a connection request arrives at a service guarded by TCP wrappers, the request origin and the
service name will be checked against the contents of /etc/hosts.allow and /etc/hosts.deny. The
checking works as follows:

Do the service and origin have a match in /etc/hosts.allow? If so, allow the connection to
continue at once.

1.

Do they have a match in /etc/hosts.deny? If so, the connection is closed without reading any
input.

2.

Otherwise, the connection is allowed to continue.3.

40.4.1. /etc/hosts.allow and /etc/hosts.deny

The entries in the /etc/hosts.allow and /etc/hosts.deny files have the general syntax of service:
granted_to, where service specifies the name of the service and granted_to specifies which hosts

have permission to use the service.

40.4.1.1. Specifying services

When specifying a service to provide access to, you have the option of specifying the particular
service, such as ftpd, or to specify all services. To specify a particular service, just insert its name.
Unfortunately, some services use names you didn't quite expect. When TCP wrappers is invoked
from inetd, the service name is always the same as the executable name. ALL matches all services.

To grant access to a service, such as ftpd, to everyone on your local 10.0.0.x network, you need an
entry in your /etc/hosts.allow file that looks like this:

vsftpd: 10.0.0.0/255.255.255.0.

With this entry, TCP wrappers will allow access to a vsftpd daemon connecting from any IP in the
subnet. To grant access to all services from your network, simply put ALL as the service name.

When granting or denying access to a service to a host, you have the option of specifying a specific
domain, an IP address, a range of IP addresses, or all hosts. In addition, you can use an EXCEPT
argument that allows you to single out domains and IP addresses from which you want to withhold
access.

To specify all services' access to a specific domain, such as lpi.org, use the first entry in the following
example. With this entry, any host in lpi.org can access all available services on your machine. To
specify an additional domain, such as oreilly.com, you can just add the second line of the example.

ALL: .lpi.org
ALL: .oreilly.com

Or put the two together:

ALL: .lpi.org, .oreilly.com

To specify permission to all services to a specific IP address such as 10.0.0.1, use ALL: 10.0.0.1.
With this entry, users from 10.0.0.1 can access all services on the machine. To specify an additional
IP address, separate them with commas as just shown. To specify permission to all services to all
users, use ALL: ALL.

You can specify EXCEPT cases with any of the previously mentioned arrangements. For instance, ALL:
ALL EXCEPT 10.0.0.5 would grant access to everyone but the host at 10.0.0.5. In addition, ALL: ALL
EXCEPT .redhat.com grants access to all except anyone connecting from a system on the redhat.com
domain. An additional use of EXCEPT is in the services specification ALL EXCEPT vsftpd: ALL. Any
combination of services and hosts can be used in these files.

A sample /etc/hosts.allow file follows:

#
hosts.allow This file describes the names of the hosts which are
allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#
vsftpd:ALL EXCEPT 10.28.2.23, 10.28.0.1
in.telnetd: .example.com
lockd: fileserver.example.com
statd: fileserver.example.com, localhost

The following is a reasonable /etc/hosts.deny that bars all other access to the services granted in the
allow file, and makes TCP wrappers paranoid about the rest. PARANOID makes TCP wrappers check
the reverse lookup of an incoming connection based on the IP address. The name obtained is then
checked in a forward lookup. If TCP wrappers gets back the same IP address as it started with, the
host passes the PARANOID check.

ALL: PARANOID
statd: ALL
lockd: ALL
in.telnetd: ALL
vsftpd: ALL

By default, TCP wrappers is actually compiled to default all checks to PARANOID in such a way that it
cannot be disabled. For this reason, it's very important to keep your DNS forward and reverse
databases consistent.

40.4.1.2. xinetd and access control

xinetd was introduced in Chapter 20. It is used by some distributions, among them Red Hat. It has
the functionality of TCP wrappers built in, with a different user interface. The xinetd daemon is
configured in /etc/xinetd.conf or perhaps by several files in /etc/xinetd.d. A typical stanza for a
service looks like this:

service rsync
{
 disable = no
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/rsync
 server_args = --daemon --server .
 log_on_failure += USERID
}

Two keywords can be added for access restrictions by host: only_from grants exclusive access to the
enumerated hosts and nets, whereas no_access excludes the enumerated hosts and nets. If neither
keyword is present for a service, all hosts get access. If both are present, the most specific match
gets priority. Thus, given this configuration:

service rsync
{
 disable = no
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/rsync
 server_args = --daemon --server .

 log_on_failure += USERID
no_access = 10.0.0.0/16
 only_from = 0.0.0.0/0, 10.0.0.0/24
}

everyone on the whole Internet gets access, excluding anyone from the 10.0.x.x network, but the
10.0.0.x network on the other hand gets access. That is because 10.0.0.x is more specific than the

others, and 10.0.0.0/16 is more specific than 0.0.0.0/0.

These two keywords accept host specifications in many different formats:

An IP address. Any zeros to the right in the number are treated as wildcards: thus, 10.1.2.0
matches the entire 10.1.2 subnet. 0.0.0.0 matches the whole Internet.

An IP address with a shell style {} wildcard. This can be only on the right side of the IP
number, but any octets to the right of it may be dropped. Thus, 10.1.{2,3,4} matches the
three subnets 10.1.2, 10.1.3, and 10.1.4.

A network name from /etc/networks.

A hostname. When xinetd receives a connection, a reverse lookup is performed and matched to
the name. Incomplete names such as .example.com are allowed in the configuration and match
all hosts in the example.com domain.

An IP address with a netmask in the /n format: for instance, 10.0.0.0/24 for the 10.0.0.x

network.

40.5. Objective 6: Security Tasks

40.5.1. Kerberos

There are two current versions of Kerberos, 4 and 5. But we will describe only Version 5, which is
the more stable and secure version, along with the basic concepts and configurations, because
Kerberos has a minimum weight in LPI Objectives. To go deeper, read Kerberos: The Definitive
Guide (O'Reilly).

40.5.1.1. Overview

Kerberos is known in Greek mythology as a very strange creature that authenticates who can pass
through the gates of the underworld. But in our world, Kerberos is an authenticating system
developed at MIT. Kerberos uses encryption technology and a trusted third party (the Kerberos in
Greek mythology had three heads) to perform secure user authentication among multiple users and
application servers.

A Kerberos server can solve many authentication problems using a centralized password database
and encrypting the traffic that performs authenticationpasswords are never sent over the network in
clear text). Thus, it centralizes authentication services with some of the highest-level security
known.

Currently, a bunch of Kerberos software tools are available. MIT Kerberos is the first one and is
widely supported, Heimdal is new and is developed by many people around the world, which makes
the code more wide open and flexible to users outside the U.S.

Tip: Microsoft has adopted Kerberos, including its own version with Windows domain controllers, but that isn't relevant to this Topic. Windows

Kerberos servers have extensions that make them difficult to interoperate with Linux or other standard Kerberos servers.

40.5.1.2. Server installation and configuration

To use Kerberos, you'll first need to install all of its server binaries and libraries. Download it from
your distribution repository or from the developers site http://web.mit.edu/kerberos . The package
must include the tools in Table 40-3 :

kadmind.local

The administration server daemon

kdb5_util

Kerberos database maintainance utility

krb5kdc

Kerberos authentication service daemon

kpropd

Kerberos database propagation daemon

Table 40-3. Kerberos executables

Type Description

You can now set up your Kerberos Domain Controller (KDC), the central server that other hosts look
to in order to perform authentication. To create your Kerberos realm, edit the /etc/krb5.conf file.
Generally, the package you installed comes with an example file that you'll find very useful and
practical. Just fill in your information (realm name and kerberos server FQDN).

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = LPI.ORG.BR
 dns_lookup_realm = false
 dns_lookup_kdc = false

[realms]
 EXAMPLE.COM = {
 kdc = kerberos.lpi.org.br:88
 admin_server = kerberos.lpi.org.br:749
 default_domain = lpi.org.br
 }

[domain_realm]
 .lpi.org.br = LPI.ORG.BR
 lpi.org.br = LPI.ORG.BR

[kdc]
 profile = /var/kerberos/krb5kdc/kdc.conf

[appdefaults]
 pam = {
 debug = false
 ticket_lifetime = 36000
 renew_lifetime = 36000
 forwardable = true
 krb4_convert = false
 }

Issue the command to create the Kerberos database and initialize the realm:

kdb5_util create -s

Loading random data
Initializing database '/var/kerberos/krb5kdc/principal' for realm 'LPI.ORG.BR',
master key name 'K/M@LPI.ORG.BR'

Enter KDC database master key: Enter key

Re-enter KDC database master key to verify: Re-enter key

Tip: You will be prompted for the database master password. Remember this password, because you need it later to administer the Kerberos

serverbut don't let out the password, because you will then put all your site's security in the hands of whoever finds it.

A Kerberos server must run the krb5kdc and kadmin daemons. On the KDCs, those services should
be configured to start automatically on boot time.

The following commands run the servers:

/etc/init.d/krb5kdc start
/etc/init.d/kadmin start

You can create the principal user in Kerberos with the following command:

kadmin.local
kadmin.local: addprinc user
WARNING: no policy specified for user@LPI.ORG.BR; defaulting to no policy
Enter password for principal "user@LPI.ORG.BR":
Re-enter password for principal "user@LPI.ORG.BR":
Principal "user@LPI.ORG.BR" created.

40.5.1.3. Client configuration

Basic client configuration is straightforward. Edit the file /etc/krb5.conf as you did on the server. You
must also modify the /var/Kerberos/krb5kdc/kdc.conf file, which contains information about the
encryption algorithm policy of the realm.

The configuration information for the system on which you wish to perform Kerberos authentication
is the same information that you placed in the /etc/krb5.conf file on the KDC.

To obtain and cache a Kerberos ticket, enter:

kinit user
Password for user@LPI.ORG.BR:

If nothing is returned, you are doing well. To list the tickets granted, enter:

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: user@LPI.ORG.BR

Valid starting Expires Service principal
01/06/06 21:37:02 01/07/06 20:42:03 krbtgt/LPI.ORG.BR@LPI.ORG.BR

You can destroy tickets using this intuitive command:

kdestroy

Now make sure that everything has been cleaned up.

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Check the /etc/pam.d directory and use the PAM module pam_krb5 to add Kerberos authentication
in a network or local resource. Look at this example:

auth required /lib/security/pam_krb5.so use_first_pass

More information about PAM authentication can be found in Chapter 39 .

You can use Kerberized Telnet and FTP services to test your new enviroment. Kerberos also can be
used as an authentication mechanism for the Apache Web Server. The mod_auth_kerb Apache
module provides that functionality; it can be downloaded from http://modauthkerb.sourceforge.net .
Change the APACHE configuration file following this example:

<Directory "/home/httpd/htdocs/content">
 AllowOverride None
 AuthType KerberosV5
 AuthName "Kerberos Login"
 KrbAuthRealm LPI.ORG.BR
 require valid-user
</Directory>

It's very important to keep time synchronized on all systems. Otherwise, you could fall into a
common problem:

kinit user

 Password for user@LPI.ORG.BR:
 kinit(v5): Clock skew too great while getting initial credentials

Use ntpdate in your crontab files to update the system time frequently from a trusted source (NTP
server). It should solve the problem.

40.5.2. Security Auditing Source Code

This is a very challenging field. There are almost no courses on the subject of writing secure
software, and almost no one takes the courses that do exist. When talking about security, many
people just talk about encryption, but encryption makes things more secure only if it is used
properly (and it very often isn't). The rest of the program, and the environment it runs in, in must
also be secure (and very often aren't). To do a real audit, you should know the programming
language in question well and have extensive knowledge of how it and other languages have been
exploited in the past. Linux, Unix, and the family of C languages were never designed for security,
and a compendium of security pitfalls would go on forever. The task of writing secure programs falls
upon the programmer, who is usually not prepared for it.

If you want to learn about secure programming, one place to start is the Linux HOWTO "Secure
Programming for Linux and Unix" (http://www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO). You can also read books such as Innocent Code (Wiley), which deals exclusively with web
application security. Following some mailing lists, such as the ones mentioned later in this chapter,
will also orient you about how things go wrong in software. If you start to follow this field, you will
see, as described earlier, that pitfalls are legion. And also that you quite probably should be just a
little bit scared.

When a program runs as root and interacts with a user in any way, it is most important for it not to
have weaknesses. We'll look at four of the worst offenders, two of which are quite easy to audit for.

40.5.2.1. Executing subprograms

Linux gives you many good reasons to execute a program from within a program. After all, Linux,
like Unix, was built on a toolbox philosophy: many small utilities working together. Hence the long
command lines that pipe data from one program to another. The subprograms may not be secure
themselves, but that is another matter.

You should look out for three system calls, provided by C and mimicked by other popular languages
on Linux: system, popen , and the exec* family. The first two calls execute shells that run
subprograms, while the third set replaces the current program with a new one without invoking a
shell.

A shell can mainly be subverted in three ways: via the PATH , via IFS , and via insecure input. We'll
return to how to check input shortly.

The PATH variable is used by shells as a list of where to look for executable programs. If the user
executing the program has changed the shell to start with his $HOME/bin directory and has some
well-chosen executables that he knows your program will execute, such as gzip to read compressed
files, your program is broken into. He can replace gzip with anything he likes.

Second, if the subprogram is a shell script, the variable IFS can be changed to change the meaning
of the script. The IFS variable contains the Input Field Separatorsthe characters recognized as word
separators in a script. Ordinarily, IFS contains space, tab, and newline. If it is changed to include
colon and semicolon, and perhaps single and double quotes, a script can suddenly get a very

different meaning.

The fallout of this is: set the PATH and IFS variables explicitly in any programs that execute as a
privileged user.

You should look out for calls in the exec* family for the same reason. Even if the PATH is not used for
the exec call itself, the called program will inherit the path and may call another program. And the
IFS warning also applies, because surprisingly often a Linux program is a script.

40.5.2.2. Checking input

While it is true that a program should try to be as understanding of its user as possible to make it
easy to use, it is also true that a program should be very critical of everything a user says. If a
program gets the user to input values that are going to be used in a SQL statement and it accepts
things such as quotes in the value, the user can construct an entirely different SQL statement. If you
start out with something like this statement:

select * from employees
 where name like "$value"

then the user could give a carefully constructed value such as Smith%"; delete from employees
where name like "% . When inserted into your SQL query, this becomes:

select * from employees
 where name like "Smith%"; delete from employees where name like "%"

which will very likely empty the employees table. This is a very brute-force and stupid example; the
more subtle thing to do is to adjust the wages table. Quite a lot of faults can lead to this kind of
attack, but the main one is failing to check input values in the program. The rule for input values
should be that all the input that is not explicitly allowed is forbidden. When inputting names, there is
no reason to accept quotes and semicolonsin fact, one should exclude any character that is not
alphabetic, a space, an apostrophe, or a period, which should at least handle most Western names.
(If we're talking about Unicode, this becomes a whole other headache.) If a program takes this kind
of approach to all values that are input, it will become dramatically safer. In a web setting, the kind
of attack used as an example here is called SQL injection and is wildly popular.

In a Linux setting, when subprograms are executed using system or popen as mentioned earlier, it
has also been quite popular to give values such as:

 foo; rm -rf /

which in a privileged program that does not check its input would cause the whole filesystem to be
deleted.

The moral of this? Never trust your user, check everything, and reject or suppress anything that is
even remotely fishy.

40.5.2.3. Buffer overflows

This class of insecurity has also been wildly popular with the crackers. It is another example of not
checking input properly. The C/C++ languages and the libraries they use are very vulnerable to this,
because many of the functions do not do bounds checking. They will gladly input 5000 characters
into a 128-character buffer. Overflows are the most fun (for those who deliberately cause them)
when the flaw appears in a network service, so that a remote user can gain root shell on the host
just by sending some magical input to the network service. But vulnerabilities are also seen in
programs that users can run when logged in to a machine.

A buffer overflow works when giving a variable a value, by also overwriting the contents of variables
adjacent to it on the stack, heap, or global variable store of the program. By putting her own values
into the neighboring memory areas, an intruder can subvert a program to do anything, and the most
common trick is to start a root shell.

There are many ways to achieve a buffer overflow, all of which involve not checking the length of the
data the program is handling. If you're going to copy an environment variable into a string buffer,
always check the length of the value first or use the dynamic strdup function or one of the strn*
functions that refuses to copy more than a set number of characters. If you're reading input from a
user or the network, do not use gets or some other function that does not accept a length
parameter. fgets does the same job but limits the input. And remember that return values from
functions such as gethostbyaddr should also be considered as input; you have no way of knowing
that the hostname fits in the 64-byte buffer set aside for it.

40.5.2.4. Unsafe temporary file creation

Programs that use temporary files are in danger because they most often use a common temporary
area such as /tmp or /var/tmp in which users can leave nasty surprises beforehand to subvert the
program. If it is well-known what a temporary file is named, such as /tmp/work .pid , and the

program does not create the file the right way, it can be bamboozled into overwriting critical system
files. If the attacker is lucky, the victim is even a file that then lets him log in as root afterward.

Many programs use combinations of calls such as tmpnam, mktemp , and open to create a
temporary file. The tmpnam function does not create a very safe name. mktemp creates safe names
on Linux, but not on some BSD variants. Then, after obtaining a safe, or unsafe, name, one opens
the file with open or fopen , but if this is not done correctly, someone may create a symbolic link
with exactly that name that points to some file she wants overwritten. A temporary file in a public
file area should be opened only with the flags O_CREAT and O_EXCL , which ensure that the file is new
and did not previously exist, not even as a symbolic link. The fopen call is not suitable for this at all;
the open call must be used. The easy way to do this in one step is to use mkstemp , which fashions a
name and opens the file correctly. If the program needs to use standard I/O functions, it should use
fdopen to obtain a FILE * handle from the file descriptor returned by mkstemp or open .

40.5.3. IDS

In a secure environment, you usually want IDS tools somewhere to help detect attempts at break-
ins and most definitively to help discover a break-in once it has happened. IDSs are broadly put into
two categories: network and host, depending on what they monitor. Network tools usually base
themselves on firewalls and use network snooping techniques, whereas host tools monitor system
activities. A third kind of IDS tool is a host resident network scanning detector. PortSentry is one
such tool. It is included in Debian, but not in many other distributions, but it is easy enough to
compile. It can be downloaded from http://sourceforge.net/projects/sentrytools .

PortSentry works by listening on a lot of likely portsports that are often subject to network scans.
The default configuration is quite good. On a Debian system, it is stored in /etc/portsentry . Some

excerpts from portsentry.conf (the lines are broken to fit the page; PortSentry does not support line
continuation) follow:

Use these if you just want to be aware:
TCP_PORTS="1,11,15,79,111,119,143,540,635,1080,1524,2000,5742,6667, \
 12345,12346,20034,27665,31337,32771,32772,32773,32774,40421,49724,\
 54320"
UDP_PORTS="1,7,9,69,161,162,513,635,640,641,700,37444,34555,31335, \
 32770,32771,32772,32773,32774,31337,54321"
...
iptables support for Linux
#KILL_ROUTE="/sbin/iptables -I INPUT -s $TARGET$ -j DROP"

PortSentry will listen to all these ports. If something connects to them, PortSentry will log it or
optionally run a command. The log entry looks something like this (lines truncated):

portsentry[578]: attackalert: Connect from host: 172.16.73.1/172.16.73.1
 to TCP port: 32772
portsentry[578]: attackalert: Ignoring TCP response per configuration
 file setting.
portsentry[578]: attackalert: Connect from host: 172.16.73.1/172.16.73.1
 to TCP port: 79
portsentry[578]: attackalert: Host: 172.16.73.1 is already blocked. Ignoring

As shown in the previous configuration, PortSentry can run firewall configuration commands to block
attackers entirely. If you want to do so, you should probably put rules into the FORWARD table as well
as the INPUT table that the example shows. The -I option inserts the rule in the front of the table
instead of appending it as -A does. This can be quite dangerous and a useful aide to a DOS attack. If
someone does a spoofed scan of you by UDP, he can easily provoke PortSentry into blocking the
spoofed address he's using. This could be an important address, like your DNS server, your email
server, or some such. Therefore an attacker can very easily cause you major trouble, and even long
downtimes. The best way to use such a tool is probably to generate real-time alerts for
administrators to pursue and then perhaps to take action against it.

There is a considerable downside to PortSentry. If a host monitored by it is scanned, it may be a
very tempting target because it appears to run a lot of services that are useful break-in tools
because they have a history of weaknesses. Furthermore, the upside may not be that big. Most
recognizance tools used in network probing, such as nmap -sS , do not actually open a connection.
They cause a half opening by sending a SYN, and when the SYN+ACK get back, they conclude that
the port is open. But they never send an ACK back, so the connection never goes up and PortSentry
never gets a whiff of the scan.

As stated in this chapter, IDS tools fall into two categories: host and network. Here we'll look at one
tool in each category.

40.5.3.1. Tripwire

Tripwire uses file fingerprinting to detect changes in files. Information that goes into a fingerprint
includes size, time, and date but, more importantly, checksums of different kinds. Tripwire was the
first well-known software to do this, and when the work on these LPI Exams started, it had not yet

been usurped. Its name is still held in high regard around the Internet. But the free Tripwire version
is at this point very much abandonware. Originally from Purdue University, they licensed it to
Tripwire Inc. in 1997, and Purdue has made no releases since Version 1.2 from August 1994, except
for a patch in 1996. Version 1.x remains available in quite old releases of Red Hat, SuSE, and other
Linuxes. The subsequent Version 2.x was released under GPL, and Version 2.3.1 from March 2001 is
still available there, but it is not possible to compile with current versions of gcc without modifying
the source code.

There is another tool called aide that is included in Debian, but not Red Hat. It does more or less the
same job as Tripwire and is being maintained. This is what you should use if you want to install a
fingerprinting tool now.

Still, Tripwire is documented, and a summary of the documentation follows.

40.5.3.1.1. Overview of Tripwire

The basic work flow in Tripwire is pretty simple. First, you create the needed site and local
encryption keys on a one-time basis with twadmin . These are later used to encrypt and sign
Tripwire files to ensure that any changes to the files by an intruder will be plainly detectable. Then
the real work startswriting a policy file. This file controls what attributes of a file are fingerprintable
and the severity of the situation if it is changed. The policy file is then encrypted and signed with the
twadmin command. Once a policy is set, you generate a database with the fingerprints of all the files
as set in the policy. This is often called the baseline of the system and it is created with the tripwire
command. Later tripwire is run in the checking or update mode to find deviations from the baseline
and optionally to accept the changes as legitimate.

Tripwire uses several files. In most cases there is no need to override their locations.
/etc/tripwire/tw.cfg contains system information and file paths; a useful default is installed during
the first installation. /var/lib/ hostname .twd is the fingerprint database file. Tripwire uses

cryptography to make it impossible to interfere with its operation without its becoming obvious. The
/etc/tripwire/site.key key is used for files that can be used across several hosts. The /etc/tripwire/
hostname -local.key key is used on files specific to the given host. The Tripwire policy is stored in an

encrypted and signed format in /etc/tripwire/tw.pol and in plain text in /etc/tripwire/twpol.txt .
Policy files are created with twadmin .

40.5.3.1.2. Tripwire policy file format

The policy file is made up of comments and rules. Most of the examples in this section are from the
twpolicy manpage in the GPL version of Tripwire 2.3, all written by Tripwire Inc. The general file
format is like this:

This is a comment.
This is a variable assignment

mask1 = value;

A rule line path -> property_mask; # A comment can go here, too.

A stop point

!path;

All lines that are not comments must end in semicolons. Each path is the path of a file or directory.

On a rule line, it is followed by one or more whitespaces and then the separator (->) followed by

more whitespace. If the path is a directory, the setting works for the directory and everything
underneath. The stop points are used to exempt files or directories from scanning. A somewhat
realistic example is:

This demonstrates regular rule lines
Defines Tripwire behavior for entire /bin directory tree.
/bin -> $(ReadOnly);

Defines Tripwire behavior for a single file. In this case,
Tripwire watches for all properties of hostname.hme0.
/etc/hostname -> $(IgnoreNone) -ar;

mask1 = $(IgnoreAll) +ugp;
mask1 = $(IgnoreNone) -li;

Scan the entire /etc directory tree using mask1, except the
file /etc/passwd, which should be scanned using mask2.
/etc -> $(mask1);
/etc/passwd -> $(mask2);

This demonstrates stop points
The directory /etc/init.d will not be scanned.
!/etc/init.d;
!/etc/rc.d;
!/etc/mnttab;
To summarize: scan all of /etc, but do not scan two particular files
and one directory in the /etc hierarchy.

In the listing, $(ReadOnly) refers to a variable. Variables can be used anywhere on a line. The
property masks decide what makes up the fingerprint of the given file or directory. The basic
building blocks of property masks are single characters specifying a single property prefixed by a
plus or minus to enable or disable checking of this property. A number of predefined variables define
useful property masks. ReadOnly is used for files that should not change at all. Growing is good for
files that should grow, logs mostly. Device is good for device files, and it stops Tripwire from trying
to read them to generate checksums. IgnoreAll is a good starting point if you want to watch only a
few attributes. IgnoreNone is good if you're watching all but a few attributes.

Each of the 18 attributes shown in Table 40-4 controls the recording and checking of one property of
the file.

a

Access time.

b

Number of blocks allocated.

c

Creation timestamp.

d

Device number of the inode/file.

g

File group.

i

Inode number.

l

File size is growing (violated if the file is ever smaller than before, such as after a log rotation).

m

Modification time.

n

Number of links to the inode.

p

Permission bits.

r

For device files: major and major device number.

s

File size.

t

File type.

u

File owner.

C

CRC-32 checksum. Not a good idea to use this, because it is easily duped.

H

Haval hack value.

M

MD5 hash value. This is cryptologically safe and extremely hard to dupe.

S

SHA hash value. Also safe.

Table 40-4. Tripwire attributes

Attribute Description

Rules can be given attributes in two ways:

/etc -> $(ReadOnly) (attribute = value, attribute = value);

(attribute = value ...)
{
 /usr/lib -> $(ReadOnly);
}

The rule attributes are:

rulename= name

This is used when checking/updating the database you can search in the reports for this rule
name.

emailto= email_address

If a file fails the fingerprinting test and the check is run with the --email-report option, the
specified address will be emailed about the problem.

severity= integer

Severities run from 0 to 1000000 , with 0 as the default. When running a check, you can ignore
files with a severity lower than a given level.

recurse=true|false| integer

Disable or limit recursion of directories. If set to false , the directory will be handled as if it
were a file. If set to TRue , TRipwire will recurse infinitely. An integer value sets the maximum
depth of recursion. Stop points override this setting.

In addition, you can put directives in the policy files. To wit:

@@section section name # Updates and checks can be restricted to
 # certain sections only.

@@ifhost hostname [|| hostname]

 rules # To get different rules for different hosts.
@@else

 rukes
@@endif

@@print message # Print message on standard output
@@error message # Print message and exit

@@end # Stop processing here

Syntax

tripwire -m i|--init [options ...]

tripwire -m c|--check [options ...] [object1 ...]

tripwire -m u|--update [options ...]

tripwire -m p|--update-policy [options ...] policyfile.txt

tripwire -m t|--test -e|--email e-mail address

Description

To build a fingerprint database, use the initialization mode. Then run a check once a day, or
hour, from a crontab file. If a reported change is legitimate, use update mode to update the
fingerprints.

Database initialization

Once the policy is correct, the database can be created. Some relevant options include:

-m i, --init

Mode selector: initialize the database.

-v, --verbose

Be verbose.

-s, --silent, --quiet

Be silent.

-e, --no-encryption

Disable cryptographic signing of the database.

Checking mode

Tripwire should be run in checking mode periodically. This verifies that the files watched are
OK and have not been changed. Some popular options include:

-m c, --check

Activate checking mode.

-I, --interactive

Open the check summary in an editor. This summary can then be edited to enable
changes in the database on a file-by-file basis.

-rreport, --twrfile report

The default location for reports is /var/lib/tripwire/report/ hostnamedate .twr .

-l leve l|name , --severity level|name

Check only rules with severity at or above the given level. Valid level names are low,
medium , and high , corresponding to a level of 33, 66, and 100 respectively.

-R rule , --rule-name rule

Check only the named rule. Cannot be combined with -l .

Database updates

If the database is not updated interactively in check mode, it can be updated wholesale or
interactively with this mode. Options include:

-m u, --update

Activate update mode.

-a, --accept-all

Accept all changes.

-V editor , -visual editor

Use the given editor to accept individual changes interactively.

Replace policy file

You can replace the policy file with -m p or --update-policy , but this is better done with
twadmin (discussed later).

E-mail test report

This option is used to send a test report to the given address.

-m t, --test

Activate test mode.

-e mail address , --email mail_address

Send mail to this address.

Syntax

twadmin -m F|--create-cfgfile options... configfile.txt
twadmin -m f|--print-cfgfile [options...]
twadmin -m P|--create-polfile [options...] policyfile.txt
twadmin -m p|--print-polfile [options...]
twadmin -m R|--remove-encryption } [options...] file1 [file2...]
twadmin -m E|--encrypt [options...] file1 [file2...]
twadmin -m e|--examine [options...] file1 [file2...]
twadmin -m G|--generate-keys options...

Description

twamin administers Tripwire configuration and policy files. These are kept in an encoded
format and signed with the local or site encryption keys. The keys are also generated with this
utility.

General options

-v, --verbose

Verbose output.

-s, --silent, --quiet

Silent mode.

-S site_key , --site-key filesite_key

Use the given site key for encrypting or decrypting.

-Q pass_phrase , --site-pass phrasepass_phrase

Use together with -S to give the passphrase for encoding and signing.

-L local_key , -Llocal_key

Use the given local key for encrypting or decrypting.

-P pass_phrase , --local-passphrase pass_phrase

Use this passphrase with the local key.

-e, --no-encryption

Do not encrypt (or sign) the file. Usually you need to use -S , -L , or -e (or one of their
long equivalents) in an operation.

-cc fgfile , --cfgfile cfgfile

When operating on a configuration file, print or save to this filename.

-p polfile , --polfile polfile

When operating on a policy file, print or save to this filename.

Configuration file operations

Configuration files can be replaced or printed. Configuration files are either unencrypted or
signed with the site key.

Use -m F or --create-cfgfile to create a configuration file. An input text file should be given as
the last argument on the command line.

You can print the configuration file through -m f or --print-cfgfile .

Policy file operations

Policy files are encrypted and signed with the site key. They can be created or printed.

To create a policy file, use the -m P or --create-polfile option. The last thing on the command
line should be the name of a text file containing the new policy file.

To print a policy file, use -m p or -print-polfile .

Encryption operations

twadmin can also be used to encrypt, decrypt, and check the encryption of files using either
site or local keys.

A Tripwire file can be unencrypted with -m R or --remove-encryption . Last on the command
line should be the name of the file or files to decrypt.

The reverse is accomplished with -m E or --encrypt . It too takes the name of the input file or
files last on the command line.

Encrypting and signing files is useless without a way to verify the signature to see whether the
file is unchanged. This is accomplished with the -m e or --examine option. Here too you should
list the file or files to examine last on the command line.

Generating encryption keys

With the -m G or --generate-keys option, you can generate local or site keys as needed.

40.5.3.2. Snort

Snort is a network IDS. It listens in on network traffic, looking for specific patterns in the traffic that
indicate some kind of attack or scanning. Snort is included in Debian, but not Red Hat. The Snort
web page at http://www.snort.org has documentation and RPMs. This material is based on Snort 2.

Snort can be installed with different database backends, such as MySQL or PostgreSQL, but it can
also log to flat files. In most cases you will want a database backend and a presentation frontend
such as ACID. Snort has three modes of operation: sniffer (which shows packets on your terminal),
packet logger (which saves packets to disk), and most interestingly, intrusion detection mode (in
which it analyzes packet traffic according to different rules). We'll focus on Snort with no database
backends in intrusion detection mode. Even with this restriction, a full description of Snort is
unreasonable and the description here will be focused very directly on elementary use and rule
writing.

The Snort configuration is in /etc/snort/snort.conf . A distribution-specific configuration used by the
init.d script is found in /etc/snort/snort.debian.conf on Debian and /etc/sysconfig/snort on Red Hat
systems. What the Debian packager and the Red Hat packager considered as useful to put in there
does not overlap much, but both define which interfaces should be listened on. You should review
these and adjust as needed. On Debian, for example, you should define HOME_NET in the system
configuration file. On Red Hat this is done in the main snort.conf file. All in all, the init.d scripts build
pretty complex command lines, specifically:

 /usr/sbin/snort -m 027 -D -S HOME_NET=[172.16.73.127/24] -c /etc/snort/ \
 snort.conf -l /var/log/snort -d -u snort -g snort -i eth0

on Debian, and you should either always use the scripts or never use them.

The significance of the HOME_NET definition on the command line or in the configuration file is that
Snort will know who's friend and who's foe. This helps restrict the pattern matches. The -l option
specifies the log directory. The -u and -g options tell Snort what user and group to run as when it is
done with the setup work that requires root access. The -d option causes application data to be
logged, while the -m option sets the file creation umask. It is the -c option that brings in the IDS
configuration and turns Snort into a Network IDS. This default configuration is probably not enough
to keep up with a full gigabit Ethernet. If you need to do that, you will find ways to do it and other
tuning tips in the documentation and forums on the web site.

Once Snort is running, you can try to scan your Snort host with nmap -s S host (shown later) while

looking at /var/log/snort/alert . If you scan from a host that Snort regards as external, you should
get a good number of alerts, some examples of which are shown here:

[**] [1:469:1] ICMP PING NMAP [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/01-12:07:22.770254 172.16.73.1 -> 172.16.73.127
ICMP TTL:59 TOS:0x0 ID:35658 IpLen:20 DgmLen:28
Type:8 Code:0 ID:44124 Seq:60516 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

[**] [117:1:1] (spp_portscan2) Portscan detected from 172.16.73.1: \
 1 targets 21 ports in 1 seconds [**]
02/01-12:07:23.073961 172.16.73.1:57705 -> 172.16.73.127:688
TCP TTL:54 TOS:0x0 ID:10591 IpLen:20 DgmLen:40
******S* Seq: 0x11BFB904 Ack: 0x0 Win: 0xC00 TcpLen: 20

[**] [1:618:4] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/01-12:07:23.114308 172.16.73.1:57705 -> 172.16.73.127:3128
TCP TTL:37 TOS:0x0 ID:29886 IpLen:20 DgmLen:40
******S* Seq: 0x11BFB904 Ack: 0x0 Win: 0x800 TcpLen: 20

[**] [1:1420:2] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/01-12:07:23.136749 172.16.73.1:57705 -> 172.16.73.127:162
TCP TTL:39 TOS:0x0 ID:4837 IpLen:20 DgmLen:40
******S* Seq: 0x11BFB904 Ack: 0x0 Win: 0x1000 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013][Xref => http://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CAN-2002-0012]

...

40.5.3.2.1. Configuring Snort

The main snort.conf file is very generic, but can take a lot of customization. Most importantly, it
defines some networks (HOME_NET, EXTERNAL_NET) to help it see who it's working for. Because most
Snort rules concentrate on traffic from EXTERNAL_NET to HOME_NET , it's important to define those
variables in a way that lets you detect the traffic you want to. Sometimes you don't trust people on
the inside either.

Next, you can enumerate DNS servers to help Snort restrict its DNS attack checking to traffic headed
for the actual DNS server. This saves time. You can do the same for SMTP, HTTP, SQL, and Telnet
servers. For the full list of options, see the comments in the configuration file and the
documentation. On the bottom of the config file are a lot of include statements. These include the
actual IDS rules that help identify specific attacks. The easiest high-level configuration of Snort is to
simply include and exclude rulesets here.

40.5.3.2.2. Understanding Snort rules

When you come to the actual rules, there is rather a lot to learn. We'll use some examples. If you
refer back to the previous alerts, you will find this message:

[**] [1:618:4] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/01-12:07:23.114308 172.16.73.1:57705 -> 172.16.73.127:3128
TCP TTL:37 TOS:0x0 ID:29886 IpLen:20 DgmLen:40
******S* Seq: 0x11BFB904 Ack: 0x0 Win: 0x800 TcpLen: 20

It corresponds to this rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 \
 (msg:"SCAN Squid Proxy attempt"; flags:S,12; \
 classtype:attempted-recon; sid:618; rev:4;)

This rule says that all traffic from any port on EXTERNAL_NET to port 3128 on HOME_NET is a
reconnaissance attempt. It does not matter whether the connection comes up. And the rule is right;
because web proxies are usually for internal use only, access from the outside is suspect.

Now we'll look at two rules to detect X Window System connections going up from the outside. Each
rule starts with an action. Actions can be one of:

activate

Raise an alert and activiate a dynamic rule.

alert

Raise an alert and log the packet.

dynamic

This rule must be activate d, but once active, it logs packets.

log

Log the packet.

pass

Ignore the packet.

The next field is the IP protocol. Snort can currently handle tcp, ucp, icmp , and ip .

Next is the source address and port, followed by a direction operator, -> here, and the
destination address and port. The example shown earlier simply uses variables for this, but
some more complex syntax is available:

any

Any address

d.d.d.d

Regular dotted decimal, such as 172.20.12.88

d.d.d.d/m

Dotted decimal with network mask such as 172.20.12.0/22

[a , a ,...]

List of addresses and networks, such as [172.20.12.88,62.179.100.29,192.168.0.0/24]

! a

Not the address or list; examples include !172.20.12.88 and
![172.20.12.88,192.168.0.0/24]

The ports can be specified like this:

any

Any port.

d

A port number, such as 22 for SSH.

d:d, :d, d:

A port range. If the lower bound is left out, it defaults to 0. If the higher bound is left out, it
defaults to 65536. Examples include 6000:6010 for X Window System ports, and :1024 for all
privileged ports.

! ports

Not the given ports.

Between the addresses comes the direction operator. It is either -> or <> . The latter string can be
used to log both sides of a protocol exchange. There is no <- operator because that would cause
insanity.

activate and dynamic rules are very powerful, but are being replaced by tagging. An example from
the Snort documentation follows. It's worth noting that there are no dynamic rules in the default
rule base.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \
 content: "E8C0FFFFFF!/bin"; activates: 1; \
 msg: "IMAP buffer overflow!";)
dynamic tcp !$HOME_NET any -> $HOME_NET 143 \
 (activated_by: 1; count: 50;)

The activate rule detects an IMAP buffer overflow attempt (the connection has to be up for this to
occur) and the dynamic rule logs the 50 following packets. This should be able to document what
happened or what the attacker attempted to accomplish.

Once a combination of protocol, from address/port, and to address/port has been matched,
processing continues inside the parentheses. The most useful processing commands are probably
flags to match TCP flags, content to do simple packet content matching, and msg to specify the alert
text.

flags

Flags are character codes corresponding to TCP protocol bits. Most administrators have heard
of the SYN and ACK bits, which are coded S and A respectively. Also available are F, R, P, U,
1 , and 2 corresponding to FIN, RST, PSH, URG, reserved bit 1, and reserved bit 2. 0 means no
flags. Prefixed with + , all the given flags must be present, but others are allowed (this is the
default). The * prefix matches if any of the given bits is set. ! matches if none of the bits is
set. The flag requirements may be followed by a flag mask, which indicates flags whose
settings should be masked away before testing. Typically, the two reserved bits are masked.
Thus, flags:S,12 matches packets with only the SYN flag set, ignoring the 1 and 2 flags.

content

The content-matching capability in Snort is quite rich, and it may contain both ASCII and
binary data. There are keywords to restrict searching in the payload. This is good because
string searching is time consuming. An example may help here:

alert tcp any any -> any 80 (content:"GET"; depth 3; nocase;)

This will match any packet to port 80 that has the string GET in the first 3 bytes. Matching will be
done in a case-insensitive manner. Additionally, the offset keyword tells the processor where to
start looking for the string. There are quite a few other options, but these should do here. There also
are numerous other ways to match content; please refer to the documentation. To match binary
data, quote hexadecimal numbers with a | (pipe). An example is |DE AD BE EF| (a magic number in
Unix mythology).

msg

A message to be logged or alerted with.

reference

A reference to an IDS attack profile database for further explanation of this rule. In the alert
log, it will be shown as an expanded URL.

sid, rev

These aid in refinding rules. For example, when an attack gets a specific rule assigned to
detect it, it is also given a sid and rev , and if it is later found that this rule gives too many
false positives, it can be refined. Users concerned with keeping this rule updated can easily

check whether they have the latest revision of the rule and replace it with a newer one. There
is no need to use these in private rules.

classtype

Attack class types. These are enumerated in the classification.config file, which gives each
code class type a description and a priority. One example is attempted-admin , which means
"attempted administrator privilege gain" and has a high priority. There are currently more
than 30 attack classes.

40.5.4. Miscellaneous

40.5.4.1. Scanning in general

We mentioned nmap earlier. It is a very effective port scanner with some useful stealth features that
can help you check for poor firewall setups as well. nmap is very effective at doing a quick scan of
many services on all hosts in a network or perhaps to look only for FTP and email servers in a net
range like this:

nmap -sS -P0 -p 21,25 10.0.0.0/24
...

Host lorbanery.langfeldt.net (10.0.0.1) appears to be up ... good.
Initiating SYN Stealth Scan against lorbanery.langfeldt.net (10.0.0.1) at 11:55
Adding open port 25/tcp
The SYN Stealth Scan took 2 seconds to scan 3 ports.
Interesting ports on lorbanery.langfeldt.net (10.0.0.1):
PORT STATE SERVICE
21/tcp filtered ftp
25/tcp open smtp

...

Host roke.langfeldt.net (10.0.0.4) appears to be up ... good.
Initiating SYN Stealth Scan against roke.langfeldt.net (10.0.0.4) at 11:55
Adding open port 25/tcp
Adding open port 80/tcp
The SYN Stealth Scan took 0 seconds to scan 3 ports.
Interesting ports on roke.langfeldt.net (10.0.0.4):
PORT STATE SERVICE
21/tcp closed ftp
25/tcp open smtp

...

After locating your mail and FTP servers, you can then test them manually or with simple scripts. For
example, you may want to have no anonymous FTP servers on your network. It is simple enough to
attempt an anonymous login.

A real problem on networks nowadays is the existence of open email relays. If you have one, it will
surely be abused for spreading spam. With a list of the SMTP servers present on your network, it is

also quite easy to script a test for this. You don't have to test whether the server will relay mail from
a host on the company network; this may be what it is set up to do. But if you have a mail server
that accepts email from the Internet, it is very practical to have a remote shell account and do such
a check from there. The SMTP protocol is simple enough, and the test is to see whether the email
server will accept mail to a party outside your relay domain list. The main rules are that when
accepting email from the inside network, any email should be accepted. There may be local policies
that restricts this, for example checking that the "From" address is valid, and that the email does not
contain spam or virus. But that does not concern an open relay test. From the outside, the server
should accept emails only to the inside domain. It should not accept email that is to someone
outside and claims to be from the inside. Thus, you might run the following test from false.linpro.no
, outside your local area network, to your mail server:

$ telnet mail.example.com 25
...
220 How may I help you? ESMTP
HELO false.linpro.no
250 mail.example.com
MAIL FROM:<santa@north-pole.org>
250 Ok
RCPT TO:<toothfarie@faries.org>
554 <toothfarie@faries.org>: Relay access denied
quit
221 Bye

$ telnet mail.example.com 25
...
220 How may I help you? ESMTP
HELO false.linpro.no
250 mail.example.comM
AIL FROM:<postmaster@example.com>
250 Ok
RCPT TO:<toothfarie@faries.org>
554 <toothfarie@faries.org>: Relay access denied
quit
221 Bye

This server is properly set up and does not seem to allow any relaying. It does not accept mail from
just anyone to anyone, nor does it accept email that pretends to come from the inside.

Several automated tools for network scanning make much better use of your time than these
manual methods. Nessus, for example, which is included in Debian but not in Red Hat, will scan a
network range and includes a lot of very specific vulnerability tests, including anonymous FTP and
mail relays. Debian, as a rule, does not update programs to the latest version when holes are
discovered, but instead backports the fix and keeps the same version. So when Nessus thinks it has
found an old hole-riddled version, it might in fact not have a hole after allif the machine is kept up-
to-date, that is.

40.5.4.2. Security alerts

To keep abreast of developments in the security area, you and hopefully all your colleaguesin case
you're on vacation sometimeshould subscribe to one or several security announce lists. These follow
two different schools. CERT and CIAC follow what they consider to be responsible practices. This
means that they give vendors (Unix, Linux, Windows, and others) ample (some would call it infinite)

time to release fixes before CERT or CIAC publishes advisories about specific security problems. The
problem with this is that it has previously taken many years to fix even the most trivial and well-
known problems. This does not make for a very secure network, because a well-informed crook can
get in while administrators, being busy at doing more productive things, are oblivious to the
problems.

Bugtraq and Full Disclosure follow a more aggressive policy. Holding that an unknown security hole
is still a security hole and nothing anyone should have to live with, they publish problems very
quickly. On Bugtraq, it is preferred that people submit the problem to the vendor and let the vendor
take a reasonable amount of time, perhaps a month, before the information on the problem is
posted. The Full Disclosure list is less concerned with this and seeks what they see as fully open
information with no compromises. That at least gets security holes fixed fast, at the cost of wider
exposure for a shorter time, rather than the long time with unknown exposure that the CERT tactic
gives.

So some of the different places to get security information are:

Computer Emergency Response Team (CERT)

The original network security coordination center, located at Carnegie Mellon University. They
make announcements on a mailing list. See http://www.cert.org/contact_cert/certmaillist.html
for further information. Their web site also contains updated security information, including
viruses and vulnerabilities.

Computer Incident Advisory Capability (CIAC)

Operated by the U.S. Department of Energy, CIAC keeps a web site at
http://www.ciac.org/ciac/ . They release bulletins and "C-Notes" as well as links to papers,
documentation, and software. Because they are devoted to keeping the DoE secure, their
papers are quite likely to be relevant to practical security work you may need to do. CIAC
publishes their bulletins and notes only on their web site.

Bugtraq

Hosted by SecurityFocus, this is the original full disclosure list, now somewhat more
conservative. Subscribe at http://www.securityfocus.com/archive/1 .

Full Disclosure

The Full Disclosure list should need no further introduction. See http://www.netsys.com/cgi-
bin/displaynews?a=301 to subscribe.

Red Hat

Most Linux distributions have announce lists and security pages. Red Hat's security page is at
http://www.redhat.com/security , where you can subscribe to alerts and browse their
archives.

Debian

The team keeps their security information at http://www.debian.org/security . You'll find

http://www.ciac.org/ciac/
http://www.redhat.com/security

information about how to keep Debian up-to-date, announce archives, and announcement
subscription instructions.

40.5.4.3. Updating Linux

All your hosts, especially the Internet-exposed ones, need to be kept secure and up-to-date. The
best way to keep updated about exactly what is found and what updates to install is to follow a
distribution-specific alert mailing list. But a good second option is to just keep updating packages as
updates are published. In Debian, this is especially simple, but there are also ways to do it in Red
Hat and Fedora. Updating a package is the way fixes and patches are installed on Linux. On Solaris
and other operating systems, you would install a patch or fix that modifies some installed package;
not so on Linux.

40.5.4.3.1. Keeping Debian up-to-date

The first thing to do is put the following in your /etc/apt/sources.list file (if you use Woody):

deb http://security.debian.org/ woody/updates main contrib non-free

If you also drop the apt script, which follows, into /etc/cron.daily , you will receive a email every
night after a package has received an upgrade. You will then need to do the actual upgrade yourself.

#!/bin/sh

apt-get --quiet=2 update

apt-get --quiet=2 --yes --print-uris dist-upgrade |
 awk '{ print $2; };'

And that is all there is to it.

40.5.4.3.2. Keeping Red Hat up-to-date

Red Hat runs a centralized service called up2date, which, unless you subscribe, can be very slow.
Since most production servers in the future will run Red Hat Enterprise Linux and all these users will
have premium subscriptions and priority up2date access this may gain popularity.

If you run an unlicensed desktop version of Red Hat, you may be more comfortable running YUM or
apt-rpm . YUM is a native RPM package download manager, while apt-rpm is a port of the apt suite
to RPM. The yum utility takes pretty much the same commands as apt-get: update to get new
package lists, update or dist-upgrade to install new packages, and install package to install or

upgrade a specific package.

Chapter 41. Network Troubleshooting
(Topic 214)
This chapter covers the Topic of troubleshooting for the LPI 202 Exam. This Topic has one long
Objective:

Objective 7: Troubleshooting Network Issues

Candidates should be able to identify and correct common network setup issues to include
knowledge of locations for basic configuration files and commands. Key files, terms, and
utilities include /sbin/ifconfig, /sbin/route, /bin/netstat, /etc/network and
/etc/sysconfig/network-scripts, system log files such as /var/log/syslog and
/var/log/messages, /bin/ping, /etc/resolv.conf, /etc/hosts, /etc/hosts.allow and
/etc/hosts.deny, /etc/hostname and /etc/HOSTNAME, /sbin/hostname, /usr/sbin/traceroute,
/usr/bin/nslookup, /usr/bin/dig, /bin/dmesg, and host. Weight: 1.

Notice that most of the commands and concepts discussed in these sub-Objectives have been
covered elsewhere in this book. Chapter 19 covers most of the commands used in this chapter, and
several other chapters discuss essential networking applications and daemons (services).

So, why discuss these things again? Because there is a difference between simply knowing what a
daemon or command does and actually troubleshooting it. So, this chapter won't attempt to re-
discuss options to the ifconfig command or the syntax for the /etc/hosts.deny files. Rather, it will
focus on how to troubleshoot various services and how to use some of the commands you already
know in an efficient way when problems occur.

41.1. Network Troubleshooting Essentials

One of the things that the creators of the LPI Exams knew was that you need to take a systematic
approach to troubleshooting. When faced with a networking problem, inexperienced administrators
often begin clicking the mouse button and pecking away at the keyboard without first clearly
identifying the problem.

You need a methodology before you can begin altering files and running commands. The LPI Exam
will not necessarily ask you what that method should be. However, the questions that deal with
troubleshooting will often be phrased in a way that suggests a problem exists for some mysterious
reason.

If you take the time to think about the situation being presented, you will find that the problem is
not that mysterious and that you can make an educated guess at the correct answer. Once you are
equipped with the proper perspective, you can then focus on the commands to use and the files to
edit. Table 41-1 discusses essential troubleshooting steps to take when approaching a problem.

Table 41-1. Essential network troubleshooting steps

Troubleshooting
step Description

Gather all of the facts. Carefully observe the problem. Many times, you will be presented with
different ways to survey the issue. Read log files, analyze screen output,
and use applications such strace and ltrace to gain a more informed
perspective.

Listen to your first
impressions.

If you have experience with system administration, your intuition can be
useful.

Remain flexible. Do not stubbornly stick to one idea. After a few failed attempts, consider
taking a new approach to the problem, at least for a while. If this new
approach does not solve the problem, return to your original idea, or take
another direction.

Categorize the
problem.

Try to determine if the problem is hardware- or software-related. Then,
determine if the client or the server is experiencing issues. Remember to be
flexible. A problem might seem to belong in one category at first, but may
belong in another.

Make educated
guesses.

An educated guess is not a wild stab at a solution. Form a hypothesis, then
conduct experiments. Make sure that the changes you make are not
harmful.

Document your
impressions and
attempts.

Writing down the steps you take will help you be more systematic and will
help you recover from mistakes. Other administrators who come after you
will appreciate it. In many cases, troubleshooting can take considerable
time. Notes can help you remember exactly what steps you took, what files
you reviewed and altered, and the result of each step.

Troubleshooting
step Description

Create and verify
backups.

Before you alter a file to solve a problem, make sure that you store backups
of the files.

Create and verify
backups.

Before you alter a file to solve a problem, make sure that you store backups
of the files.

41.2. Common Troubleshooting Commands

A discussion follows of commands you can use to resolve network problems.

41.2.1. ping

ping can do more than just determine basic connectivity. You can also use it to discover the quality
of a network connection. If users are complaining about a spotty network connection, using ping in
the right way can give you a reasonably accurate idea of how much of a problem exists.

You will not be able to determine that this is the problem by using the ping command in the
standard way. However, if you use ping to generate a flood of packets, you can get a fairly accurate
idea of how intermittent the connection really is. As root , use the -f option to generate a ping flood,
as shown here:

root@james:~ # ping -f albion
PING albion.stangernet.com (192.168.2.57) 56(84) bytes of data.
...
...
...
.............
--- albion.stangernet.com ping statistics ---
433 packets transmitted, 153 received, 64% packet loss, time 4833ms
rtt min/avg/max/mdev = 2.470/2.859/6.359/0.623 ms, ipg/ewma 11.189/3.012 ms
root@james:~ #

Notice that the output says that 64% of the packets were lost. Generally, a packet loss rate between
1% and 2% is tolerable, except by the most sensitive applications. Rates higher than even 2%, and
especially 5%, are generally too high for a reliable network connection that is doing any real work
(e.g., an X Window System session or a database connection).

So far, ping has not yet helped you determine if this system is experiencing a hardware problem or a
software problem. But now that you know some sort of problem exists, you can begin hypothesizing.
Steps to take might include:

Make sure that other systems are not experiencing the same problem. This may involve
verifying that the hub or switch is working properly.

1.

Send a flood of packets to additional systems to make sure that the problem does not reside on
the remote system.

2.

Check the physical connection on the local system, as well as to the hub or switch.3.

Make sure that the driver on the local system matches the hardware.4.

5.

3.

4.

Check the NIC's subnet mask.5.

Tip: Intrusion detection systems (IDS), described in Chapter 40 , cannot tell the difference between an authorized, well-intended ping flood and

one that is intended as an attack. If necessary, warn your security team that you are conducting ping floods before you create one.

If the system can't connect to a remote network such as the Internet, ping the router. Doing so
involves more than a ping of the interface for the subnet. Ping the interface on the far side of the
router. Then move to pinging hosts on the other side of the router. Understand, however, that many
system administrators use access control lists to disable pinging across routers and switches.

Finally, when using ping , consider the following:

Use the -I option to choose the correct interface

Many systems have multiple Ethernet interfaces. You will want to make sure you are pinging
the correct system.

-Use the n option if name resolution has failed

Doing so helps ensure that only IP address information is used and returned.

41.2.2. telnet and netcat

You have already learned that you can use telnet and netcat (nc on some systems) to query ports
and gather information. It is important, however, to understand that you will be presented with
different types of messages and errors in the context of a troubleshooting situation. Not all
responses and errors are equally meaningful. But most of the responses can be quite useful. Table
41-2 provides a useful list of the most common responses.

"Name or service not known" or "No route to host"

No system exists with that IP address or name.

"Connection refused"

Confirms that a remote system is listening. However, the port you have attempted to connect to is
not open or is blocked by an iptables or ipchains rule. You nevertheless have found a live system.

"Name or service not known" or "Forward host lookup failed: Unknown host"

A DNS error indicating that no host by this name exists. This does not mean that the host does not
exist at all. The name server is simply reporting that this name does not exist. Try connecting to this
host by IP address. Possibly useful when troubleshooting DNS.

Connection hangs for a moment, then is dropped with no explanation

An application such as TCP wrappers has processed the connection, then dropped it. Useful when
troubleshooting TCP wrappers configuration or in determining problems with nonworking services.

Connection seems to hang indefinitely

Usually implies that telnet or netcat has connected to a port. Note that in some cases, if you do not

wait long enough, you can mistake a connection for a failed connection. Wait 4 or 5 seconds before
you think that you have made a connection.

Table 41-2. Responses to telnet and netcat queries

Response Explanation

Once you have made a connection using telnet or netcat , you can then type in commands and send
them to the listening port. Sometimes, that port may not respond at all. At other times, the port
drops the connection immediately or returns gibberish.

In some cases, the port may allow an interactive session. SMTP, POP-3, and IMAP servers allow you
to open a session and send commands. Many system administrators have memorized the necessary
commands to send and receive email using nothing more than a telnet client or netcat . Following is
an example of how you can use netcat to read e-mail from a POP-3 server:

netcat mail.company.com 110
Trying 214.27.208.3...
Connected to mail.company.com.
Escape character is '^]'.
+OK (rwcrpxc59) Maillennium POP3/PROXY server #65
USER lpicprofessional
+OK
PASS passedexam1
+OK ready
LIST
+OK 1 messages (31227)
1 31227
.
RETR 1
From: certification@lpi.org
Subject: Congratulations
Congratulations upon achieving LPIC 2 status.
QUIT

In this sequence, netcat was used to connect to port 110 (the standard POP-3 port), and the user
proceeded to enter a series of commands to read an email. First, the user issued the USER and PASS
commands to authenticate to the remote system. Then, the LIST command was issued to see if any
emails were waiting. In this particular session, one message was waiting.

To read the email message, the user simply typed RETR 1 . The contents of the message were then
displayed, giving good news in this case. If multiple email messages existed, the user could have
typed RETR 3 to read the third message, or RETR 41 to read the 41st message. To end the session,
the user typed QUIT . A session using telnet would use the identical POP-3 commands.

You can also communicate with web servers using telnet or netcat . Following is a simple HTTP
session using netcat :

$ netcat stageserver.company.com 80
GET /

<html>
<head>
<title>Web site</title>
</head>
<body bgcolor="teal">
<p>Placeholder for Web site.</p>
</body>
</html>
$

First, netcat was used to connect to the Web server named stageserver.company.com . The HTTP
GET / command was then used to returned the default web page that would normally be read by a
standard web client. Instead of using the GET / command, you can simply type in gibberish. Many
web servers, especially if they are still using default settings, will reveal the server version and other
information:

$ netcat james 80
asdf
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>501 Method Not Implemented</title>
</head><body>
<h1>Method Not Implemented</h1>
<p>asdf to /index.html not supported.

</p>
<hr>
<address>Apache/2.0.53 (Ubuntu) PHP/4.3.10-10ubuntu4.3 Server at james.stangernet.com
Port 80</address>
</body></html>
$

Here, netcat was used to connect to a private web server maintained by the author at the host
system james . In response to the gibberish entered by the user, the server issued a response that
included not only the version of Apache Server, but also the server operating system and the fact
that PHP is enabled. Not all daemons will respond with useful information, however.

41.2.3. ifconfig

The ifconfig command can be quite helpful during troubleshooting if you take the time to read all the
information it provides. In addition to standard networking information (e.g., the IP address and
subnet mask), the typical ifconfig output tells you the following:

Whether or not the interface is up (the UP flag)

If it is in broadcast and multicast mode

The number of packets received and transmitted since last activation

The number of errors and overruns

The number of bytes received and transmitted

The interrupt used, and base address

Here is an example of ifconfig output:

$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:5F:EA:86:8F
 inet addr:24.17.140.230 Bcast:255.255.255.255 Mask:255.255.252.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:44354070 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3078006 errors:0 dropped:0 overruns:0 carrier:0
 collisions:113575 txqueuelen:100
 RX bytes:1730626695 (1650.4 Mb) TX bytes:553335663 (527.7 Mb)
 Interrupt:11 Base address:0x6100

The information gathered here can help you narrow down both hardware and software errors.

41.2.4. traceroute

Don't underestimate the usefulness of the traceroute command. Don't be too confident that you
know everything about traceroute , either. For the exam, be able to identify each element of
traceroute output. Consider the following example:

traceroute 213.236.195.41
traceroute to 213.236.195.41 (213.236.195.41), 30 hops max, 38 byte packets
 1 linpro-intra-gw (80.232.36.129) 0.212 ms 0.154 ms 0.133 ms
 2 tott (80.232.38.218) 0.931 ms 0.783 ms 1.209 ms
 3 tdc-A100M-0225-hsrp.linpro.net (80.232.38.220) 1.471 ms 1.505 ms 1.678 ms
 4 212.37.252.2 (212.37.252.2) 1.469 ms 1.834 ms 2.457 ms
 5 pos3-0.622M.osl-nyd-cr1.ip.teledanmark.no (213.236.195.41) 2.043 ms * 2.906 ms

In the output, notice that each hop has three latency times shown. If you were to ping these
systems, you would receive the same times. If the routing is randomized through some routing
daemon, subsequent uses of traceroute could discover new hosts.

An asterisk represents either a lost packet or the fact that a router has been programmed not to
respond to the particular type of ICMP packets traceroute uses within the timeout period you have
specified. The default timeout period for traceroute is five seconds.

Sometimes, you may see the !N or !X flags in place of the latency information traceroute usually
provides. The !N flag means that the host or network cannot be reached. The !X flag means that the
administrator of the remote system has prohibited the use of ICMP, but was kind enough to
configure the router to send a message informing traceroute about the prohibition.

41.2.5. netstat and route

You already know that netstat is useful for checking open connections, as well as viewing the routing
table. We also discussed the route command in Chapter 19 . The output of each command is slightly

different, and this difference might be important in a troubleshooting situation.

Consider the following netstat output:

$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
localnet * 255.255.255.0 U 500 0 0 eth0
default system1234.stan 0.0.0.0 UG 5000 0 0 eth0
$

For the sake of comparison, consider the following route output:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 0 eth0
default system1234.stan 0.0.0.0 UG 0 0 0 eth0
$

The information from the two commands seems identical, but there are subtle differences. The
output for netstat contains information for both the Maximum Segment Size (MSS) and Initial Round
Trip Time (IRRT). The route command does not report these values by default.

The MSS value indicates the largest amount of data (in bytes) that the system can handle without
fragmenting the packet. Generally, you want the MSS value to be less than the Maximum
Trnsmission Unit (MTU), which is 1500 for Ethernet systems. A value of 0 means that the default is
used, which is 536 bytes for Linux systems. The previous output shows that the MSS is 500, so the
system is likely functioning well in this regard.

The IRRT value displays (in milliseconds) the amount of time allowed for initial TCP connections to
complete. On our system there is a 0 value, which means that the system is using the default value
(300 milliseconds).

The route command provides the routing metric and the Use field, which netstat does not. The
MeTRic field indicates the distance to a destination target. It is no longer used by modern systems,
though if you use a routing daemon, you may need to read this value. Knowledge of routing
daemons is not required for the LPI Exams.

The Use field indicates the number of lookups for the particular route. If you use route 's -C option,
you will see the number of times the cache has correctly looked up the route. If you use route 's -F
option, you will see the number of misses.

41.3. Hardware Problems

One of the truisms of networking is that the majority of problems occur at the physical layer.
Problems can include a failed NIC, a hub that has lost power, or bad cabling. A discussion of the
relevant applications for troubleshooting physical networking issues follows.

41.3.1. Physical Connection Issues

Although the LPI Exam focuses mostly on local configuration issues that can be discovered and
resolved by using applications such as ifconfig and hostname, it is important to understand that
other devices may be causing problems.

41.3.1.1. Cabling

While relatively unusual, cables can become weakened and wires can sever. Some offices may have
wiring that is routed beneath carpets that receive substantial traffic. Users may also be able to roll
over the cables with their chairs. When it comes to troubleshooting such cabling problems, consider
the following steps:

Obtain a working system and attach it to the cable in question. If the cable works, you know
you have a problem with the Linux system.

1.

Check for loose or broken cable connectors. If a connector is broken, the cable may be only
partially inserted, causing failed or intermittent connections.

2.

41.3.1.2. Failed networking devices

Hubs, switches, and routers are generally quite reliable, but it is possible that an intervening device,
rather than the Linux system, has failed. One way to confirm your suspicion that a hub or switch has
failed is to use a crossover cable and connect the affected system to another working system. A
crossover cable is essentially the same thing as a standard LAN cable, but with four of the pins
reversed. As a result, two systems can communicate directly with each other. If the two systems can
communicate, it is likely that a hub or switch servicing the system you once suspected is
experiencing a problem.

When inspecting a hub or switch, look for the following:

Whether the device has power

Most hubs and all switches in a larger network are active devices. If they do not have power,
you won't have a network connection.

Disconnected cables

The system's cable may have been simply disconnected and needs to be reconnected.

Steadily blinking lights

If lights are blinking steadily and continuously or remain on steadily, the device is
experiencing a problem. Sometimes power surges cause devices to fail. Try powering it down
and back on or simply replacing it.

Activated warning lights

Some hubs and switches have warning lights that will indicate a problem. Look for them, then
take steps to solve the problem.

Misconfigured hardware settings

In one case, a Linux administrator noticed that a hub had a button pressed that caused one of
its ports to effectively act as a straight through connection, rather than as a proper hub.
Simply deselecting the button solved the problem. Look on the hub to see if there are any
other improperly selected switches.

41.3.2. Problems with the Interface Card

If an NIC completely fails, it will fail to initialize at boot or respond to the ifup command. The lspci
and usbview commands can help you determine whether the NIC has been recognized as valid
hardware. If these commands do not show that the system recognizes the NIC, consider installing a
new one. But problems can also exist elsewhere than the NIC. Make sure that you know what your
system is telling you by consulting log files and reviewing screen output .

Finally, you can inspect the lights that ship with most NICs. These lights may seem to be useless,
but they can help you determine whether the NIC is receiving power. If the lights are flashing
randomly, it is likely that the device is receiving traffic. If you find that the lights are blinking
steadily, it is likely the device has a configuration problem. If you find that one or more lights are
simply staying on constantly, you likely have a hardware configuration problem. Of course, if the
lights are not turned on at all, the NIC has not been recognized by your system's bus or has
completely failed.

To solve such problems, make sure that the NIC is recognized by the Linux server. Consult the
distribution's Hardware Compatibility List (HCL). You may find that you will have to get a new NIC.

41.3.3. Reviewing Screen Output

Do not simply focus on the NIC's lights or on the system's log files. Some systems are configured to
report critical problems directly to the screen. In other cases, problems experienced by the NIC can
cause warning messages to be printed on the screen, even though the system is not specially
configured for this.

In most cases, the messages you see printed to the screen will be seen when the system boots.
Messages can indicate that the system is delaying the interface's intialization or can report errors in

transmission and reception.

41.3.4. Changes to the Kernel and /etc/modules

When a Linux system scans for PCI devices at boot time, it recognizes the devices it finds in the
order that it finds them. The first card recognized becomes eth0, the second card recognized
becomes eth1, and so forth. Recognition involves the act of detecting the hardware and assigning
any drivers and modules. Sometimes, a seemingly innocuous change to the system can cause
problems with PCI-based network devices.

In some cases, changes to the /etc/modules.conf file can cause devices to go undetected or to be
detected in a different order. In one case, an application completely unrelated to networking rewrote
the /etc/modules.conf file and inadvertently changed the order that modules were installed for a
dual-NIC Linux router. The update to /etc/modules.conf changed the order in which the NICs were
recognized. With the change, the NIC that used to be recognized as eth0 for two years was suddenly
recognized as eth1. Because this system was a router, the eth0 device was configured to
masquerade connections, whereas the eth1 device was not.

Normally, this would not be a problem, except that the company's ISP required all Internet-facing
network interfaces to register their MAC addresses. Now the system was recognizing an unregistered
card as eth0, and the ISP would not recognize the new eth1 card as an Internet-addressable device.
So a seemingly simple change to the /etc/modules.conf file caused serious networking problems for
the company.

Updating the kernel can also sometimes affect the order in which PCI devices are scanned, similarly
to the previous example.

Finally, if for some reason a NIC's driver is loaded at a different time from previous boots, this NIC
may be recognized earlier or later than before. As a result, the NIC may be assigned a different
name.

Solving the problems discussed in this section is relatively trivialonce you know what caused the
problems in the first place. In the first instance, simply editing the /etc/modules.conf file and
specifying the previous module installation order solved the problem. For the second problem,
physically swapping the NICs would work. For the third problem, you can either swap the NICs or
change the time when the drivers are assigned during the boot process. You would have to either
reconfigure some boot scripts or possibly use an application such as YaST or netconfig.

Whatever solution you choose, it is important to understand that a seemingly unrelated change to
the system can cause a ripple effect.

41.3.5. Checking Log Files

If you have an interface experiencing problems, you likely will be able to read about it in the
/var/log/messages or /var/log/syslog files. You can also review dmesg output to view the contents of
the kernel message buffer. Understand, however, that this buffer can be overwritten, resulting in
incomplete information from the kernel.

This is because this buffer is a "round-robin buffer," meaning that if the kernel needs more space, it
will delete log entries, starting at the beginning. It is important to understand that even though the
log file can be overwritten starting at the beginning of the log file, the latest messages are stored at
the end of the buffer. So, you will at least be able to read the most current messages.

41.4. Network Device Configuration Files

A network administrator can find himself spending a great deal of network troubleshooting time
editing the configuration files for Ethernet NICs. You will need to know how to edit both the Debian-
based configuration file and the configuration scripts found in Red Hat-based distributions.

41.4.1. The /etc/network/interfaces File

You should already know that you edit the the /etc/network/interfaces to control settings for
Ethernet NICs in Debian systems. Several GUI-based applications exist for editing these files, but
the test focuses on editing the file manually.

The interfaces file is organized into stanzas. Each device (even the loopback device) receives its own
stanza. A typical stanza is given below:

auto eth1
iface eth1 inet static
 address 10.0.0.5
 netmask 255.255.255.0
 gateway 10.0.0.1

The auto keyword tells the system to activate the NIC when the system boots. Usually, the system
uses the /etc/init.d/networking script. The stanza shows that a system has been statically
configured. If you wish to configure the system for DHCP, change static to dhcp. Once you make
that change, the system will not consider the rest of the stanza and will look to the DHCP server to
get its configuration information. Because this is the case, make sure that the DHCP server provides
the correct subnet mask, DNS server, and default gateway information, because your system won't
get that information locally.

41.4.2. The /etc/sysconfig/network-scripts Directory

Red Hat and many other distributions use the files in the /etc/sysconfig/network-scripts directory to
configure Ethernet NICs. Each network device, even the loopback device, receives its own file.
Settings for the eth0 device are found in the ifcfg-eth0 file, settings for the eth1 device are found in
the ifcfg-eth1 file, and so forth.

A relatively simple entry for the second NIC in a system follows:

DEVICE=eth1
ONBOOT=yes
BOOTPROTO=static
IPADDR=10.0.0.4
NETMASK=255.255.255.0

GATEWAY=10.0.0.1

In this sample, the ONBOOT=yes entry has the system activate at boot time using the
/etc/init.d/network script. If you have a removable card, such as a USB wireless card, you would see
the ONBOOT=no directive.

The BOOTPROTO directive can be either static, as shown before, or dhcp. As with Debian-based
systems, if dhcp is specified, all other manual settings in this file are ignored for this NIC.

If you find that an NIC will not respond to the ifup or ifconfig commands, study the files discussed in
this section carefully for problems.

41.4.3. PCMCIA Card Configuration

PCMCIA network cards are often configured using the /etc/pcmcia/network.opts file, rather than any
other configuration file. You can edit this file by hand or by using the pcnetconfig command. You will
likely find that editing the file by hand is easier. Essential directives to troubleshoot in this file
include those in Table 41-3. Additional settings also exist; review the file to learn more.

Table 41-3. Important PCMCIA configuration directives

Directive Purpose

IPADDR Sets the IP address for the NIC

NETMASK Determines the subnet mask

NETWORK Configures the NIC's network address

GATEWAY Provides the default gateway

DOMAIN Sets the DNS domain for the NIC

DHCP Informs the NIC whether it should look for a DHCP server

PPOE Establishes PPOE support for NICs that will be on DHCP lines

41.4.4. The /etc/networks File

Study the /etc/networks file. Make sure it does not list the wrong network; if it does, simply edit the
file by hand and insert the correct network. If your system belonged to the 192.168.2.0 network, the
entry would be:

localnet 192.168.2.0

41.4.5. The /etc/nsswitch File

Make sure that the /etc/nsswitch file is configured correctly for your situation. The system you are
using may think that it should no longer look for a DNS server for name resolution or should look for
an NIS server instead of its own password database to authenticate users.

41.4.6. Additional Configuration Files

Sometimes, systems will seem to hang for an unacceptably long period of time during a DNS lookup.
It might appear that this problem is somehow related to your DNS server or to some other name
resolution issue, such as resolution order.

If you are relatively sure that your DNS server is working well, that /etc/nsswitch.conf file is
configured correctly, and that your system is trying to resolve with the correct server via
/etc/resolv.conf, consider reviewing the /etc/host.conf and /etc/modprobe.d/aliases files. They are
discussed next.

41.4.6.1. /etc/host.conf

This file specifies your system's resolution order. If it is configured to look only for the /etc/host.conf
file and not for BIND, make sure that a line exists that reads:

order hosts, bind

You can reverse the order if you wish.

41.4.6.2. /etc/modprobe.d/aliases

This file contains instructions that affect which type of IP you are using. Most systems still use IPv4,
but IPv6 is becoming more common all the time. Some Linux systems default to using IPv6 first. If
your system is configured to look for an IPv6 address first, then an IPv4 address, network
connections can become quite slow.

To solve the problem, edit the /etc/modprobe.d/aliases file as root and uncomment or add the
following lines:

alias net-pf-10 off
alias ipv6 off

These lines make sure that IPv6 lookups are turned off. You may find, after doing this, that
resolution and other network activities work much faster. The reverse may be true, of course; you
may find that your system is not using the IPv6 addresses you have configured. If that is the case,
comment the two entries.

Regardless of the changes you make to the /etc/modprobe.d/aliases file, you will need to run the
update-modules command as root to make sure that your system recognizes your changes.

41.4.6.3. The /etc/hostname file

The /etc/hostname file simply contains the system's hostname, as you might expect. The
/bin/hostname command reads the contents of the /etc/hostname file at boot time.

Tip: In some systems, the name of the hostname file is /etc/HOSTNAME

If the name in this file conflicts with other system settings, your system may experience serious
problems. This is particularly the case in older systems (e.g., circa 1999).Some applications and
daemons are very rigid about reading the information in the /etc/hostname file. Some daemons may
become confused, because DNS tells them one name as the IP address, and the /etc/hostname file
tells them another. To solve the problem, simply edit the file using a text editor as root and provide
the correct name.

41.4.7. Application Issues

Applications also often have configuration files that can cause connectivity problems. First, consider
the fact that web browsers, email clients, and many other clients often need to be configured to use
a proxy server. A connectivity problem may be as simple as making sure that the client is properly
configured to use a proxy server.

Clients must sometimes be configured to work efficiently on a network. Firefox, for example, is
sometimes configured to look for IPv6 addresses first and then IPv4. To make Firefox use IPv4 first,
type about:config into the address bar. You will see a large, long listing of configuration settings for
Firefox.

Scroll down and find the following value:

network.dns.disableIPv6

Double-click on this value to change its value to true.

You can take additional steps to optimize Firefox, but they are beyond the scope of this exam. It is
important to understand, however, that when troubleshooting, application settings should also be
considered.

41.5. DNS Errors

DNS errors can often cause problems for seemingly unrelated services. This is because DNS is a
foundational service; a problem with DNS will likely manifest itself in other services, often in
seemingly strange and unpredictable ways.

For instance, a resolver (i.e., a DNS client) first conducts a reverse DNS lookup and then a forward
lookup. If a conflict exists between a reverse and a forward lookup, the network connection may fail.
SSH and Kerberos servers often rely on reverse DNS lookups as one of the ways to help verify that a
system is exactly what it purports to be. Thus, an improper entry in the reverse DNS lookup zone
can often cause an SSH connection to fail. The error returned by the SSH client may refer to an
authentication problem, when the real problem is with DNS. The same problem has also been known
to affect the performance of some TCP wrappers implementations.

Sometimes, a slow DNS server can cause similar authentication problems with SSH, Kerberos, and
other daemons. If this is the case, investigate why the DNS response is slow. You may find a
problem with the DNS server itself. Or the network connection between your network and the DNS
server may be experiencing a problem.

In the case of a seemingly random DNS client problem, use the nslookup, dig, or host command to
discover the DNS server and then compare this information in the /etc/resolv.conf file. If the lookup
fails and you are sure that DNS is working properly, try using the search keyword in /etc/resolv.conf
and specify the domain your system is in. Even though you have specified the correct DNS server,
your system may think that it belongs to a different domain. If you place the correct search entry
into /etc/resolv.conf, this might solve your connectivity issue.

Tip: One of the simpler, but still common, frustrations is if an entry in the /etc/hosts file conflicts with the DNS server. The DNS server will still

report the name to IP address mapping from its zone file if you use the nslookup, dig, or host command. However, if you use any application

ranging from ping to Firefox, it will probably read the /etc/hosts file first. So don't just consider DNS server problems; your issue may be more

local than you think.

41.6. Determining the Cause of Inaccessible Services

To confirm that a problem exists with a service, any number of commands can be used. netstat is
very useful, but so are applications such as nmap, lsof, and strace. You can also inspect your
system's configuration files to see whether unexpected changes have been made to your
configuration.

41.6.1. Using netstat

While netstat is useful, it does not always reveal all information concerning a service. Review the
following netstat output:

netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 10.0.0.5:34386 80.232.36.131:22 ESTABLISHED
tcp 0 0 10.0.0.5:35191 80.232.36.131:993 ESTABLISHED
tcp 0 0 10.0.0.5:35190 80.232.36.131:993 ESTABLISHED
tcp 0 0 10.0.0.5:35189 80.232.36.131:993 ESTABLISHED
tcp 0 0 10.0.0.5:35188 80.232.36.131:993 ESTABLISHED
tcp 0 0 10.0.0.5:34387 10.0.0.1:22 ESTABLISHED
tcp 0 0 10.0.0.5:35193 10.0.0.4:993 ESTABLISHED
tcp 0 0 10.0.0.5:35196 10.0.0.4:993 ESTABLISHED
tcp 0 0 10.0.0.5:35187 10.0.0.4:993 ESTABLISHED
udp 0 0 0.0.0.0:32779 0.0.0.0:*
udp 0 0 127.0.0.1:53 0.0.0.0:*

The first connection shown indicates that this host presumably has an X server running, because X
uses port 6000. The second connection shows that a DNS server is presumably listening on port 53,
ready for a zone transfer. The next lines show port 22 open, so there is likely an SSH server open,
as well.

Notice that we are not authoritatively saying that X, DNS, and SSH are listening on these ports. This
is because netstat does not actually analyze the connections. Without additional arguments, netstat
simply listens for an open port. It can also map that port to a name in the /etc/services file, but the
preceding output didn't give the names.

41.6.2. nmap

The nmap command is no better in this case. While it can provide you with a useful listing of open

ports, it will not give you details about the actual service that opened that port. nmap can also
determine the type of operating system being scanned, but it cannot inform you what actual service
opened the port.

41.6.3. Finding Authoritative Information with lsof and strace

While you can specify extra options to netstat to gain additional information, using lsof will provide
you with extensive information about the actual service listening on the port. This command actually
names names, as it were, providing you with detailed information about the daemon and user that
opened the port. You will also receive information such as the daemon's PID, as well as connection
details and the system call information that you normally would not see.

Another invaluable command for troubleshooting network problems is the strace command. By
running an application or daemon under strace, you can read exactly what the application was doing
at the time of failure. From this output, you can then begin to identify the problem and formulate a
solution.

41.6.4. Unexpected Changes to Files and Settings

Review the /etc/hosts.allow and /etc/hosts.deny files and make sure that they are unchanged. It is
possible that a service or another administrator updated these files. One way to verify whether a
system is configured to use TCP wrappers is to review the /etc/inetd.conf file or the /etc/xinet.d
directory. Look for references to tcpd. If you see a reference, this daemon is protected.

You can usually tell the difference between a daemon that is simply not responding and one that is
protected by TCP wrappers. If a daemon is protected by TCP wrappers, the connection will hang for
a brief period of time, then fail. This short period of time reflects the amount of time it takes for tcpd
to analyze its settings and respond to the connection. If the connection is immediately refused, the
daemon is simply not responding.

Also, review the iptables or ipchains settings. Make sure that a rule has not been added by an
application such as Portsentry or by another administrator. Use the iptables -L command, for
example, to discover settings.

Tip: Remember that iptables and ipchains settings apply to all network connections, not just those protected by TCP wrappers.

Failure to consult such files and features may cause you to take much more time solving a problem.
The writers of the LPI Exams know that less experienced administrators fall into this trap.

41.7. Conclusion

In this chapter, you have learned about essential troubleshooting steps and applications. You are
likely already familiar with the applications discussed. However, this chapter is more than just a
review of these applications and daemons. It is meant to help you approach these applications with
the goal of trying to solve problems.

Before you take the LPI Exams, take the time to consider the steps that you would take to resolve a
problem. You likely will find yourself thinking less about command options and configuration files
and more about how to diagnose problems, make educated guesses, and formulate solutions. While
you will need to use many applications, including some discussed in this chapter, you will likely find
that the key to understanding troubleshooting relies on knowing when and how to use these
applications. You will also find that the LPI Exam takes this approach.

Chapter 42. Exam 202 Review Questions
and Exercises
This chapter is designed to help you learn more about the concepts, best practices, and commands
tested in the LPI 202 Exam. Even advanced Linux users will find these activities useful, because they
are all based on the LPI's Objectives. The things you read about in this chapter might help remind
you about how to do tasks that you may not have had to do in a while.

It is best if you use a "live," nonproduction Linux system to conduct these exercises. This way, you
can apply your knowledge, but still not worry too much if your experiments cause the system to
become unstable or to no longer be as secure as before.

42.1. Networking Configuration (Topic 2.205)

42.1.1. Review Questions

You have learned that a system does not currently specify the correct default gateway. The
correct default gateway address is 192.168.2.1. What commands would you issue to delete the
existing gateway address and add a new one?

1.

What command would you issue to assign a second IP address of 192.168.2.55 and a netmask
of 255.255.255.0 to your eth1 card?

2.

The arpwatch daemon has discovered several "flip-flops," implying that ARP poisoning has
occurred on your network. Where can you read the alerts sent by the daemon?

3.

A remote office has had to swap out a failed NIC in its Linux router. This router must work with
an ISP's cable modem to allow the remote office to access the Internet. However, the ISP's
cable modem recognizes only the MAC address of the failed card. What command can help you
solve this problem?

4.

You have tried to use tcpdump to capture packets and analyze them. However, tcpdump
captures only the first few parts of the packet by default, and you want to capture and display
the entire packet. You also want to save the capture into a file named cap1.cap. What
command allows you to do this?

5.

You have just used the netstat command, and have read the following entry:

tcp 0 6 64-128-206-189.ge:53208 mail1.oreilly.com:imap2 ESTABLISHED
What system has opened port 143?

6.

42.1.2. Answers

Run two commands:

route del default gw
route add default gw 192.168.2.1

1.

Run:2.

ifconfig eth1:1 192.168.2.55 netmask 255.255.255.0

2.

arpwatch alerts are usually mailed to the root user. Use the mail command to read the
messages.

3.

Use the ifconfig command to specify the same MAC address as the failed NIC:

ifdown eth0
ifconfig eth0 hw ether 00:02:03:06:07:08
ifup eth0

4.

Use the following tcpdump command:

tcpdump -vvv -s 1518 -i eth0 -w cap1.cap

5.

The system named mail1.oreilly.com has opened port 143, because this port is the IMAP port.6.

42.1.3. Exercise

As root, experiment with the tcpdump command. Many examples exist in the manpage for
tcpdump. Specifically for the LPI 202 Exam, experiment with the following command:

tcpdump host host1 and \(host2 or host3 \)

The tcpdump command captures all packets sent between the host named host1 and either the
host named host2 or the host named host3. Now, try the following command:

tcpdump -i eth1 not arp and not '(port ssh)' and not '(port http)'

This command excludes ARP packets, as well as those associated with SSH and standard web
traffic. You can add more ports by adding more and not phrases. Notice also that the previous
command specifies an interface, in this case the second one on the system. If you are using a
standard hub-based network, you will be able to sniff the packets going to and from remote
systems. However, if you are on a switch-based network, tcpdump will capture only packets
going to and from your local system.

1.

Experiment with the ifconfig command. Use it to add a second IP address. Then ping the new
address from both your local system and a remote system. Change your system's MAC
address. You can also stop and start interfaces and change the system's IP address. Finally,
use ifconfig to change your network interface's IP address. Reboot your system and see

2.

whether the change you made remains. Then, review the /etc/network/interfaces file (for
Debian-based systems) or the /etc/sysconfig/network-scripts file (for Red Hat/Fedora-based
systems).

The arp command allows you to view and manipulate the ARP cache. View the cache by
running the arp command without arguments, then use it to add and delete entries. Notice that
if you delete an entry, then reconnect to the system, you will see that the deleted system has
been added back.

3.

The netcat command (also nc) has become a standard tool. It is ideal for testing to see whether
local or remote ports are open. You can also use it as a primitive port scanner and even as a
quick and dirty way to transfer files between systems. Use netcat to monitor your systems only.

4.

The arpwatch command monitors MAC address and IP address pairings on a network. These
pairings should not change often. Install and run arpwatch if it is not already working. Use an
application such as ettercap, or use ifconfig to change a system's MAC address, then see how
arpwatch sends the root account on the local system notifications that a pairing has changed.
Sudden changes can be evidence that an attacker is trying to spoof connections or engage in
packet sniffing on a switch-based network.

5.

The ping command is quite standard. However, familiarize yourself with various options,
including ping -c, ping -a, and ping -f. The -f option will work only when run as root. If you
want, use tcpdump to collect the flood of packets sent when you use the -f option. Experiment
also with specifying packet sizes and different time to live (TTL) settings.

6.

Use wvdialconf and wvdial to configure PPP-based dial-up access for your system. Also,
familiarize yourself with the chat program and the contents of a standard chat file. Examples of
this file exist in this book, as well as on the Internet. Make sure that you understand the
purpose of the chap-secrets and pap-secrets files.

7.

Once you have configured PPP access, configure VPN access using the pptp command. Make
sure that you clearly understand the ports used in pptp and how to troubleshoot connections by
reviewing files such as /var/log/messages using tail with the -f option.

8.

Linux systems are extremely flexible. For example, it is possible to add a second NIC to your
Linux system and use it as a router. Once you have two NICs installed and recognized,
configure each with IP addresses. Then enable IP forwarding. You can do this either by
changing the value of /proc/sys/net/ipv4/ip_forward to 1 or by editing the /etc/sysctl.conf file.
As root, simply add the following line:

 net/ipv4/ip_forward=1
Then run the following command:
sysctl -p /etc/sysctl.conf

Once you have done this, your system will forward packets between the two NICs. You can
return your system to normal by changing the 1 value to 0 in the
/proc/sys/net/ipv4/ip_forward file.

9.

The netstat command is deceptively simple. Familiarize yourself with all of the fields in netstat
output. Also, become familiar with the many options to netstat, including -na, -nr, and -M.

10.

42.2. Mail and News (Topic 2.206)

42.2.1. Review Questions

You wish to map mail from one local user account to another local user account. What file
would you edit?

1.

You wish to map mail from remote hosts to your hosts to different accounts on the system.
What file would you use?

2.

You wish to rewrite outgoing emails from the system mail.company1.com so that they appear
to come from the mail.company2.com domain. What file would you use to create the proper
mappings?

3.

What command is used to add or remove groups in innd?4.

You have just installed Majordomo 2 on a system named listserv.company.com. The password
is listserv1. What command would you issue to create a list named operations?

5.

You are reading the following Procmail recipe:

* ^From: .*@sales.com
/dev/null

What is the result of the recipe?

6.

42.2.2. Answers

Use the /etc/aliases file.1.

Use the virtusertable file.2.

Use the genericstable file.3.

Use the ctlinnd command.4.

Enter:

create operations listserv1

5.

6.

All email messages from sales.com will be redirected to the /dev/null file and thus be deleted.6.

42.2.3. Exercises

Install and configure a simple Sendmail server. Configure the proper aliases according to RFC
821. Use the proper files, m4 macros, and commands to configure the system of your choice.
Do not forget to configure the MX records for the domain so that emails sent to your domain
will be properly mapped to your Sendmail server. Test your configuration and settings using
the commands discussed in this book and at http://ww.sendmail.org.

1.

Once you have configured Sendmail to work in a basic manner, experiment with the server. For
example, use the genericstable file so that emails sent from the system appear to be sent from
another related domain. Do not engage in illicit activity. Simply experiment with how to rewrite
headers.

2.

After working on your Sendmail configuration, secure it. Shut down and remove all
unnecessary services, such as web and database servers. Use the iptables or (if you have an
older system) ipchains command to block unnecessary connections. If you are using SSH or
VNC, lock down these services so that they use the best encryption available and accept
connections only from trusted hosts.

3.

Install and configure Procmail. Use recipes to forward email to another user. Then create a
recipe that automatically responds and informs people that the user is on vacation.

4.

Install and configure Majordomo 2. Prepare Sendmail or your alternative MTA to work well with
Majordomo 2. Then, create new lists. Subscribe and unsubscribe from these lists. Customize
these lists by enabling and disabling moderation, as well as enabling and disabling message
digesting.

5.

Experiment with the different ways to configure Majordomo 2. You can configure it either by
editing the readers.conf file or by sending control email messages.

6.

Install INN. Configure it to serve up at least two newsgroups. You will likely find that the server
is configured by default to reject posts from remote hosts. Configure the system to accept
remote posts. You will likely need to do this using both the ctlinnd command and by
configuring the readers.conf file.

7.

Once you have configured INN to accept posts from remote users, enable password protection
using the htpasswd command. You will likely have to edit the readers.conf file to recognize
your use of the database. Your entry will likely appear as follows:

auth "useraccounts" {
 auth: "ckpasswd -f /etc/news/nntp_passwd"
}

Now experiment with user authentication on the server, and monitor when users make posts.

8.

Once you have configured user authentication, experiment with upstream and downstream
feeds. Even if you do not have access to these streams, configure INN as if you did.

9.

http://ww.sendmail.org

42.3. DNS (Topic 2.207)

42.3.1. Review Questions

You wish to use the dig command to query the server named dns1.company.com to see
whether the PTR record for the system named adam exists. What would this command look
like?

1.

Consider the following text:

zone "." {
 type hint;
 file "/etc/bind/db.root";
};

What is the purpose of this entry, and what file does this entry belong in?

2.

You have been given a new host to enter into the forward DNS zone. This hostname is for the
Web server. The host's IP address is 192.168.2.5, and the host's name is www.company.com.
Write in the entry you would create in the DNS server's forward zone file for this server.

3.

You wish to establish a chroot jail for your DNS server. You are using BIND. Why is it necessary
to copy or move directories such as the /etc/bind directory to another, special location on the
hard drive?

4.

Your system ships with the BIND 8 dnskeygen command, rather than the BIND 9 dnssec-
keygen command. Both have the same function. Using dnskeygen or its equivalent, what
command would you issue to create a public-key pair with the size of 1024 bits that can be
used only for authentication for the mycompany.com domain?

5.

You are in an interactive nslookup session. What command would you issue to switch from the
default nameserver to dns2.company.com?

6.

42.3.2. Answers

Enter:

dig @dns1.company.com PTR adam

1.

2.

The text primes the DNS server to look for root servers. This entry belongs in the named.conf
file.

2.

Create the following entry in the DNS server's forward zone file:

IN A www 192.168.2.5

3.

The purpose is to provide BIND with an isolated environment. If a buffer overflow or other
problem occurs, any exploit or other problem will remain local to that environment and will not
be able to spread easily to the rest of the system.

4.

The command is:

dnskeygen -H 1024 -c -h key.mycompany.com.

5.

The command is:

> server dns2.company.com

6.

42.3.3. Exercises

Install BIND on your system. Take some time to verify where the configuration files are. In
many newer systems, the files will be located in the /etc/bind directory. In other systems, the
files will be located in both the /etc directory and in the /var/named subdirectories. Once you
have confirmed the location of these files, verify the location of the startup script. In some
systems, it will be in the /etc/rc.d/init.d directory. In other systems, it will be in the /etc/bind
directory. Sometimes, the startup file is called named. In other cases, it is called bind9. The
names and locations of files may vary. This series of exercises will assume that all
configuration files reside off of the /etc/bind directory.

1.

Using sample zone files that reside on the local system or on the Internet, review the syntax of
valid DNS entries. Also review the syntax for the named.conf file, the top-level nameserver file,
and the forward and reverse loopback zone files.

2.

Configure BIND to act as a DNS server for your network. First, configure the
/etc/bind/named.conf file so that it contains references for the root servers, and so that this
server knows that it is authoritative for the zone you are going to create. You will also need to
add forward and reverse loopback zones, as well as references for the forward and reverse
zones you are going to create. Remember the names and locations of the forward and reverse
zone files. You will be creating these files in the next step.

3.

As you configure named.conf, make sure that you are referencing all files properly and that
these files exist, even if they are currently empty. Use the touch command to create the files,
or download sample files from the Internet. The files for the forward and reverse loopback
zones should already exist on your system. If your system has not already provided them,

4.

5.

obtain hint files from http://www.bind.org.

Using a text editor, create both forward and reverse lookup zone files in the /etc/bind directory.
Make sure that these files have the same names as those indicated in the /etc/bind/named.conf
file. Populate the forward and reverse zone files with valid entries. The entries you create will
include valid TTL and SOA information, valid nameserver information, and A records. Make
sure as you start BIND that you review the /var/log/messages file. Using the tail -f command is
a good idea, as it will help you read any error messages BIND gives. You may also have to
verify that the BIND service is running. One way to do this is to use the ps aux command and
pipe the output through grep:

ps aux | grep bind

5.

You will likely have to make several changes to the forward and reverse zone files before BIND
properly initializes and begins resolving names. You will have to restart your server whenever
you make a change to your zone or configuration files.

6.

Once you have started BIND, configure the /etc/resolv.conf file for your DNS server and also
for your clients so that they are using your DNS server. Use the ping command to verify that
you can access hosts by both IP address and by DNS hostname.

7.

Use nslookup in interactive mode, as well as a one-time command, to verify that your server is
properly resolving names. In some systems, nslookup is deprecated. You can use the -sil option
to eliminate the warning messages. While using nslookup, change between DNS servers, view
A and PTR records, review the SOA record for the zone, and see if you can conduct a zone
transfer.

8.

The dig command is quite sophisticated. Use the dig command to query your forward and
reverse zone records, as well as review the SOA fields. You can also use BIND to query other
DNS servers and conduct zone transfers if the DNS server allows such activity (increasingly
unlikely). Make sure that you know the options that allow you to conduct multiple inquiries.

9.

The host command is quite handy for conducting quick DNS searches. Make sure that you know
the options that allow you to conduct zone transfers and specify the types of records you wish
to view (e.g., SOA, CNAME, and AXFR).

10.

You already have a working server. However, you can add more names. Add CNAME and MX
records to your zones. When you make changes, make sure that you increment the serial
number so that changes are recognized by secondary (i.e., slave) DNS servers.

11.

Configure a secondary (slave) DNS server. Conduct zone transfers to verify that your
configuration has worked.

12.

Once you are confident that your master/primary and secondary/slave DNS servers are
working properly, secure them. Use the dnskeygen command (or its equivalent) to create
public keys for your zones. Then take the necessary steps to require authentication and
encryption for all zone transfers. Then configure named.conf to restrict zone transfers to certain
servers. Even though such settings can be rather easily fooled by attackers who know how to
spoof IP addresses, you may as well lock down as many settings as possible. Also consider
stopping all other daemons and dedicating this system to just providing name resolution. Even
if you are simply experimenting, consider the daemons that you would shut down if you were
to configure this system as a dedicated DNS server.

13.

http://www.bind.org

42.4. Web Services (Topic 2.208)

42.4.1. Review Questions

No startup script exists to start, stop, or restart your apache server. What is the most nearly
universal command that you can use to start the Apache server?

1.

You wish to enable .htaccess files on your web server to enable user-based access. Where
should these files be located?

2.

You have noticed that an .htaccess file you have created is not being recognized. You have
copied it from another server, so you know it is formatted correctly What can you do to solve
this problem?

3.

You need to run htpasswd for the first time and create a database named /etc/apache2/users.
What command should you issue to create the database?

4.

You wish to start the Apache server with SSL support. What command would you issue? Also,
what files might need to be edited to enable SSL support?

5.

You wish to create a virtual host in an older version of Apache. What file should you edit to
enable virtual hosts?

6.

You wish to forbid all web-based access to URLs that contain the words Paris and Hilton. You
have created the following ACL entry in Squid:

acl Paris1 url_regex Paris
 acl Hilton1 url_regex Hilton
 http_access deny Paris1
 http_access deny Hilton1
 http_access allow all

However, you still notice that many users have been able to access URLs such as
http://naughtysite.us/paris. Why is this the case?

7.

http://naughtysite.us/paris

42.5. Answers

Use the apachectl command:

apachectl start

1.

It should be a hidden file in the resource you wish to restrict.2.

Edit httpd.conf or apache2.conf and enable support for .htaccess files. Look for a directive
similar to the following and make sure that the directive is not commented out:

AccessFileName .htaccess

<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>

3.

Issue the following command as root:

htpasswd -c /etc/apache2/users

4.

Issue the following command:

apachectl startssl

You may also need to edit the http.conf file or the ssl.conf and ssl.load files.

5.

The http.conf file. Apache 2.0 is configured using the apache2.conf file.6.

Squid ACLs are case-sensitive, as is common with many Unix-based applications and daemons.
The ACL given forbids only Paris and Hilton, not paris and hilton.

7.

42.5.1. Exercises

1.

Install the Apache server using any method you prefer (e.g., RPM for Red Hat/Fedora systems,
apt or Synaptic for Debian-based systems). After you install Apache, review the location and
contents of the Apache configuration files. Look for httpd.conf or the equivalent, as well as
associated configuration files. Review the location of all log files, as well. If you wish, write
down the location of the configuration and log files on a separate piece of paper.

1.

Configure the Apache server so that it will serve up a basic page. You may have to enable
certain directives, such as the user and group Apache uses. It is also sometimes necessary to
specify the server root (e.g., where the server's configuration files exist) and the directory that
contains all of the sites. In some versions of Apache, all of this information is included in the
httpd.conf file. In newer versions (Apache 2), look for the sites-available directory. Once you
have confirmed that you have configured all the basic directives, start Apache and use either a
web browser or netcat (nc) to verify connectivity. You can use a startup script or the apachectl
or apache2ctl application, depending upon the version of Apache you are using.

2.

Find the location of the directives that allow the use of .htaccess files in Apache. Make sure that
the directives are not commented out. If you have to uncomment any of these directives,
restart Apache Server to ensure that it recognizes the use of .htacess files. Now, create an
.htaccess file that requires user-based authentication. Use the htpasswd or htpasswd2
commands to create a new user database. Configure Apache to recognize this database. Test
your work.

3.

Now, configure Apache to use SSL. If necessary, create SSL certificates using the openssl
command or the CA.pl application, which is usually available in the /usr/lib/ssl/misc directory.
The CA.pl application requires that Perl be installed. Once you have created the certificate,
configure Apache to recognize it. Then configure a directory to require SSL-based access. Using
any web browser that supports SSL, access the resource.

4.

Enable PHP and Perl support. Do this by editing the httpd.conf file or its equivalent and
uncommenting the appropriate directives. You will have to restart Apache after doing so.
Download some sample scripts from the Internet. For example, O'Reilly has a web site called
ONLamp.com (http://www.onlamp.com) where you can obtain scripts that you can run. Make
sure to put them into the cgi-bin directory and make them executable by the correct user.

5.

Web servers often have to throttle connections and bandwidth. Apache makes this quite
simple. Open the httpd.conf or its equivalent and look for the following settings:

StartServers

The number of servers to start by default. The default setting is often 2; set it to a
reasonable number for your system.

MaxClients

The maximum number of clients that will be served at one time. The default is often set
to 150. Set it to the number that your system can reasonably support.

MaxRequestsPerChild

Limits the number of requests a child process can respond to. Usually set to 25. Set it to
a reasonable number. The higher the number, the slower a particular process will be to
serve clients if the system becomes overtaxed.

6.

http://www.onlamp.com

MinSpareThreads

Determines the lowest number of threads that the server is allowed to have at one time.
Limits the number of servers that can be started.

Review the log files that the Apache server generates. These include the access log, the referrer
log, and the error logs. These are usually located off of the /var/log directory.

7.

Apache is not only a standard web server. It also sports a proxy server that is capable of
caching requests, thereby speeding up access. Configure the Apache server proxy feature and
then configure a web browser to use the proxy server. Review the Apache Server log files and
list the files, proxy cache directory to verify that the proxy server is working.

8.

Now install Squid. You can obtain Squid using your system's package manager or at
http://www.squid-cache.org. Once you have installed Squid, familiarize yourself with the
configuration files, including squid.conf. Review the settings in squid.conf, then start the
service. Review the Squid log files and /var/log messages to make sure Squid is running
properly. Configure a web browser as a Squid client and access the Internet. You can also
review the Squid cache directory to ensure that Squid is working.

9.

Once Squid is working, enable filtering. Create an ACL that limits usage by URL to a particular
text string. Also, enable user authentication. Review the access logs and other log files that
Squid generates to verify that your proxy server is running as expected.

10.

http://www.squid-cache.org

42.6. Network Client Management (Topic 2.210)

42.6.1. Review Questions

Consider the following entry in a configuration file:

host voip
 {
 hardware ethernet 00:13:10:22:57:f5;
 fixed-address 192.168.2.104;
 }

This code belongs in a configuration file of a particular service. Name the service, and explain
the practical result of this file.

1.

You wish to learn about the active leases on a DHCP server. What file will give you this
information?

2.

You have configured a portion of the nsswitch.conf to read as follows:

passwd: nisplus files
shadow: nisplus files
group: nisplus files

What will happen during the login process once these changes take effect?

3.

Consider the following entry in the /etc/nisswitch.conf file:

hosts: files nisplus dns

Which resource is consulted last when a host makes a name query?

4.

What file can you check to verify whether NIS clients are allowed to use your NIS server?5.

When editing the slapd.conf file, what must you remember about lines that begin with white
space at the beginning of a line?

6.

You have just made a change to the /etc/pam.d/login file. What do you need to do in order for
PAM to recognize the change?

7.

7.

42.6.2. Answers

This file belongs to the DHCP service (dhcpd). The host named voip will always receive the
address of 192.168.2.104 via the DHCP server when it boots.

1.

The dhcpd.leases file, which is often located in the /var/lib/dhcp directory, gives you the
information you need about leases on the system.

2.

Users who log in will be authenticated using NIS, rather than local files (e.g., /etc/passwd and
/etc/shadow).

3.

DNS is last.4.

The securenets file.5.

OpenLDAP considers the blank space the continuation of the previous line. If you do not know
this, you may experience considerable configuration problems.

6.

No additional step is needed. PAM will recognize the changes immediately.7.

42.6.3. Exercises

Configure a DHCP server. As you configure the server, create a valid range of IP addresses.
Also create a reserved address so that a client always receives the same IP address.
Experiment with DHCP reservations to see how they work.

1.

Now install the DHCP daemon and configure your system to be a DHCP client. You will have to
find the configuration files for your system. In Red Hat and Fedora systems, go to the
/etc/sysconfig/network-scripts directory and configure the appropriate file. For Debian-based
systems, configure the /etc/network/interfaces file to make the necessary changes. If your
system is already a DHCP client, configure it to use a static address. Configure it to use a
plausible IP address and subnet mask. Supply a default gateway, if applicable. As you work,
review the /var/log/messages file, as well as the dhcpd.leases file, to verify that your DHCP
server is working

2.

A DHCP server relay agent is necessary to forward DHCP requests and replies across subnets.
DHCP requests are broadcast based and thus must be forwarded across a router. If you have
configured a Linux router, install the DHCP relay agent. Then configure the appropriate settings
in the dhcrelay file. Once you have done this, you can then use the dhcrelay application to start
the agent.

3.

Install the NIS package for your system. Once you have installed the server, familiarize
yourself with the configuration files and associated applications. Pay special attention to the
ypserv.conf file, because you will use it to configure essential settings. Also, remember that the
portmapper daemon must also be running for NIS to work.

4.

NIS allows many configuration options related to authentication. Configure PAM (e.g., the
/etc/pam.conf file or the appropriate files in the /etc/pam.d directory) so that the /etc/passwd
and /etc/shadow files are used.

5.

Install the slapd LDAP server. Once you familiarize yourself with slapd, create a simple6.

7.

directory hierarchy. Verify that slapd is working correctly.
6.

Once you have your LDAP server running, add a group and a host to it. Configure the host as
an LDAP client. You can also add a user and experiment with adding a group.

7.

Change the password of a user in LDAP, and verify that the information has been updated to
the client. To reduce the possibility of confusion, verify that the LDAP client is properly
configured before you change the password. This way, you will be able to more easily tell what
has gone wrong in your configuration.

8.

Remember that Linux systems can work well with other operating systems and features. After
adding users and groups, experiment further with your LDAP server by importing items from
an LDIF file, if one is available.

9.

By default, all users must enter a password when using the su command to become root. If you
wish, you can change this default behavior so that any user in the wheel group can use su
without having to supply a password. To do this, edit the /etc/pam.d/su file as root. Search for
the following entry and uncomment it:

auth sufficient /lib/security/pam_wheel.so trust use_uid

10.

Now edit the /etc/group file so that a standard user account is a member of the wheel group.
Become that user, then issue the su command. You will become root without first issuing a
password.

11.

42.7. System Security (Topic 2.212)

42.7.1. Review Questions

Which file is considered first by TCP wrappers, hosts.allow or hosts.deny?1.

Why is it a good idea to store the Tripwire database on a read-only medium, such as a CD-ROM
disk?

2.

You have configured an internal network to use the 192.168.2.0/24 block of IP addresses. You
have also configured a Linux system with two NICs and have enabled IP address forwarding.
However, no users can access the Internet. You have decided not to use a proxy server. What
else can you do to allow Internet access through your Linux router?

3.

Consider the following line in the /etc/ssh/ssh_config file. What does it instruct sshd to do?

Protocol 2

4.

You have been asked to use the iptables command to configure a system to automatically drop
all connections from systems that attempt to access TCP ports 21 through 80 on your local
system. Your supervisor wants this rule to be the first rule processed. Write in the command
that will accomplish this.

5.

Why do many FTP servers contain their own copies of files such as ls, passwd, and chmod?6.

You wish to use public-key authentication for an SSH session with a remote user. What must
you first place into your ~/.ssh/authorized_keys or ~/.ssh/ authorized_keys2 file?

7.

42.7.2. Answers

The hosts.allow file is considered first. Then TCP wrappers reads the contents of the hosts.deny
file.

1.

Because storing the database on a read-only medium helps make you reasonably sure that the
database has not been changed.

2.

Use iptables to enable Network Address Translation (NAT) using the MASQUERADE target.3.

It instructs sshd to always use Version 2 of the SSH protocol, and never to use Version 1.4.

The command is:5.

iptables -I INPUT -p tcp --dport 20:80 -j REJECT

5.

Many FTP servers contain their own copies because many administrators choose to place FTP
server daemon files inside of a chroot jail for added security.

6.

The public key generated by the remote user.7.

42.7.3. Exercises

The SSH daemon is likely installed by default. If it is not, install it using your package manager
or from the source files located at http://www.openssh.org. Familiarize yourself with the
configuration files. Start sshd, then conduct a simple session. When you have done this,
configure sshd to accept only clients that can use SSH Version 2, as it is by far the more secure
protocol. Configure it also to forbid non-root logins, which is a way to keep the system secure
during maintenance

1.

Use SSH's port forwarding capabilities to protect an unencrypted protocol such as FTP,
standard HTTP, or standard email traffic. To do this, you will need two systems that support
SSH.

2.

Use tcpdump or Ethereal to sniff SSH default transactions. Note that, by default, all
transactions are encrypted. However, by default, you must still provide your username and
password. Even though authentication information is strongly encrypted by SSH in most cases,
it is not a good idea to allow authentication information to exist on a network connection. Use
the ssh-keygen command to generate a key pair for your user account. Configure the
necessary identification files in your ~/.ssh directory, and exchange public keys with a remote
user. Then experiment with conducting key-based authentication, as opposed to password-
based authentication

3.

Use the iptables command (or the ipchains command in older systems) to create and list rules.
Consider enabling the following settings:

Block all traffic destined for local port 23 (Telnet).

Block all traffic destined for a remote system that you deem objectionable.

Log all traffic to port 80 to the /var/log/messages file.

4.

Now that you understand iptables, find a system with two NICs and enable both IP forwarding
and masquerading. (iptables uses the term masquerading rather than Network Address
Translation or NAT). To do this, simply use the nat table and enable masquerading for your
public interface.

5.

The networking system in Linux systems is capable of thwarting various types of attacks. You
have already seen how you can use the /proc/sys/net/ipv4/icmp_echo_ignore_all file or the
/etc/sysctl.conf file to protect a system against ICMP packets. You can also protect your system
against SYN floods by changing the value of 0 to 1 in the /proc/sys/net/ipv4/tcp_syncookies
file. You can also configure the /etc/sysctl.conf file to do this automatically. Experiment with
these changes.

6.

Install and configure an FTP daemon. Once it is working well, experiment with the ftpaccess7.

http://www.openssh.org

file. Limit bandwidth and the number of connections. Also, experiment with creating settings
for both anonymous users and those that supply actual usernames and passwords. Consider
how using anonymous FTP is more secure than using standard FTP, which encrypts neither the
initial authentication session nor the ensuing data transfer.

7.

Download and install the Snort intrusion detection application, which is available via the Snort
home page (http://www.snort.org) or via your operating system's package management
application. Configure the snort.conf file to reflect your network. You are also given a choice of
several preprocessors. Some of these preprocessors will help detect port scans. Others help
detect suspicious network traffic.

8.

Experiment with the preprocessors. Some will create false positives, in which legitimate traffic
is mistaken for an attack. You will also find that actual attacks may be ignored, which in some
cases can be seen as a false negative. Also, Snort ships with many signatures, which can help
you identify and react to attacks. Your chances of receiving false positives increases with each
signature you enable. It is up to you to determine the sensitivity level of your intrusion
detection system.

9.

Remember that Snort will not detect traffic on a switch-based network. You can configure your
switch to go into monitor mode.

10.

Download and install the open source version of Tripwire from the following URL:
http://sourceforge.net/projects/tripwire. Once you have downloaded the package, install it,
then configure Tripwire to protect only the most important sources. While it is best to install
Tripwire on a brand-new system that has never been connected to a network, it is important to
get practical experience configuring Tripwire and running reports before you take the LPI
Exam.

11.

Experiment with the /etc/hosts.allow and /etc/hosts.deny files. As root, edit the
/etc/hosts.allow file and enter the following:

ALL: .testsystem.yourdnsdomain.com EXCEPT testsystem.yourdnsdomain.com

Then edit the /etc/hosts.deny file to contain the following entry:

ALL: ALL

The result of this use of /etc/hosts.allow and /etc/hosts.deny is that all systems from your
network will be able to connect to daemons controlled by TCP wrappers, except for the host
named testsystem.yourdnsdomain.com.

Remember that /etc/hosts.deny is considered after /etc/hosts.allow. So this configuration helps
lock down all applications controlled by TCP wrappers. Some applications, such as Sendmail
and Apache, may not use TCP wrappers. So don't let that confuse you.

12.

http://www.snort.org
http://sourceforge.net/projects/tripwire

42.8. Network Troubleshooting (Topic 2.214)

42.8.1. Review Questions

What is the purpose of the search keyword in the /etc/resolv.conf file?1.

You know that your DNS server is accepting requests. However, several hosts are consistently
trying to connect to the wrong email server. Clearly, these hosts are mapping the hostname to
the wrong IP address. You have checked the /etc/resolv.conf files on each of these hosts, and
they list your DNS server and domain. What is the most likely cause of this problem?

2.

What is the most likely location of the file that configures network interfaces in a Debian-based
system?

3.

What command will best help you learn what has occurred during the boot process?4.

You are currently logged in to a Linux system that has three interfaces. You wish to send a
large number of ping packets in a short amount of time out of the third interface to a system
named jacob. What command would you issue?

5.

A DNS server is currently responding to requests very slowly. As a result, your query using the
host command times out before the DNS server can respond. What option to the host command
can you specify to make your system wait indefinitely for the DNS server to respond?

6.

42.8.2. Answers

The search keyword has the resolver search the specified domain rather than the default
domain. Sometimes this keyword is necessary because the host thinks that there is no default
domain.

1.

The /etc/hosts file probably contains incorrect IP address information for the email server. The
/etc/hosts file overrides DNS and NIS lookups on most systems by default.

2.

The file is /etc/network/interfaces.3.

The dmesg command.4.

Enter:

ping -f -i eth2 jacob

5.

Use the -w option.6.

6.

42.8.3. Exercises

Review the format for either the /etc/network/interfaces or the /etc/sysconfig/network-
scripts/ifcfg-eth0 file. If you are using a different network interface from eth0, substitute the
correct number for ifcfg-eth0. Learn the meaning of each line.

1.

Study the /etc/hosts file. Read the manpage for it. Notice that this file can contain IPv4 and
IPv6 instructions. Create an entry in your /etc/hosts file that conflicts with your DNS server
information. If your system uses a default configuration, the entry you just placed into the
/etc/hosts file will take precedence. Review the /etc/nsswitch.conf file and confirm which
resource gets precedence. Also review the /etc/host.conf file and verify the resolution order.

2.

Use the cat command to view the /etc/hostname file. If this file is empty or has a different
hostname from what you expected, edit the file as root and correct the information.

3.

Issue the following command as a normal user:

netstat -ni

Notice that this command provides information about the interface, including the Maximum
Transmission Unit (MTU), sending and receiving information, error information, and routing
metrics. The output also gives several flags. These flags are listed in Table 42-1.

Table 42-1. Flags in netstat output

Flag Meaning

B Shows that the interface can send and receive broadcasts

R Shows that the interface is recognized by the system

U Shows that the interface is active

L Indicates a loopback interface

M Shows that the interface is capable of multicasting

4.

Review your interface to determine its statistics.5.

Using the ifconfig command, experiment with the MTU for your system. The highest MTU for an
Ethernet network is 1500. This is most often the MTU that you will see for your network
adapters. Sometimes, however, you will need to change the MTU, due to network problems or
nonstandard equipment.

6.

For the sake of practice, change the MTU to 1300 using the following command as an example:

ifconfig eth0 192.168.2.5 netmask 255.255.255.0 mtu 1300

7.

8.

You should, of course, substitute your own interface, IP address, and subnet mask. Notice that
the mtu option allows you to specify any value you wish. Use the ifconfig command to verify
that the MTU has changed. Return your system back to its standard MTU. While changing the
MTU of a host is not very common, it is important to know all of the options of the ifconfig
command.

8.

Chapter 43. Exam 202 Practice Test
As with the LPI 201 exam, the 202 exam is comprised of roughly 54 questions. You have 90 minutes
to answer these questions correctly. This exam has the same format as the 201: Most of the exam
questions are multiple choice, with one correct answer. The secondmost common item type is
multiple choice, multiple answer. The remaining questions require you to fill in the blank. No notes
are allowed, and you are monitored in a secure, high-stakes exam environment. For more
information about the LPI 202 exam and all of LPI's exam policies, go to http://www.lpi.org.

This chapter gives you some questions designed to help you learn about the LPI 202 Objectives.
These questions should help you prepare for the questions in the actual exam. Once you become
familiar with these questions, work on a live system to truly learn the concepts and practices
discussed here. While the questions are certainly useful, you will find that applying your knowledge
is the best way to prepare for the LPI 202 exam.

http://www.lpi.org

43.1. Questions

What is the standard MTU for Ethernet interfaces?

1500a.

1300b.

500c.

300d.

1.

Which of the following files would you edit to rewrite the headers of outgoing email messages
so that the messages appear to originate from a completely different domain?

virtusertablea.

genericstableb.

aliasesc.

sendmail.cfd.

2.

What two programs can be destructive if run against a mounted volume?

badblocks and lsofa.

fsck and lsofb.

mkraid and badblocksc.

fsck and badblocksd.

3.

You wish to mount a Samba share named docs on a system named filesrv.company.com. The
username to access the share is davis and the password is access1. Which of the following
commands will allow you to do this? (Choose two.)

smbmount //filesrv.company.com/docs /mnt/smb \ -o
username=davis,password=access1

a.

smbclient -U davis%access1 //filesrv.company.com/docsb.

smbclient //filesrv.company.com/docs -U davis%access1c.

d.

4.

5.

b.

c.

smbmount /mnt/smb //filesrv.company.com/docs \ -o
username=davis,password=access1

d.

You have a directory named /mnt/nfs on your system that you use for NFS mounts. Write in
the command that mounts an NFS volume named /home/james located on a system named
bentley.

5.

You suspect that several routers on a particular WAN connection are too slow. Which of the
following commands allows you to make traceroute wait 20 seconds for a response to a packet?

traceroute -w 20 router23.company.coma.

traceroute -c 20 router23.company.comb.

traceroute -i 20 router23.company.comc.

traceroute -t 20 router23.company.comd.

6.

Your DNS server is named dns.company.com. Which of the following commands allows you to
query another server named dns.isp.com for the A record information of the host
www.company.com? (Choose two.)

dig -t A www.company.com @dns.isp.coma.

host www.company.com dns.isp.comb.

dig @dns.isp.com www.company.comc.

host dns.isp.com www.company.comd.

7.

You wish to add a second IP address to your third Ethernet card. Which of the following
commands does this?

ifconfig eth3:2 202.168.85.3 netmask 255.255.255.0a.

ifconfig eth0:3 202.168.85.3 netmask 255.255.255.0b.

ifconfig eth1 -a 2 202.168.85.3 netmask 255.255.255.0c.

ifconfig eth2:1 202.168.85.3 netmask 255.255.255.0d.

8.

The route command hangs when used without any arguments. This systexgm is on a Gigabit
Ethernet network. Which of the following explanations are plausible? (Choose two.)

The route command requires the -g argument when querying a Gigabit Ethernet network.a.

Name resolution has failed on the network.b.

A kernel panic has caused the NIC to be kicked off the network.c.

The default gateway is no longer available.d.

9.

10.

c.

d.

Which of the following commands helps you begin the process of testing an SMTP server named
smtp.newcompany.com to see whether it is an open relay?

telnet smtp.newcompany.coma.

nc telnet smtp.newcompany.comb.

telnet smtp.newcompany.com 25c.

ssh smtp.newcompany.com 25d.

10.

You have been asked to run a manual integrity scan on a system using Tripwire. Which of the
following commands would accomplish this?

tripwire --verifya.

tripwire -s /dev/hdab.

tripwire --checkc.

scan -now /dev/hdad.

11.

Which of the following organizations issue reports concerning the latest verified vulnerabilities
and attacks? (Choose two.)

ISOa.

CERTb.

Bugtraqc.

IDSd.

12.

Which of the following should be run each time you log out from a Kerberos session?

kdestroya.

klogoutb.

kinit -l user, where user is the username of the person logging outc.

kadmin logout user, where user is the username of the person logging out.d.

13.

What two services are vital to the proper functioning of a Kerberos implementation?

A fully functioning Network Time Protocol (NTP) servera.

A fully functioning LDAP serverb.

A fully functioning Domain Name System (DNS) serverc.

d.

14.

15.

b.

c.

A fully functioning Samba serverd.

Which of the following commands creates a Kerberos database that you can then populate with
principals?

kdb5_util initialize -sa.

kdb5_util create -sb.

kdb5_create initialize -sc.

kdb5_create -sd.

15.

You wish to conduct a ping scan of systems on your network. Which of the following commands
does this?

nmap -ping 192.168.2.1-254a.

nmap -P 192.168.2.1-254b.

nmap -sP 192.168.2.2-254c.

nmap -Ps 192.168.2.1-254d.

16.

What term describes a situation in which an intrusion detection system (IDS) identifies
legitimate traffic as an attack?

An event anomalya.

An event horizonb.

A false signaturec.

A false positived.

17.

What is the result of the following entry in the hosts.deny file of your Linux system?

ALL: .company.com: DENY

No incoming or outgoing connections will be possible to the company.com domain.a.

Users on the Linux system will not be able to access resources on the
company.comdomain.

b.

All hosts from the company.com domain will be prohibited from using all services on the
Linux system.

c.

All hosts from the company.com domain will be prohibited from using services protected
by TCP wrappers.

d.

18.

19.

d.

Consider the following entry in hosts.deny:

ALL:ALL

Imagine also the following entry in hosts.allow:

ALL: .mycompany.com

What is the result of this combination?

All attempted connections to resources protected by TCP wrappers will fail, because the
hosts.deny file takes precedence.

a.

Only members of the mycompany.com domain will be able to connect to resources
protected by TCP wrappers.

b.

Because the entries coxgnflict, all people will be allowed to access all resources on the
server.

c.

TCP wrappers will fail due to the conflict, and no one will be allowed to access the
protected resources.

d.

19.

What does the ~/.ssh/authorized_keys file contain?

The private keys of users who wish to access your systema.

The host keys of SSH servers that have connected to your systemb.

The public keys of users who wish to access your systemc.

The certificate of each SSH server that has connected to your systemd.

20.

You wish to use an SSH client to connect to a remote system with public key authentication.
What command would you issue to create a key pair that uses Version 2 of the RSA algorithm?

ssh-keygen -a rsaa.

ssh-keygen -rsab.

ssh-keygen -s rsac.

ssh-keygen -t rsad.

21.

What file would you edit to change the facility or priority that SSH uses to log events?

a.

b.

22.

/etc/ssh/sshd_configa.

/var/ssh/ssh.configb.

~/.ssh/ssh.configc.

/usr/lib/sshd/ssh_configd.

22.

What entry in the SSH configuration file would you add to temporarily disable non-root logins
to an SSH server during maintenance?

Users_Denya.

DisableUsersb.

DenyUsersc.

Users:Denyd.

23.

You have enabled X11 forwarding in the SSH configuration file. You wish to tunnel X11 traffic
inside of SSH to access a system named blake.romantics.org. Which of the following commands
allows you to tunnel X11 sessions to a remote system so that they are encrypted?

ssh -t blake.romantics.orga.

ssh -x 1.blake.romantics.orgb.

ssh -r blake.romantics.orgc.

ssh -f blake.romantics.orgd.

24.

What command would you issue to remove an identity from ssh-agent?

ssh-removea.

ssh-add -rb.

ssh-delc.

ssh-add -dd.

25.

You wish to authenticate via public keys with a remote user. You and the remote user have just
created key pairs. What must you do next?

Exchange private keys and place the remote user's private key into the ~/.ssh/identity
file.

a.

Each user must use the ssh-add and ssh-agent applications to place each other's public
key into memory.

b.

Exchange public keys and then place the remote user's public key into the ~/.ssh/identity
file.

c.

d.

26.

c.

Each user must use the ssh-add and ssh-agent applications to place each other's private
key into memory.

d.

Each time you authenticate using public keys in SSH, you are asked for the password of your
private key. What can you do to keep your private key secure but avoid having to constantly
enter the password each time you use SSH?

Use the ssh-keygen -P command to store the password in a restricted text file.a.

Use ssh-agent and ssh-add commands to store the private key in memory.b.

Use ssh-askpass and ssh-keyscan to store the private key password in memory.c.

Use the ssh-copy-id command to store the private key in memory.d.

27.

You are configuring a server that allows anonymous FTP access. Write in the entry that would
go in the ftpaccess file that forbids anonymous users from uploading files.

28.

You wish to forbid the root account from logging in to your FTP server. What steps would you
take?

Edit the ftpusers file and add the root account name.a.

Edit the ftpaccess file and add the root account name.b.

Edit the ftpgroups file and add the root account name.c.

Edit the /etc/passwd file and place an asterisk in front of the ftp account.d.

29.

What are the names of the classes of users recognized by the WU-FTPD daemon?

anonymous, limited, and standarda.

privileged, anonymous, and realb.

restricted, privileged, and standardc.

real, anonymous, and guestd.

30.

You've decided to create a chroot environment for your FTP server. Accordingly, you copied the
ls, rm, cp, and gzip commands to the /chroot/ftp/bin directory that you created. You have
verified that they are executable. After starting the FTP server, you notice that you cannot use
these commands during the FTP session. Which of the following steps will most likely get these
commands to work?

Make all of the applications SUID root.a.

List all files you wish to have executable permissions in the ftpaccess file, then make sure
that each file is placed into the /chroot/ftp/bin directory.

b.

Use the ldd command to discover the libraries the applications require, and copy thec.

d.

31.

b.

libraries to the /chroot/ftp/bin directory.
c.

Create a bash script that precedes each of the commands you wish to make executable,
and place the script in the /chroot/ftp/bin directory.

d.

You wish to enable Network Address Translation (NAT) on a Linux system. What table in
iptables would you specify to masquerade a connection?

32.

What command do you have to execute to make sure changes to the /etc/syctl.conf file are
recognized?

sysctl, without any argumentsa.

sysctl -c /etc/sysctl.confb.

sysctl /etc/sysctl.confc.

sysctl -p /etc/sysctl.confd.

33.

Which of the following commands can help a Linux system withstand a SYN flood?

echo 1 > /proc/sys/net/ipv4/tcp_abort_on_overflowa.

echo 1 > /proc/sys/net/ipv4/tcp_nosynb.

echo 1 > /proc/sys/net/ipv4/tcp_syncookiesc.

echo 1 > /proc/sys/net/ipv4/tcp_noresd.

34.

How can you enable IP forwarding in a Linux system? (Choose two.)

Issue echo 1 > /proc/sys/net/ipv4/ip_forward.a.

Edit the /etc/network/options file and enter the following line:

ip_forward=yes

b.

Issue echo 1 > /proc/sys/net/ipv4/ip_enable_fw.c.

Edit the /etc/sysctl file and enter the following line:

ip_forward=yes

d.

35.

Users have called complaining that they can no longer access resources necessary to do their
jobs. You have determined that entries automatically added to the /etc/hosts.deny file by an
application are responsible. You have removed these entries manually. Which of the following
applications is capable of updating the /etc/hosts.deny file?

a.

36.

TCP wrappersa.

iptablesb.

ipchainsc.

Portsentryd.

Which of the following commands would you use to update an LDIF file?

moddifa.

ldapaddb.

ldifmodc.

slapdd.

37.

You are adding individuals to an LDIF file. What does ou= indicate?

The online utilization value for the LDIF filea.

The object URL of the user in the LDAP schemeb.

The organizational unit the user belongs toc.

The owner UML, which describes users as computer-based objectsd.

38.

Which of the following applications is responsible for maintaining binding information for an
NIS server?

yppolla.

yppushb.

ypbindc.

ypmatchd.

39.

You are having problems with your NIS server and suspect a problem with the portmapper.
You can see that the portmapper daemon has a process ID, but you are not sure that the
daemon is working properly. Which of the following applications can help you determine more
information about how the portmapper daemon is functioning?

rpcinfoa.

pmreportb.

yppollc.

d.

40.

41.

b.

c.

netgroupd.

You wish to have your DHCP server provide a default gateway and DNS server to each client.
The IP address of the default gateway is 192.168.2.1. The IP address of the DNS server is
10.45.45.3. Write in the option entries you would make in a subnet section of your DHCP
configuration file.

41.

Which of the following do you specify when configuring a dhcrelay? (Choose two.)

The IP address of the DHCP servera.

The MAC address of the DHCP serverb.

The interfaces that dhcrelay will listen onc.

The MAC addresses of all local network interface cardsd.

42.

Which of the following applications help a news server avoid filling up a hard disk and
overtaxing the CPU?

control.ctla.

sysctlb.

expire.ctlc.

innwatchd.

43.

Davis (username davis) wishes to create a new newsgroup named scuba. The password for the
newsgroup is regulator1. Write in the command that he would issue to create the group.

44.

What three parts is a Procmail recipe comprised of?

Beginning, condition, actiona.

Header, instructions, conditionb.

Stipulation, condition, actionc.

Header, descriptor, optionsd.

45.

What is the name of the file used to store a user's private key?

/etc/ssh/users/identitya.

~/.ssh/authorized_keysb.

~/.ssh/identityc.

~/.ssh/.shostsd.

46.

What command would you issue to enter interactive mode in Sendmail and test changes you47.

d.

have made to the virtusertable and genericstable files?

procmail -ta.

sendmail -btb.

sendmail -rvc.

mail -s testd.

47.

Which of the following steps allows you to deny Sendmail access to users from the haxors1.com
DNS domain?

Enter the following in the sendmail.cf file: TDISCARD haxors1.com.a.

Enter the following into the /etc/mail/access file: haxors1.comDISCARD.b.

Enter the following into the /etc/mail/generic file: FROM: haxors1.com REJECT.c.

Enter the following into the /etc/mail/virtusertable file: haxors1.com REJECT.d.

48.

Which of the following commands captures all traffic except SSH packets between the hosts
named lewis and clark?

tcpdump host lewis and clark and not -p ssha.

tcpdump host lewis and clark and not '(port ssh)'b.

tcpdump host lewis and clark and not -p 22c.

tcpdump host lewis and clark not '(ssh)'d.

49.

You are editing the main Apache configuration file. You wish to control how many servers are
started at one time. Which of the following values would you change?

StartServersa.

MaxRequestsb.

MaxServersc.

StartProcessd.

50.

You are using .htaccess files to enable password protection for a web site directory. You are
confident that the .htaccess file you are using is valid. However, the file does not seem to be
recognized by the server. Which of the following changes will most likely enable the use of
.htaccess files?

Change the Override None directive to Override All.a.

b.

c.

51.

a.

Change the HtAccess None directive to HtAccessAll.b.

Change the AllowOverride AuthConfig directive to AllowOverride HtAccess.c.

Change the AllowOverride None directive to AllowOverride AuthConfig.d.

You have been asked to increase the size of the cache directory for Squid from 1 GB to 3 GB.
Which of the following would be the correct entry in squid.conf?

cache_dir /usr/local/squid/cache/ 3000000 160 800a.

cache_dir /usr/local/squid/cache/ 160 800 3GBb.

cache_dir /usr/local/squid/cache/ 3000 160 800c.

cache_dir /usr/local/squid/cache/ 3GB 160 800d.

52.

Why is a DHCP server relay agent necessary in a routed network?

All routers are configured to drop UDP port 1964, which is used by DHCP.a.

DHCP servers rely on broadcasts to configure clients on the network.b.

DHCP clients have not yet configured their default gateways.c.

All routers are configured to drop TCP port 1964, which is used by DHCP.d.

53.

While reviewing a slapd.conf file, you notice the following entry:

database ldbm

What is the meaning of this entry?

It identifies the database manager that slapd consults when authenticating users.a.

It specifies the type of encryption used during LDAP sessions.b.

It provides the community name (cn) for the LDAP database.c.

It gives the organizational unit (ou) name for the LDAP database.d.

54.

What entries would you make in the /etc/hosts.allow and /etc/hosts.deny files so that TCP
wrappers automatically denies all services except FTP?

Put ALL:ALL in /etc/hosts.allow, and put ALL:ALL, EXCEPT FTP in /etc/hosts.deny.a.

Put ALL:ALL in /etc/hosts.deny, and put in.ftpd: ALL:ALLOW in /etc/hosts.allow.b.

Put ALL:ALL EXCEPT FTP in /etc/hosts.allow, and put nothing in /etc/hosts.deny.c.

d.

55.

b.

c.

Put nothing in /etc/hosts.allow, and put ALL: EXCEPT svc: in.ftpd in /etc/hosts.deny.d.

43.2. Answers

a. Ethernet networks have a maximum MTU of 1500. It is possible that you would want to
adjust the MTU if conditions warranted. However, you will find that your Ethernet NIC's MTU
will usually be 1500.

1.

b. In Sendmail, the genericstable file is responsible for rewriting headers of outgoing
messages.

2.

d. Both the fsck and badblocks commands can be destructive if run against a mounted
partition. You should unmount the drive before using either one. You may need to go into
single mode to do so.

3.

a and c. You can use smbmount and smbclient. To draw an analogy, smbclient is something
like a command-line FTP client. You can use smbclient to access a Samba share and navigate it
just as you would an FTP session. The smbmount command, on the other hand, is more like the
standard mount command. You must specify a mount point, unlike smbclient.

4.

mount -t nfs bentley:/home/james/mnt/nfs5.

a. The -w option in traceroute allows you to specify the wait period.traceroute will wait five
seconds by default, then move on to the next hop.

6.

b and c. You can use the dig command with the @ option to specify a different DNS server.
With the host command, the second hostname given in the command specifies the name
server.

7.

d. When using the ifconfig command to specify a second IP address for a NIC, simply use a
colon with no space after the interface:

ifconfig eth2:1 202.168.85.3 netmask 255.255.255.0

8.

b and d. Two reasons exist for a route command to hang: DNS service has failed, or the default
gateway is down. Use the -n option to the route command to bypass name resolution issues.

9.

c. The telnet command is very handy when it comes to troubleshooting servers. All you have to
do is specify a port number after the hostname, and the telnet command will use that instead
of the default Telnet port (TCP 23). Once telnet connects to the desired port, you may see
messages and commands from the server. Even though you likely will not be able to control
the server or view data as you would with the proper client, you will still be able to see the
operations of the service in a helpful way.

10.

c. The way to conduct a manual scan of the files and drives that Tripwire is configured to
protect is by specifying the --check option to the tripwire command.

11.

b and c. CERT (http://www.cert.org) and Bugtraq (http://www.securityfocus.com/archive/1)
are dedicated to discussing vulnerabilities, attacks, and system bugs. Although attackers
usually know about the bugs and exploits before CERT and Bugtraq report them, it is

12.

13.

http://www.cert.org
http://www.securityfocus.com/archive/1

nevertheless useful for you to receive warnings about the latest security-related issues.

12.

a. The kdestroy command purges the system of any credentials that could be used illicitly. It is
a good idea to place this command in the logout script for your shell.

13.

a and c. If you do not have an NTP server and a properly configured DNS server, your Kerberos
implementation will likely fail, no matter how well you have defined your Kerberos database
and principals. NTP and DNS are foundational for Kerberos because Kerberos relies heavily on
both time-based calculations and hostname services.

14.

b. The kdb5_util command has many functions. In particular, the create -s option allows you to
create the database that will eventually hold the principals.

15.

c. If you want to conduct a ping scan, use the -sP option, then specify a range using a hyphen.16.

d. The term false positive describes instances when intrusion detection or antivirus applications
mistakenly label legitimate activity as an attack. While careful configuration helps to avoid
most false positives, it is very difficult to avoid all instances.

17.

d. Even if you were to block off all services using /etc/hosts.deny, various services still might
be accessible because they simply do not consult these files.

18.

b. It is possible to use both the /etc/hosts.allow and /etc/hosts.deny files to improve security.
The /etc/hosts.allow file is consulted first. The /etc/hosts.deny file does not negate statements
in the /etc/hosts.allow file. Thus, it is often encouraged to explicitly allow services, hosts, and
networks in /etc/hosts.allow, then block off all other services in /etc/hosts.deny. It is also
important to understand that not all services use TCP wrappers.

19.

c. The ~/.ssh/authorized_keys file (or the ~/.ssh/authorized_keys2 file, for newer versions of
SSH) contains the public keys of users that you wish to allow into your system without
providing a standard password.

20.

d. The ssh-keygen -t rsa command allows you to begin the process of creating a new key pair.
This key pair will be stored in the ~/.ssh directory by default. The files generated will be clearly
marked (e.g., id_rsa and id_rsa.pub). You can also specify ssh-keygen -t dsa if you wish to use
DSA keys instead of RSA keys. The filenames generated will be slightly different to reflect your
use of DSA.

21.

a. The /etc/ssh/sshd_config file allows you to configure most aspects of SSH, including its
logging. Using this file, you can also disable non-root access, restrict support to SSH Version 2,
and enable X11 port forwarding.

22.

c. If you wish to disable non-root access for an SSH server, use the DenyUsers directive in the
/etc/ssh/sshd_config file.

23.

b. The -x option to ssh allows you to tunnel X11 through SSH, thereby encrypting all
transmissions. You must first enable X11 tunneling by editing the /etc/ssh/sshd_config file.

24.

d. To remove an identity from ssh-agent, use the ssh-agent -d command. If you are using ssh-
agent and ssh-add, it is wise to place ssh-agent -d in your shell's logout file.

25.

c. You must first exchange public keys. The public keys of users you wish to allow without
providing a standard password are stored in the ~/.ssh/authorized_keys or
~/.ssh/authorized_keys2 files.

26.

b. The ssh-agent and ssh-add commands store private keys in memory. You first run ssh-
agent, specifying a shell (e.g., ssh-agent /bin/bash). This shell runs until you exit it. After the
shell is active, you then run ssh-add from within this shell to add the private key to ssh-agent.

27.

You will then never be asked for the private key's password until you exit the shell started
under ssh-agent.

27.

The command is:

upload /home/ftp * no

This directive goes in the ftpaccess file and ensures that anonymous users cannot upload files.

28.

a. Any account listed in the ftpusers file will be prohibited from logging in to the FTP server.29.

d. The three classes of users that are allowed to log in to an FTP server are real, anonymous,
and guest.

30.

c. It is not enough to simply copy the executables into the correct directories when creating a
chroot environment for any service. You must also copy the appropriate libraries and ensure
that permissions are correct.

31.

The nat table. When you wish to use iptables to masquerade connections (i.e., do Network
Address Translation), you do not use the three default tables listed by the iptables -L command
(e.g., INPUT, FORWARD, and ACCEPT). You use the somewhat hidden nat table, which you must
specify using the -t option:

 iptables -t nat -L

32.

d. Whenever you make any changes to the /etc/sysctl.conf file, you must use the sysctl -p
/etc/sysctl.conf command to make sure the system recognizes the changes.

33.

c. Changing the value of the /proc/sys/net/ipv4/tcp_syncookies file to 1 helps make the Linux
system more capable of handing SYN floods. You can do this by using the echo command or by
editing the /etc/sysctl.conf file and then running the following command:

sysctl -p /etc/sysctl.conf

34.

a and b. As usual, there is more than one way to do it in Linux. You can use the echo command
(echo 1 > /proc/sys/net/ipv4/ip_forward), or you can edit the /etc/network/options file and
enter the line ip_forward=yes. Both have the same effect. The first option is the most nearly
universal, which you should keep in mind. The LPI Exam is vendor-neutral.

35.

d. Portsentry has many capabilities, including the ability to write to the /etc/hosts.deny file, if
that feature is something you find useful.

36.

b. The ldapadd command allows you to update an LDIF file and have your LDAP server
recognize the changes.

37.

c. The ou= field in an LDAP LDIF file indicates the organizational unit. The ou designation is
essential, as it helps identify legitimate users.

38.

c. The ypbind command allows you to maintain binding information for an NIS server.39.

40.

39.

a. The rpcinfo command provides information about RPC calls made to the local system, and is
ideal for determining the status of the portmapper daemon. The portmapper daemon is an
essential element of NIS.

40.

When defining a default gateway and a DNS server in a subnet section of the dhcp.conf file,
you simply use the option keyword followed by the required network element (e.g., routers or
domain-name-servers) and then the appropriate IP address:

option routers 192.168.2.1;
option domain-name-servers 1.10.45.45.3;

41.

a and c. When configuring a DHCP relay, you need to tell it which interface to listen on. It is
also important to give the address of the DHCP server on the subnet, to help the relay work
faster.

42.

d Using innwatch helps you monitor your INN server. It runs in the background periodically
searching for problem conditions, including full hard drives and overburdened processors.

43.

The command is:

 ctlinnd newgroup scuba y davis

The final argument is davis because davis is the user creating the newsgroup.

44.

a. The three parts of a recipe are the beginning (where flags are stored), the conditions, and
the action. A recipe first identifies the conditions, then specifies an action.

45.

c. The ~/.ssh/identity file (or the id_rsa file in some Linux systems) contains the identity SSH
requires the user to define before public-key authentication will work for her account.

46.

b. Although you could also send email messages, the quickest way to verify settings on
Sendmail is to issue the sendmail -bt command and begin an interactive test shell. Once in this
shell, you can send test messages and conduct queries to verify that your settings have been
recognized and are having the intended effect.

47.

b. Modifying the /etc/mail/access file is the only way listed that will allow you to control access
from a domain.

48.

b. The single quotes around the (port ssh) statement are necessary to escape the parenthese
from the shell. It is important to understand the sometimes arcane tcpdump options for the
exam. Consider this question just the beginning.

49.

a. The StartServers directive allows you to control how many servers Apace Server starts.
Familiarize yourself with other directives concerning processes and threads before you take the
exam.

50.

d. If you want to use .htaccess files, you would change the AllowOverride directive to use
AuthConfig, rather than None.

51.

c. Specify 3000 in the cache_dir statement. Squid specifies this value in megabytes, and 3000
megabytes is 3 gigabytes. The remaining two numbers refer to the number of directories that

52.

53.

will be generated to store the proxy cache files.

52.

b. DHCP servers require broadcasts, and routers are to isolate broadcasts to a single network.
So if you wish to forward DHCP broadcasts to other networks, you have to use a DHCP relay
agent.

53.

a. When you configure an LDAP server, you have to tell slapd what type of database to use.
ldbm, which stands for LDAP Database Manager, is traditional.

54.

b. It is often advisable to configure your system to block all services except those you want to
explicitly allow. Using the /etc/hosts.allow and /etc/hosts.deny files in the way described here
gives you this policy for all services that recognize TCP wrappers.

55.

About the Authors

Steven Pritchard maintains the Linux Hardware Compatibility HOWTO documentation, writes about
hardware for Linux Journal, and provides custom workstation and server consulting and other
services. He lives in Fairview Heights, Illinois.

Bruno Gomes Pessanha has been a collaborating translator for the Linux Professional Institute
since 2002. He also works as a consulting analyst for a Brazilian government petroleum enterprise,
covering Linux migration and initiatives and administering high-end performance projects, high
availability clusters, and mission critical services. He lives in Rio de Janeiro, Brazil.

Nicolai Langfeldt is a programmer, system administrator, and systems integrator who lives in
Oslo, Norway. A Linux consultant since 1994, Nicolai works for Linpro (a well-established Norwegian
Linux consulting firm) and is the cofounder of Linux Norge (http://www.linux.no), an information
portal for Linux. He has written several well-regarded HOWTOs for the Linux Documentation project
and is author of The Concise Guide to DNS and BIND (Que).

James Stanger has been involved with Linux since 1995, and has worked closely with the Linux
Professional Institute (LPI) since its inception in 1999. He is Chair of the LPI Advisory Council, where
he helps the LPI coordinate input from corporations and the open source community. James has a
unique understanding of LPI's certification exams, as he is an expert in both the certification
industry and in Gnu/Linux, networking, and security.

Jeff Dean is a freelance author and consultant in Philadelphia, Pennsylvania. Jeff has professional
experience in IT management, training delivery, and system administration of the VMS, Unix,
AS/400, and Windows NT operating systems. He holds an undergraduate degree in electrical
engineering from the University of Pittsburgh and a Master of Engineering with emphasis in
computer design from Penn State. He is a Red Hat Certified Engineer (RHCE) and LPI Certified.

http://www.linux.no

Colophon

The animal on the cover of Linux LPI Certification in a Nutshell is a bull. Christopher Columbus
originally brought cattle to the New World from Spain. Descendants of these animals mated with
English cows, and the offspring gradually evolved into the breed we know today.

The cover image is an original illustration created by Lorrie LeJeune. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

& (ampersand)

 && (Boolean and)

 background commands 2nd

< > (angle brackets)

 < (input redirection) operator

 > (right angle bracket)

 > redirection operator

 >> redirection operator

 bash shell, interactive function entry

 \< and \>, matching word boundaries

* (asterisk)

 .info message selector, syslog.conf

' (backquotes)

 command quoting in bash

 command substitution

\ (backslash)

 escaping regular expression metacharacters

 escaping shell metacharacters

^ (caret), beginning of line matching in regular expressions 2nd

{ } (curly braces), enclosing function body

- (dash), leading dash (nice command)

$ (dollar sign)

 $# variable

 $() notation, command quoting

 $? variable

 end of a line, matching in regular expressions

 in variable names 2nd

 user prompt

! (exclamation mark), Boolean not operator

(hash mark)

 #! (she-bang line) 2nd 3rd

 in comments

 /etc/modules.conf file

 /etc/printcap file

 root shell prompt

. (period)

 at job input and

 regular expressions, matching any single character

| (pipe character)

 regular expression modifier

 || (Boolean or)

+ (plus sign), regular expression modifier 2nd

? (question mark)

" (quotes, double)

 in regular expressions

 in shell scripts

' (quotes, single)

 aliased commands

 in regular expressions

/ (root) filesystem 2nd 3rd 4th 5th 6th 7th

 /usr directory

 /var directory

 directories

 mount points and 2nd

 partitioning guidelines

 pivot_root command

; (semicolon), command separator

~ (tilde)

 in mail

 shortcut for home directory 2nd

() parentheses, bash functions

1024-cylinder limit

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A (address) records

access control 2nd 3rd

 Apache

 executable files

 host-based, X Window System

 tcpd

 rules

 tcpd, controlling access to inetd services

access file (Sendmail) 2nd

access modes 2nd

 binary representation

 classes of users

 file ownership and

 octal notation

 permissions, listed

 setting 2nd

 changing with chmod

 new files

 SGID property

 sticky bit

 string

 SUID property

access points, SSID

ACL (access control list)

 kernel patches

 Squid acl option

 Squid passwd ACL

 using for DNS servers

action directive (syslog.conf)

active partitions

active processes, signaling

address (A) records

addresses

 configuration with ifconfig

 email

 aliases

 local delivery

 IP

 network

 SCSI 2nd

 controller address

 sed utility

 regular expressions as

Advanced Package Tool (APT) management system

aide (IDS tool)

aliases 2nd

 /etc/modprobe.d/aliases file

 CNAME records

 email 2nd 3rd 4th 5th

 aliases file contents

 created by users in .forward file

 database

 reversing virtual user accounts

 interface

 Majordomo administrator

 modules.conf

 NIS map aliases

alien command 2nd

.allow files

analog devices, asynchronous connections

anchors (regular expressions) 2nd 3rd

and operator (&&)

annex

anonymous FTP 2nd

Apache 2nd 3rd

 authentication

 configuring 2nd

 access control

 directives

 httpd.conf file

 third-party modules

 Exam 202 review

 installing

 checking DSOs compiled

 compile-time options

 from source

 httpd

 running configure script

 test run, performing

 verifying web server is running

 jobs that monitor, scheduling

 Kerberos authentication, using

 performance tuning

 starting and stopping 2nd

applications, problems with configuration files

apropos command 2nd

APSfilter 2nd

apsfilterrc file

apt-get tool 2nd 3rd

architecture, PC

 review questions and exercises

arguments

 command

 function

ARP (Address Resolution Protocol)

 spoofing, attacks involving

arp command

arpwatch command

 problems reported by

 sample results

 syntax

ash interpreter

assembler

asynchronous connections

at facility 2nd 3rd 4th

 controlling user access to

attacks

 ARP spoofing

 failed logins

 on DNS servers

 spoofing source addresses of packets

 SQL injection

 through ports

auth log files

authentication

 Apache

 CHAP

 INN (InterNet News service)

 Kerberos

 MIT-MAGIC-COOKIE-1

 OpenSSH

 PAM

 PPP (Point-to-Point Protocol)

 protocols used by PPP

 public key

 rhosts

 Squid

 SSH and Kerberos, problems caused by DNS

 SSL

authorization problems, troubleshooting

authpriv facility (syslogd) 2nd

autofs

awk

 parsing command output

 scripting with

 shell scripting and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

background processes 2nd

backups 2nd

 creating offsite backup plan

 device files

 disk partitions and

 media rotation scheme

 mt command

 restoring files from tar archives

 review questions and exercises

 scripts called by cron

 directories recommended for backup

 tar utility, using

 types of

 verifying

 verifying tar archives

badblocks command

bash (Bourne-Again Shell) 2nd 3rd

 aliases

 built-in commands 2nd

 test

 ulimit

 compilation from source code

 configuration files 2nd 3rd

 execution of commands

 functions

 I/O redirections, standard

 invoking

 root and user prompts

 scripting with

 scripts

 command substitution

 commands for

 creating

 file tests

 return values

 sending mail from

 she-bang line

 variables 2nd

 web site

.bash_logout file 2nd

.bash_profile file 2nd

 modifying path for your shell scripts

.bashrc file

 execution

 individual user

 systemwide

basic authentication mode (Apache)

bastion host

bastion host server

 configuring Sendmail for

 locking down

baud rate

bg command 2nd

/bin directory 2nd 3rd 4th

 /nash

 shells

binary access modes

binary files

 httpd

 locating

BIND (Berkeley Internet Name Domain) 2nd

 basic configuration

 named.conf file

 primary DNS

 secondary and tertiary DNS

 configuration files, v4.x vs.v8.x

 DNS server security

 Exam 202 review

 recursive queries

 running in chroot jail/reduced privileges

 TSIGs (transaction signatures)

BIOS (Basic Input/Output System)

 configuration

 configuring setttings

 SCSI controllers

 startup instructions

block (kernel) subdirectories

block storage devices

blowfish encryption algorithm

Boolean operations

boot devices

 SCSI controller

boot directive

/boot directory 2nd

 /grub/menu.lst file

boot floppies, creating 2nd

boot loader

 failure to load

 LILO

 single-user mode

 troubleshooting

boot manager

 installing 2nd

 GRUB

 LILO

/boot partition 2nd

 guidelines for

 size of

bootable kernel image file

bootable media types

Bootdisk HOWTO

booting the system

 customizing boot processes

 initrd images

 runlevels

 system initialization scripts

 directories necessary in root directory

 Exam 201, review questions and exercises

 highlighter's index

 identifying boot stages

 kernel module configuration

 boot-time messages 2nd

 system logs, reviewing

 kernel parameters

 kernel support for boot disk system

 PCMCIA device scanning

 rc. d file

 review questions and exercises

 troubleshooting boot process

BOOTP protocol 2nd

bootstrap program, restoring

break command

breakins, detecting attempts and actual breakins

broadcast address, setting with ifconfig

BSD options, ps command

BSD Unix, printing

buffer overflows

buffers, flushing

bug reports

Bugtraq 2nd

build link (kernel module)

burning CDs

bus (SCSI)

 speed

 termination

bzImage kernel image 2nd

bzip2 utility 2nd

 opening compressed files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C compiler

C-shells

cables, troubleshooting for hardware connections

cache (DNS), poisoning

caching-only name servers

canonical name (CNAME) records

cardctl command 2nd 3rd

cardinfo command

cardmgr command 2nd 3rd

CAs (Certificate Authorities)

 reasons to use

case command

cat command 2nd

CD burners, IDE

cdrecord command

cdrom (kernel) subdirectories

CDs, burning

CERT (Computer Emergency Response Team) 2nd

 CERT/CC (CERT Coordination Center)

certificate-based cryptography

 self-signed certificate, creating

CGI (Common Gateway Interface) scripts 2nd

 execution, control by Apache

 running Perl scripts on Apache as CGI scripts

chage command 2nd

chains

 ipchains

 iptables

%changelog macro

CHAP (Challenge Handshake Authentication Protocol) 2nd

character classes (GNU sed)

character sets (regular expressions) 2nd

chat program

chat scripts

checksumming programs

chgrp command 2nd

child processes

chkconfig command

chmod command 2nd

 -R (recursive) option

 symbolic access modes

chown command 2nd

chroot command

 exploring damaged system

chroot jail, running BIND in

CIAC (Computer Incident Advisory Capability)

ckpasswd application (INN)

cksum command

class drivers (USB)

classes

 /pcmcia/config file

 network, subnet masks 2nd

%clean macro

clear command (.bash_logout file)

clear-to-send (CTS) signals

client-to-server communications, port numbers

client/server model, X Window System 2nd

 remote X clients 2nd

 X Server

clock

 maintaining

cmp command

CNAME (canonical name) records

command history 2nd

 editing

 substitution

command line

 defined

command separator

command sequences, entering

command substitution 2nd 3rd 4th

commands

 aliases

 bash shell (built-in), for scripts

 editing files with vi 2nd 3rd

 file management, basic 2nd 3rd

 filesystem management

 finding command pathnames

 launching with shells

 locating files

 process execution priorities 2nd

 processes, managing 2nd 3rd

 processing text streams using filters 2nd 3rd

 Procmail

 recursive

 regular expressions, searching text files with 2nd 3rd

 review exercises

 review questions

 Unix streams, pipes, and redirects 2nd 3rd

 user and group management

 working on command line 2nd 3rd

 command history and editing 2nd

 entering commands

 interactive shell

comments

 modules.conf file

 printcap file

 shell programs

communication devices, configuring 2nd 3rd

compat (NIS) 2nd

compiled software, installing

compiling kernels

 custom kernel

 required tools and software

complete backup

compression, file

 gzip and bzip2 utilities

 tarballs

Computer Emergency Response Team (CERT)

 Coordination Center (CERT/CC)

conditional statements, defining

.config file 2nd

 new kernel configuration based on

 remote Samba printer

configuration directives (httpd.conf)

configuration files

 Apache

 applications

 bash shell

 dial-up connections

 httpd.conf

 network

 network devices

 network interfaces

 PCMCIA cards

 Procmail

 Sendmail

 Tripwire

%configure macro

configure scripts 2nd

 Apache

configure-stamp file

configurehelp command

connectionless protocols

connections (physical), causing hardware problems

consoles, virtual

continue command

control file (Debian packages)

controllers

 SCSI 2nd

 USB 2nd

copying files

copying links

cp command 2nd

 -d option, no dereference

 -i option enforced by aliases

CPAN (Comprehensive Perl Archive Network)

 mon module

 searching and browing for modules

 shell

create command, for Majordomo lists

cron facility 2nd

 at versus

 backup scripts called by

 controlling access to

 controlling user access to

 log file rotation

 programs

 scheduling program execution

 system administration tasks, scheduling

 troubleshooting problems with

crond 2nd

crontab files

 formats

 problems with

 quotacheck, scheduling

crontab utility 2nd

 crontab command

 system crontab files

 user crontab files

 viewing or editing crontab files

crossover cable

cryptography

 certificate-based

 self-signed certificate, creating

 encrypting web traffic with SSL

 keys for package maintainer

 public-key

 generating and using SSH keys

 Tripwire files, encryption

CSR (certificate signing request)

ctlinnd command

Ctrl-C

Ctrl-D, using to end at job input

Ctrl-Z 2nd

CTS (clear-to-send) signals

CUPS (Common UNIX Printing System) 2nd

current working directory

 specifying

curses, PPP dialer based on

cut command 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

dash interpreter

data categories 2nd

datagram delivery service (IP)

dates and times

 attacks using malevolent date programs

 hardware clock, configuring

 hours, specifying in cron facility

 maintaining system time

 NTP (Network Time Protocol)

 synchronizing time on all systems

 times for crontab command execution

db (database) entries, named files

dd utility

 burning copy of data CD

 creating boot floppy

 facilitating I/O with block devices

DDoS (distributed denial of service attacks), using echo broadcasts

.deb file extension

debhelper programs

Debian-based systems

 building packages

 signing packages

 configuring as DHCP client

 creating boot floppy

 initrd and /linuxrc

 keeping Debian up to date

 mkinitrd command

 modifying packages

 NIS master server

 package management 2nd 3rd

 alien command

 apt-get command

 dpkg command

 dselect command

 pcmcia-cs module

 pcnetconfig command

 pppconfig tool

 runlevels, customizing

 update-rc.d command

 security information

 system initialization techniques

 wireless NIC card

debugfs command 2nd

debuild command

default gateway

default runlevel

default shell

.deny files

dependencies

 kernel modules

 Makefile

 Perl packages

 shared libraries

depfile directive, modules.conf

depmod command 2nd

desktop environments 2nd

/dev directory 2nd 3rd

 /null

development kernels

device drivers, activitation

device files 2nd

 backups to tape and other removable media

 device field, /etc/fstab file

 IDE

 SCSI

 serial port

 tape drives

 nonrewinding

device settings, common 2nd

devices

 network

 configuration files

 failed

 review questions and exercises

df command 2nd

DH_ variables

dhclient

DHCP (Dynamic Host Configuration Protocol) 2nd 3rd

 clients

 Debian, configuring as client

 dhclient

 pump

 Red Hat, configuring as client

 configuring system for

 dhcpd 2nd

 Ethernet (eth0) interface

 ifconfig utility and

 leases

 relay

 releasing lease before removing PCMCIA card

 server daemon, launching

 server, setting up

 bootp support

 DHCP options

 dhcpd fixed IP assignment

 dhcpd random IP assignment

 dhcpd.leases

 subnets and relays

dial-up connections

 checking

 configuration files

 configuration tools

 connecting with a modem

 IP routing configuration

 ISDN

 multi-homed systems

 poff command

 pon and poff scripts

 protocols

 wvdial command

 wvdial.conf file (examples)

 wvdialconf command

 examples

diff command

differential backup

dig command 2nd 3rd

digital devices, synchronous connections

directives

 awk programs

 slapd.conf file

directories

 backup recommended for

 creating

 current working directory

 hierarchy

 removing

 root filesystem

 RPM packages

 workgroup directory, setting up

disaster planning

discard service

disk blocks

disk drives

 filesystems, creating

 hard disk devices

 interfaces

 IDE (Integrated Device Electronics)

 SCSI 2nd

 partitioning 2nd 3rd

 fdisk command

 guidelines for Linux system

 swap partitions

 swap space

 system considerations

 partitions

 supported under Linux

disk quotas 2nd 3rd

 enabling

 quota commands

 quota limits

disk space

 free, monitoring with df command

 monitoring usage with du command

disks

 external, detecting

 fragmentation

DISPLAY environment variable 2nd

display managers 2nd 3rd

 xdm, configuring

DMA (Direct Memory Access) 2nd

dmesg command

 troubleshooting hardware

DNS (Domain Name System) 2nd 3rd

 BIND v4 vs. v8 configuration files

 BIND, basic configuration

 named.conf file

 primary DNS server

 secondary and tertiary DNS server

 domain name registration

 errors

 Exam 202 review

 module supporting requests in Perl

 name resolution with Net::DNS Perl module

 problems with, route command and

 query utiilities

 resolver

 securing DNS server

 dedicated servers

 recursive queries

 restricting zone transfers

 running BIND in chroot jail/reduced privileges

 transaction signatures (TSIGs)

 servers, querying commands

 smart host-based mail delivery vs.

 SMTP delivery based on

 system hanging during DNS lookups

 zones, creating and maintaining

 forward zones

 reverse DNS files

 tools

dnsdomainname command

documentation 2nd

 Apache

 mod_rewrite module

 mod_status module

 highlighter's index

 local system

 info pages

 information in /usr/share/doc

 manpages

 text files and paging

 notifying users on system-related issues

 resources on the Internet

 LDP

 mailing lists

 Usenet newsgroups

 web sites

 review questions and exercises

 RPM package build

 Squid

 tutorials

domain controller for Windows PCs, Samba server as

domain names

 NIS 2nd

 resolving to IP records

domainname command

domaintable file (Sendmail)

DoS (denial of service) attacks

 DNS cache poisioning

dotted quad decimal notation

downstream clients (INN)

dpkg command 2nd 3rd

dpkg-buildpackage command

DS directive

dselect command 2nd

DSOs (Dynamically Shared Objects)

 checking compilation of

 loading at Apache startup

du command 2nd

dump frequency (etc/fstab)

dumpe2fs command 2nd

dynamic routing

dynamically linked programs 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e2fsck command 2nd

 frequently used options

e2image command

echo command 2nd

 DDoS attacks using

editing commands (sed)

editing, command history

editors, troubleshooting

edquota command 2nd

egrep command, extracting lines from system logs

EHCI (Enhanced Host Controller Interface)

Emacs, troubleshooting

email

 addresses

 local delivery

 aliases

 determining top recipients of, using sed

 new station message generated by arpwatch

 sending from shell scripts 2nd

environment variables 2nd 3rd

 cron jobs, problems with

 setting for users in /etc/profile

 troubleshooting

environments

 execution environment, changing for Perl scripts

 shell 2nd

 working in

 shell script

 troubleshooting configurations

 authorization problems

 cron facility

 init process

 syslog

 user environment, tuning 2nd

 review

error checking, filesystems

errors

 checking for with shell script

 detection and classification

 DNS

 PCMCIA cards

 stderr (standard error)

escape characters, issue files

/etc directory 2nd 3rd

 /aliases

 Majordomo administrator alias

 modification

 /apsfilterrc

 /apt/sources.list file

 /bashrc

 /chatscripts/provider file

 /conf.modules file

 /cron.d

 /crontab 2nd 3rd

 /cups directory

 /dhcpd.conf file

 /exports

 /fstab file 2nd 3rd

 example of

 filesystem type field

 quota options

 /group file 2nd

 problems with

 /gshadow file 2nd

 /host.conf file 2nd

 /hostname file

 /hosts file 2nd

 NIS servers

 /hosts.allow file 2nd 3rd 4th

 NFS server security

 reviewing for changes

 /hosts.deny file 2nd 3rd 4th

 NFS server security

 reviewing for changes

 /httpd/conf file

 /inetd.conf file

 /init.d directory 2nd

 /init.d/networking script

 /init.d/rcS script

 /inittab file

 configuration problems

 /issue file 2nd

 /logrotate.conf file

 /lpd.conf file

 /lpd.perms file

 /mail directory, Sendmail configuration files

 /mail/access file

 /mail/aliases file

 /mail/sendmail.cf file 2nd

 /man.config file 2nd

 /modprobe.d/aliases file

 /modules.conf file 2nd

 example

 problems caused by changes

 /motd

 /mtab file 2nd

 example

 /named.conf file 2nd

 /network/interfaces file 2nd

 /networks file 2nd 3rd

 /nologin file

 /nsswitch file

 /nsswitch.conf file 2nd

 /ntp.conf file

 /pam.d files 2nd

 /passwd file 2nd

 fields

 problems with

 /pcmcia/*.opts

 /pcmcia/config file

 /pcmcia/config.opts file

 /pcmcia/network.opts file 2nd

 /ppp/chap-secrets file

 /ppp/peers/provider file

 /printcap 2nd 3rd 4th

 APSfilter

 filter specification

 remote printers

 /profile 2nd

 example 2nd

 /raidtab file

 /rc.boot directory

 /rc.d file

 /rc.d/rc script

 /rc.d/rc.sysinit

 /rc.d/rc.sysinit script

 /rc0.d through rc6.d directories 2nd

 /rcrunlevel.d directory

 /rcs.d directory

 /resolv.conf file 2nd 3rd

 local system as default DNS server

 /samba/smb.conf file

 /samba/smbpasswd

 /sendmail.cf file

 /services file 2nd

 port assignments

 /shadow file

 problems with

 /shells

 /sysconfig/network-scripts/ 2nd

 /sysctl.conf file 2nd 3rd

 /syslog.conf file 2nd

 configuration errors

 example

 /syslogd.conf file

 /wvdial.conf file

 /Xn.hosts file

 backup using tar utility

 init process, actions for each runlevel

 restoring from tar archives

 system initialization scripts

ethereal utility

 viewing packets on Ubuntu system (example)

Ethernet NICs

 configuration files 2nd

 connecting small/home office to cable or DSL modem

Exam 101

 filesystem management

 access control for files

 disk quotas

 file ownership

 highlighter's index

 links

 locating files

 maintaining filesystem integrity

 mounting and unmounting

 GNU and Unix commands

 highlighter's index

 Objectives

 hardware and architecture

 highlighter's index

 Linux installation

 highlighter's index

 Objectives

 package management

 Debian-based systems 2nd

 RPM (Red Hat Package Manager) 2nd

 practice test

 review questions and exercises

 study guide

 Topics

 listed

 X Window System

 highlighter's index

 installing and configuring X11

 installing and customizing window manager

 setting up display manager

Exam 102

 booting the system

 changing runlevels, shutting down or rebooting system

 kernel

 Linux documentation

 Objectives

 practice test

 printing

 review and exercises

 shells

 study guide

Exam 201

 kernel

 practice test

 review questions and exercises

 system maintenance

 troubleshooting

Exam 202

 DNS

 mail and news

 network client management

 network troubleshooting

 networking configuration

 practice test

 review questions and exercises

 system security

 web services

exams

 web sites for LPI exams

exec* family of system calls, security risks 2nd

executable files

 compilation process

 installing

 keeping on a server

execute permission 2nd

 shell scripts

execution priority (processes) 2nd 3rd

exit command

exit command, lpc

exiting from loops

expand command 2nd

expansion cards (PC), setting up 2nd 3rd

expansion, command history

expiration dates, passwords

export command 2nd

exportfs command

exporting shell variables 2nd

exports file, NFS server exports

ext2 filesystem

 resizing

ext3 filesystem 2nd

 creating

extended partitions 2nd

extended regular expressions

external disks (SAN storage), detecting

external modems

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

facilities, syslog

facility directive (syslog.conf)

failed logins

FAQs (Frequently Asked Questions)

FAT filesystems

fdisk command 2nd

 and non-Linux operating systems

Fedora Core 1 gzip package

Fedora Linux

 dial-up connection configuration

 mkinitrd

 network configuration tools

 network interface configuration files

fg command 2nd

FHS (Filesystem Hierarchy Standard) 2nd

 data categories

 exceptions

 Linux annex

 review exercises

 root filesystem

field separator (-F), awk

file (-f) option, awk

file command

file compression

 gzip and bzip2 utilities

 tarballs

file descriptors

file globs 2nd

file management 2nd 3rd

 commands

 file-naming wildcards 2nd

file sharing 2nd

 NFS (Network File System)

 tools

 NFS server, configuring

 review questions and exercises

 Samba server, configuring

files 2nd 3rd

 detecting changes in

 detecting changes in with Tripwire

 editing with vi 2nd

 finding based on filename patterns

 listing all open on system

 monitoring for changes

 printing 2nd

 restoring

 synchronizing across machines

 testing

%files macro

files method

filesystem type 2nd

 in /etc/fstab file

filesystems 2nd 3rd

 checking for errors

 creating 2nd

 creating with mkfs

 damaged, fixing

 defined

 design

 disk drives

 disk quotas 2nd

 enabling

 managing

 quota commands

 Exam 201 review questions and exercises

 ext2 and ext3

 interaction with kernel

 resizing

 file ownership, managing 2nd 3rd

 file permissions for access control 2nd 3rd

 finding and placing files

 hard and symbolic links to files 2nd 3rd

 creating with ln

 finding

 preserving

 reasons to use

 hierarchy

 inodes

 layout 2nd

 data types

 root filesystem

 limits (fs/file-max)

 locating files

 maintaining integrity of 2nd 3rd

 changing existing filesystem

 checking and repairing

 disk usage, monitoring

 monitoring free disk space and inodes

 maintaining Linux filesystem

 badblocks and e2fsck

 debugfs

 dumpe2fs

 fsck

 mke2fs

 resizing filesystem

 SMART

 tune2fs

 management commands

 mount information

 mounting and unmounting 2nd 3rd

 filesystem table, managing

 mount command

 umount command

 msdos filesystem module

 object hierarchy

 operating Linux filesystem

 /etc/fstab file

 /etc/mtab and /proc/mounts files

 mount command

 partitioning

 swap, managing

 umount command

 options, creating and configuring

 automounting filesystems

 ISO9660 filesystems

 other filesystems

 partitioning

 permissions

 binary representation

 octal notation

 reducing to conserve disk space

 remote filesytems, mounting

 review for Exam 101

 shared libraries, managing

 sharing, using NFS

filters

 APSfilter

 commands used as 2nd

 magicfilter

 mail

 filtering techniques

 Procmail

 printer 2nd 3rd

 APSfilter

 magicfilter

 multiple filters

 smbprint

 specification in /etc/printcap

find command 2nd 3rd 4th

 SUID files, searching for

finger server, eliminating

fingerprinting files

Firefox, configuring to look for IPv4 addresses first

firewalls

 /proc/sys/net/ipv4, security-related tuning

 bastion host server (Sendmail)

 configuring parameters

 dynamic routing

 IDS tools

 IP forwarding versus

 NAT and security

 network diagrams, using

 rule sets

 ipchains vs. iptables

 saving and reloading rule sets

 syslogd security

flow control signals

flushing data buffers

fmt command 2nd

font path

fonts 2nd

 XFree86

for command

for loops

foreground processes 2nd

foreign hosts list, tcpd

forward DNS zones

.forward file 2nd

forwarding (IP), firewalling and NAT vs.

fragmentation

free disk space, monitoring

Free Software Foundation (FSF)

 info documentation format

freshen mode, rpm

fs (kernel) subdirectories

fsck command 2nd 3rd 4th

 pass number (/etc/fstab file)

FSSTND (Linux Filesystem Standard)

FTP (File Transfer Protocol)

 Kerberos, using

 securing servers

ftp command

ftpd

full backup

Full Disclosure

full name (users)

fully qualified filenames

function command

functions, bash shell

fwhois command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gated

gateway, default

gcc (GNU C Compiler)

gdm (Gnome Display Manager)

genericsdomain file (Sendmail)

genericstable file (Sendmail) 2nd

 contents

getcfg command

getopts command

Ghostscript utility

GID (group ID) 2nd

GIMP Toolkit (GTK)

global matching operator

global variables

globbing

GNOME (desktop environment)

 dependencies

 Network Administration Tool

GNU

 C Compiler (gcc)

 free software

 ps command options

Google Groups

gpasswd command 2nd

gpg utility

grace period (quota limits)

grep command

 examining log files

 extracting lines from system logs

 options

 regular expressions (examples)

 using with lsof

group access mode

group file 2nd

 problems with

group ID (GID) 2nd

group ownership

Group Policy Editor (WIndows)

groupadd command 2nd

groupdel command 2nd

groupmod command 2nd

groups

 file access

 file ownership, changing

 in regular expressions

 ownership of files

 quota limits

 shadowed passwords

grpconv command 2nd

grpunconv command 2nd

GRUB 2nd

 booting

 configuration file

 device naming

 documentation

 installing

 troubleshooting

grub command

grub-install command

gs utility

gshadow file 2nd

GUI (graphical user interface)

gunzip utility 2nd

gzip package (example)

 Debian packages, control file

 Fedora Core 1

 spec file

gzip utility 2nd

 opening compressed files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

halting the system

handles, file

handshaking

hangup signal, protecting background processes from

hard disks

 adding to volume group

 getting information about with hdparm

 IDE device files

 initializing for LVM

 listing to find physical volumes

 partitioning 2nd 3rd

 guidelines for Linux system

 swap space

 system considerations

 removing from volume group

 SCSI device files

hard limit (disk quotas)

hard links 2nd 3rd

 finding

hardening operating system for Sendmail bastion host

hardware

 adding

 Exam 101

 BIOS settings

 communications devices

 expansion interface cards

 modems and sound cards

 review questions and exercises

 SCSI devices

 USB devices

 Exam 201 review questions and exercises

 IDE CD burners, supporting

 kernel support

 LVM (Logical Volume Manager)

 PCMCIA devices, configuring

 RAID, configuring

 runtime kernel configuration

 software and kernel configuration

 hdparm command

 troubleshooting 2nd

 kernel and /etc/ modules, changes to

 NIC problems

 physical connection issues

 video hardware for XFree86

Hardware Compatibility List (HCL)

Harvest project

HCL (Hardware Compatibility List

hdparm command

head command 2nd

hierarchy

 filesystem objects

 kernel module directories

hints for finding root name servers

history expansion (commands)

history substitution (commands)

HISTSIZE shell variable

/home directory 2nd 3rd

 new accounts, configuration

 setting for new accounts

 tilde (~) shortcut 2nd

HOME environment variable

/home partition

 guidelines for

 size of

horizontal sync frequency (monitors)

host addresses

host command 2nd 3rd 4th

host controller drivers (USB)

host controllers

host-based access control, X Window System

host.conf file 2nd

hostname command

hostname file

hosts

 authentication based on

 IDS tools

 security 2nd

 announcements about

 inetd

 logging and superuser mail

 shadow passwords

 virtual

hosts file

 name-to-address mapping

 NIS servers

hosts.allow file 2nd 3rd

 access checks, services protected by TCP wrappers

 NFS server security

 rules, configuring

 specifying services

 xinetd and access control

hosts.deny file 2nd 3rd

 access checks, services protected by TCP wrappers

 denying all services from all machines

 NFS server security

 specifying services

 xinetd and access control

hotplug devices

 PCMCIA

 USB

HOWTOs 2nd

htpasswd utility 2nd

 creating Apache authentication file

httpd

 command-line options

 testing

 verifying existence of

 verifying listening on network port

httpd.conf file 2nd

 Directory container, adding

 identifying PHP scripts

 performance-tuning options in global section

 SSL connections

hubs, failure of

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I/O

 addresses 2nd

 PIO (programmed I/O) modes

 standard

ibiblio.org (Linux printing system) 2nd

ICMP (Internet Control Message Protocol) 2nd

IDE (integrated device electronics) 2nd

 CD burners

 disk device files

 disk drives, naming

 SCSI versus

IDS (intrusion detection system) tools

 Snort

 Tripwire

IDs, SCSI

 Linux SCSI device files

if command

ifconfig utility 2nd 3rd

 checking dial-up network connections

 examples of use in production environment

 ifconfig command

 listing network interface parameters

 network troubleshooting

 other common uses

 parameters in /etc/network/interfaces

 verifying hardware and network software

 virtual interfaces, configuring

IFS variable, security risks

ifup command

 NICs, testing

image directive

image file (bootable), for custom kernel

images (ISO)

images, kernel

 initrd 2nd

 customizing

in-addr.arpa filename

incremental backup

Industry Standard Architecture (ISA)

inetd 2nd

 configuring

 inetd.conf file

 required fields

 reconfiguration

 security risks, minimizing

 services controlled by, TCP wrappers for

 starting and stopping services

 SWAT, using with

 TCP wrappers, using

 tcpd

info pages

info utility

 document-viewing commands

 navigation commands

 texinfo, viewing

inheritance

 of login environment

 one-way, in shell environment

init command 2nd 3rd

 failure of

 bypassing init

 troubleshooting problems

init daemon, failure to run

init.d directory 2nd 3rd 4th

 links

Initial Round Trip Time (IRRT)

initialization script, turning on quotas

initialization scripts, system 2nd

 failure of

initrd boot process

initrd image 2nd

 customizing

 rescue disk

inittab file

INN (InterNet News service)

 configuring

 stopping/restarting after changes

 customizing newsgroups

 downstream and upstream clients, configuring

 files and directories used by innd

 installing

 monitoring resource usage with innwatch

 newsgroups, monitoring

inodes 2nd

 file mode

 preventing shortages of

Input Field Separators (IFS) variable

input redirection operators

.inputrc file 2nd

INPUTRC variable

insmod command 2nd 3rd 4th

 Red Hat Linux

install directive

install directive, modules.conf

%install macro

install/upgrade mode, rpm

installation, Linux

 boot manager 2nd 3rd

 exercises

 hard disk layout, designing 2nd 3rd

 programs from source 2nd 3rd

 review questions

 shared libraries, managing 2nd 3rd

installed packages, security checks using rpm

instruction messages (Majordomo)

interactive signals

interfaces file

internal modems

Internet Control Message Protocol (ICMP)

Internet Printing Protocol (IPP)

Internet Systems Consortium (ISC)

interpreter, Perl

interpreters, specifying

interrupt signal (SIGINT)

IO::File module

IP (Internet Protocol) 2nd 3rd

 addresses

 allocation with DHCP

IP addresses

 Apache virtual hosts and

 assignment by DHCP

 fixed addresses

 random assignment

 assignment with DHCP

 dynamically assigned with DHCP, leases

 hosts on network, sudden changes in

 ifconfig utility and

 private networks

 routing on Internet

 resolving domain names to

 resolving names to, using DNS

 reverse DNS on

 subnet masks and

 translating domain name into

 translation of Windows machine names to

ip_forward module

ipchains command 2nd 3rd

 chains and traffic flow

 example setup

 reviewing settings in network troubleshooting

 rule specifications

 saving and reloading rule sets

 syntax and options

ipmasqadm command

ipppd

iptables command 2nd 3rd

 chains and traffic flow

 example netfilter configuration

 important points

 reviewing settings in network troubleshooting

 rule targets

 saving and reloading rule sets

 syntax and options

ipv4 (kernel) subdirectories

IPv6 lookups, turning off

IRQs (interrupts) 2nd

 modems

IRRT (Initial Roud Trip Time)

ISA (Industry Standard Architecture)

isapnp command

ISC (Internet Systems Consortium)

ISDN

 dial-up connections

 Point-to-Point Protocol Daemon, ipppd

 PPP over

isdnctrl command 2nd

ISO9660 filesystems 2nd

 burning CD-ROMs

 creating images

 mkisofs command

issue file 2nd

iwconfig command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

JFS

job control

jobs command 2nd

join command 2nd

journaling filesystems

jumpers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

KDE (desktop environment)

kdm (KDE Display Manager)

keep parameter, modules.conf

Kerberos

 client configuration

 overview

 server installation and configuration

 KDC (Kerberos Domain Controller)

 server reliance on reverse DNS lookups

kernel parameters 2nd

 /etc/modules.conf file

 boot-time

 troubleshooting

kernel ring buffer

kernel-version module hierarchy

kernels 2nd

 booting with GRUB

 booting with LILO

 building

 compiling

 configuration tools

 custom kernel, compiling and installing

 initrd, using

 components

 choosing appropriate kernel

 hardware support

 image formats

 modules

 patches

 configuring ext2 and ext3 filesystem interaction

 custom kernel and kernel modules

 compiling custom kernel

 examining new modules

 highlighter's index

 installing new kernel and configuring LILO

 kernel versions

 tools and software for compilation

 customizing

 default configuration

 defined

 Exam 102 review questions and exercises

 Exam 201, review questions and exercises

 failure to load

 managing/querying kernel and modules at runtime

 configuring modules

 highlighter's index

 manipulating modules

 module dependency file

 module files

 module configuration

 patching

 applying a patch

 removing a patch

 PPP support

 runtime configuration

 troubleshooting modules

 updating

 upgrading, PCMCIA cards and

 USB support

key bindings

 for .inputrc file

kill command 2nd 3rd

 restarting Sendmail

killall command, restarting Sendmail

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label directive

last command

Layer 2 protocols

layers, protocol

LCP (Link Control Protocol)

ld.so (shared object dynamic linker)

LDAP (Lightweight Directory Access Protocol)

 client authentication, using PAM

 client tools, setting up

 OpenLDAP server, setting up

ldapadd tool 2nd

ldapdelete tool

ldapmodify tool

ldappasswd tool

ldapsearch tool

ldapwhoami tool

ldconfig command

ldd utility 2nd 3rd

LDIF file

LDP (Linux Documentation Project) 2nd 3rd

 general-discussion mailing list

 guides and HOWTOs, location of

 main web site

leases, DHCP 2nd

 dhcpd.leases file

less program 2nd

 examining log files

level directive (syslog.conf)

/lib directory 2nd 3rd

 /modules

 /modules/kernel-version

libraries

 display of file location

 identifying application dependencies

 shared, managing 2nd

 X Window System 2nd

lifetime, process

LILO (Linux Loader) 2nd

 1024-cylinder limit 2nd

 boot loader

 configuring to boot custom kernel

 directives

 highlighter's index

 kernel parameters, passing

 locations

 map installer (lilo command)

 troubleshooting

lilo command 2nd 3rd

 configuration file

 incorporating a new kernel

 summary of

lilo.conf file, adding new kernel image

Link Control Protocol (LCP)

linker

linking

 filesystem objects

 shared libraries

links 2nd 3rd

 copying

 creating with ln command

 finding to a file

 hard

 preserving

 reasons to use

 symbolic

 to scripts in init.d

Linux

 disk drive support

 documentation 2nd

 installation

 boot manager, installing 2nd 3rd

 exercises

 hard disk layout, designing 2nd 3rd

 programs from source 2nd 3rd

 review questions

 shared libraries, managing 2nd 3rd

 newsgroups 2nd

 releases, numbering

 updating

 web sites

Linux annex

Linux Filesystem Standard

Linux Professional Institute (LPI) 2nd

Linux Professional Institute Certification (LPIC)

Linux User's Group (LUG)

/linuxrc file

literals (regular expressions) 2nd 3rd

ln command 2nd

local-host-names file (Sendmail) 2nd 3rd

locate command 2nd

logger program

logging

 Apache 2nd

 mod_rewrite rules

 checking log files for network troubleshooting

 DHCP server daemon

 INN (InterNet News service)

 mail, monitoring Sendmail messages

 PCMCIA devices, troubleshooting

 Perl log-watching script

 Procmail

 role in security

 Samba

 Squid

 syslog 2nd

 boot-time messages

 configuring syslogd

 examining log files

 mail message logging

 review exercise

 rotating log files

 system applications, debugging

 troubleshooting

 tcpd

 user

 web logs, fetching and processing with Perl

logical partitions 2nd

logical unit number (LUN)

login shell, invoking bash as

logins

 failed

 failure to present login prompt

 preventing user logins

logrotate command

logrotate.conf file

loopback interface

 configuration with ifconfig

looping constructs

losetup command

lp (line printer)

lpc (line printer control) program 2nd

 commands

lpd daemon 2nd

 job queuing, printing, and child processes

 remote printers

 spool directories

lpd.conf file

lpd.perms file

LPI (Linux Professional Institute)

 exams, web sites for

 web site

LPIC (Linux Professional Institute Certification)

lpq program 2nd

 commands

lpr (line print) program 2nd 3rd

lprm program 2nd

 lprm command

LPRng

lsdev command

 gathering hardware information from /proc directories

lsmod command 2nd 3rd 4th

lsof command

 information about services listening on a port

 using grep to isolate port used by network socket

lspci command 2nd 3rd

 data for PCI buses and connected devices

lsusb command

ltrace command

LUG (Linux User's Group)

LUN (logical unit number)

lvcreate command 2nd

lvdisplay command 2nd

lvextend command

LVM (Logical Volume Manager) 2nd

 adding disks to a volume group

 creating volume group

 displaying logical volume properties

 displaying physical volume properties

 displaying volume group properties

 expanding a logical volume

 initializing hard disks and partitions for

 listing disks and volume groups

 making logical volumes

 removing a disk from a volume group

 removing a logical volume

 removing a physical volume

 removing a volume group

 shrinking a logical volume

 snapshots

 starting and stopping

 vg* commands

lvremove command 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m4 utility

 converting sendmail.mc to sendmail.cf

MAC (Media Access Controller) address

 custom, creation with ifconfig

 flip-flops and changes, reported by arpwatch

 IP addresses based on, setting up with DHCP 2nd

 listed by arp command

macros, m4 utility

magic and magic numbers

magic filters

magicfilter 2nd

mail

 Exam 202 review

 manging mail traffic

mail aliases

mail command 2nd

mailertable file (Sendmail) 2nd

mailing lists 2nd 3rd

 BUGTRAQ

mailq command 2nd

mailx command

Majordomo

 configuring

 creating lists

 preparing Sendmail

 installing

 services provided

 testing implementation and monitoring problems

make utility 2nd 3rd 4th

 Apache, building from source

 Apache, installing from source

 kernel compilation

 kernel compilation process

 make bzImage command

 make clean command

 make config command 2nd

 make dep command

 make install command

 modifying Debian packages

 make menuconfig command 2nd

 make modules command

 make modules_install command

 make oldconfig command

 make xconfig command 2nd

 PHP compilation

 sendmail.cf file, generating

Makefiles

 Apache, building from source

 build link for kernel modules

 custom kernel, differentiating from generic

 default installation directories

 rules file for Debian packages

makemap command

 converting genericstable file to database file

man command 2nd 3rd

 man.config file

manpages 2nd

 format

 searching

 sections 2nd

manpath

MANSECT environment variable

map directive

map installer (lilo command)

 summary of

maps, automounter

Master Boot Record (MBR)

master disk drive

master server (NIS)

Maximum Segment Size (MSS)

Maximum Transmission Unit (MTU)

MBR (Master Boot Record)

.mc files

md5sum command

MDAs (Message Delivery Agents)

 Procmail

media rotation scheme

memory map

menu system, make menuconfig

message of the day (motd) file 2nd

messages file

 boot-time messages

 named configuration, debugging

 rotation

metacharacters

 regular expressions 2nd

 shell

Microsoft DOS/Windows FAT filesystems

military time

MIME types

 PHP scripts

mirroring (RAID 1), creating

misc (kernel) subdirectories

MIT-MAGIC-COOKIE-1 authentication

mkbootdisk command

mkdir command 2nd

mkdosfs command

mke2fs command 2nd

mkfs command 2nd

mkinitrd command

 Debian-based systems

 Red Hat and Fedora systems

mkisofs command

mknod command

mkraid command

mkswap command 2nd 3rd

/mnt directory

mod_auth_kerb Apache module

mod_perl module

mod_php module

mod_rewrite module

 documentation

mod_ssl module

mod_status module

mode (files)

mode options, RPM

modem cards, configuration

modems 2nd 3rd

 analog, asynchronous connections

 dial-up connections

 external and internal types

 hardware resources

 Linux Modem HOWTO

 PPP and

 PPP over ISDN

moderator (mailing list)

modifiers (regular expressions) 2nd 3rd

modinfo command 2nd

modprobe command 2nd 3rd 4th

 manually loading PCMCIA card modules

 Red Hat Linux

 replacement for lsmod, insmod, and rmmod

modular kernels 2nd

modules

 Apache

 mod_status

 kernel

 configuring 2nd

 dependencies

 manipulating

 module dependency file

 module files 2nd

 NFS client

 parameters

 troubleshooting

 kernel and /etc/modules, problems caused by changes

 mannually loading in PCMCIA troubleshooting

 Perl

 mon

 reinstallation after Linux upgrade

modules.conf file 2nd

 example of typical file

modules.dep file 2nd

monitoring processes

monitors, XFree86

monolithic kernels

more program 2nd

motd (message of the day) file 2nd

mount command 2nd 3rd 4th 5th

 ISO filesystems on CDs

 NFS options

 options

 remote NFS filesystems 2nd

mount options (/etc/fstab)

mount points

 in /etc/fstab file

mounts file

 example

mpage command

MSCHAP (Microsoft CHAP)

msdos filesystem module

MSS (Maximum Size Segment)

mt command 2nd 3rd

 positioning tape to extract correct archive

mtab file 2nd

 example

MTAs (Mail Transfer Agents) 2nd

 Majordomo, using with

 most popular used with Linux servers

 postfix

 sending email from scripts

 SMTP delivery using DNS lookups

MTU (Maximum Transmission Unit)

multi-homed systems

multiple-line commands, entering interactively

multiuser systems

 partitioning

 executable files

mv command 2nd

MX (Mail eXchange) records 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name resolution

 Net::DNS Perl module

name server records (see NS records)

name-based virtual hosts

named (name daemon) 2nd

 configuration files

 files

 using as local caching-only name server

named-bootconf.pl (Perl script)

named.conf file

 example

names, resolving to IP addresses with DNS

nash shell

NAT (Network Address Translation)

 iptables POSTROUTING tables

 security and

NCP (Network Control Protocol)

ncsa_auth command (Squid)

neat command

Nessus (network scanner)

net (kernel) subdirectories

Net::DNS module

 name resolution

NetBIOS name server

netcat utility (nc) 2nd 3rd

 examples

 obtaining

netconfig utility 2nd

Netfilter

netgroups

netlogon (Samba share)

netstat utility

 checking routing information

 examples

 inaccessible services, troubleshooting

 netstat command 2nd

 route command vs.

Network Administration Tool

Network Control Protocol (NCP)

network interfaces

 activating or deactivating with ifconfig

 configuration files 2nd

 configuring with ifconfig

 IP addresses

 manual tasks, common

network scanning detector

Network Time Protocol (NTP) 2nd

 software package components

networking

 client management

 DHCP

 Exam 202 review

 LDAP

 NIS

 PAM

 configuration

 advanced, and troubleshooting

 ARP and arp command

 arpwatch command

 common files

 configuration tools

 dial-up connections

 Exam 202 review

 ifconfig, using

 route command, using

 configuring Linux as PPP client

 fundamentals

 configuring Linux as PPP client

 review questions and exercises

 security, syslog and

 services 2nd

 Apache

 Apache web server

 DNS 2nd

 inetd

 MTA (Mail Transfer Agent)

 NFS and Samba daemons 2nd

 review questions and exercises

 Secure Shell (OpenSSH)

 sharing

 sharing using Samba

 TCP wrappers

 xinetd

 TCP/IP

 configuration and troubleshooting

 fundamentals

networking script

networks

 diagramming for firewall and routing

 IDS tools

 number of hosts supported

 scanning tools

 troubleshooting

 checking routing with netstat and route

 common commands

 device configuration files

 DNS errors

 essential steps

 Exam 202 review

 hardware problems

 inaccessible services

networks file

 troubleshooting

newaliases command

newgroup command

newgrp command

news readers

news server

 overview

news, Exam 202 review

newsfeeds file

newsgroups 2nd

 archives

 contributing to

 customizing for INN

 monitoring

 top-level categories

NFS (Network File System) 2nd 3rd

 client

 configuring server

 NFS packages, daemons, and utilities

 NFS server exports

 remote root users

 security

 Exam 201 review and exercises

 mounting with autofs

 remote filesystems, mounting

 services, starting and stopping

 tools

nfsstat command

nice command 2nd 3rd

 leading dash

 renice

nice number 2nd

nicknames, NIS maps

NICs (network interface cards)

 configuration

 Ethernet

 configuration files

 connecting small office to cable or DSL modem

 problems with 2nd

 reviewing screen output

NIS (Network Information Service) 2nd

 client

 compat

 setting up as slave server

 domain name

 maps and tools

 keeping maps current

 map lookups and nicknames

 netgroups

 RPC calls

 master server

nl command 2nd

nmap utility

 inaccessible services and

nmbd 2nd 3rd

nmblookup command

NNTP (Network News Transfer Protocol)

 clients

 files and directories used by innd daemon

 nntp_passwd file

nobody account, anonymous FTP and

nologin file

non-sharable data

nonrewinding device file

 verifying backups

nonvolatile memory

not operator (!)

Novell/SuSE systems, YAST/Yast2 network configuration tools

NS records

nslookup utility 2nd 3rd

nss_ldap package

 configuring

nsswitch file

nsswitch.conf file 2nd

 name resolution

ntfs filesystem

NTP (Network Time Protocol) 2nd

 software package components

ntpd

 ntp.conf file

ntpdate command

ntpdc program

ntpq program

ntptrace command

null modem cable

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object files (.o)

Objectives, LPI exams 2nd

 weights

octal access modes 2nd 3rd

octal dump 2nd

od command 2nd

offsite backups, planning

 storage site, selecting

OHCI (Open Host Controller Interface)

one-way inheritance

open email relays

 checking mail server for

Open Host Controller Interface (OHCI)

OpenLDAP

 setting up server

OpenSSH 2nd

 generating and using keys

 installing and configuring

 authentication

 root logins, permitting

 X11 forwarding

 ssh port forwarding

 TCP wrappers

openssl program

operating systems

 booting with LILO

 hardening for Sendmail bastion host

 shell user interface

/opt directory

/opt partition

options (command)

options, modules.conf

or operator (||)

order of operations, redirection and commands

OSI network protocol suite

other access mode

output redirection operators

ownership of files 2nd

 groups and group files

 shell scripts

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

package management

 Debian-based systems 2nd 3rd

 alien command

 apt-get command

 dpkg command

 dselect command

 review exercises

 review questions

 RPM (Red Hat Package Manager) 2nd 3rd

 rpm command

 running rpm

 verifying packages 2nd

package.spec file

packages

 build process

 building deb packages

 signing packages

 building RPM packages

 Debian package names

 modifying deb packages

 modifying RPM packages

 Perl

 security concerns

Page Description Language (PDL)

pager alerts

 sending from script

pagers 2nd

PAM (Pluggable Authentication Modules) 2nd

 configuration

 control-flag

 module-path and arguments

 module-type

 LDAP client authentication

 pam_krb5, adding Kerberos authentication

pam_ldap package

 configuring

PAP (Password Authentication Protocol) 2nd

parallel ports

parent process

parent process ID (PID)

parted (Partition EDitor) 2nd

partitioning 2nd 3rd

 configuring disk partitions

 example scheme

 hard disk layout, designing 2nd 3rd

 guidelines for Linux system

 swap space

 system considerations

partitions

 creating with fdisk

 initializing for LVM

 mounted to root filesystem

 resizing

 resizing, moving, and copying

 swap partitions, creating

 types of

pass number for fsck (/etc/fstab)

passwd command 2nd

passwd file 2nd

 /group

 fields

 problems with

Password Authentication Protocol (PAP) 2nd

password file

passwords

 Apache

 authorization problems, troubleshooting

 checking for INN

 managing

 NIS server 2nd

 Samba

 shadow 2nd 3rd

 host security

 management commands

paste command 2nd

patches, kernel 2nd

 ACL (Access Control List)

 applying a patch

 getting

 removing

path directive, modules.conf

PATH environment variable 2nd 3rd 4th

 attacks involving changes by user

 commands not in, entering

 cron jobs, problems with

 security risks

patterns (regular expressions) 2nd

PC expansion cards, setup

PCI buses and connected devices, listing data for

PCI hardware, listing for a machine

PCMCIA devices

 commands

 configuration files

 /etc/pcmcia/*.opts file

 /etc/pcmcia/config

 /etc/pcmcia/config.opts

 /etc/pcmcia/network.opts

 troubleshooting

 boot problems

 common errors

 kernel upgrades

 steps in process

PCMCIA network cards, configuration

pcmcia-cs module

pcnetconfig command 2nd

PDL (Page Description Language)

Pearson VUE

peer-to-peer protocols

performance tuning, Apache

Perl

 integration with Apache

 learning

 scripting with

 adding new disks attached to HBA controller

 fetching and processing web logs

 log watching

 regular expressions

 security concerns

 using CPAN

permissions 2nd 3rd

 cron facility

 default setting

 executable files

 listed

 shell scripts

 special permissions

 workgroup directory

PHP

 downloading source code and compiling

 integration into Apache

 verifying installation

physical connections, troubleshooting for hardware

PID (parent process ID)

PID (process ID)

pidof command

ping command 2nd 3rd 4th

PIO (programmed I/O) modes

pipeline

pipes 2nd 3rd

 running pipeline of commands

pivot_root command

plain text 2nd

PnP (plug-and-play) devices 2nd

 configuration methods

 configuring

poff (PPP off) 2nd

 poff command syntax and options

pon (PPP on) 2nd

popen command

port forwarding

 ipmasqadm command

 SSH 2nd

port numbers 2nd

 privileged, common

port scans

portmap daemon 2nd

portmapper utility 2nd

 checking whether alive

ports

 Apache listening on

 attacks

PortSentry

position anchors (regular expressions) 2nd 3rd

positional parameters

%post macro

post-install directive, modules.conf

post-remove directive, modules.conf

postfix MTA

postmaster address

PostScript

PPP (Point-to-Point Protocol) 2nd 3rd 4th

 authentication

 authentication protocols

 chat scripts

 connections, establishing

 dial-up connections

 ISDN daemon, ipppd

 ISDN connections

 network interface configuration with ifconfig

 over ISDN

 pppd 2nd

 manual connection (example)

pppconfig tool

PPPoE (PPP over Ethernet)

pppsetup tool

pr command 2nd

pre-install directive, modules.conf

pre-remove directive, modules.conf

%preun (pre-uninstall) macro

PRI column (process priority)

primary (mail) servers

primary DNS server

primary IDE interface

primary partitions 2nd

print jobs

 removing from print queue

print queues 2nd

 lpq program

 lprm program

 remote printers

printable directive (smb.conf)

printcap (printer capabilities) file 2nd 3rd

 APSFilter description

 filter specification

 remote printers

PRINTER environment variable

printing

 files 2nd

 installing and configuring printers 2nd

 filters

 printcap file

 remote lpd and Samba printers

 managing printers and print queues 2nd

 Linux printing, overview

 print queues

 overview

 BSD versus SysV

 printer sharing, using Samba

 queues

 querying

 remote queues and Samba printers

 review questions and exercises

priorities

 mail servers

 processes

 syslog

privileged ports 2nd

/proc filesystem 2nd 3rd 4th

 /dma file

 /interrupts file

 /ioports file

 /mdstat file

 /modules file

 /mounts file

 example

 /pci pseudofile

 /sys files

 /sys/net/ipv4 directory

 /sys/net/ipv4/ip_forward

 hardware information

 troubleshooting kernel parameters

process ID (PID)

processes

 attributes and associated concepts

 checking status of and sending alerts

 execution priorities 2nd 3rd

 failure to start in specified runlevel

 httpd, starting and stopping

 managing 2nd 3rd

 forcing to die

 monitoring processes

 shell job control

 signaling active processes

 terminating

Procmail

 files

 monitoring and troubleshooting

 recipes

 examples

profile file

.profile file

profile file

 example

 example systemwide Bash profile

programming languages, shells

programming, secure

programs from source 2nd 3rd

 compiling bash (example)

 compiling open source software

 getting open source and free software

 installing compiled software

programs, launching and managing with shells

prompt directive

prompts

protocols

 Layer 2, synchronous and asynchronous connections

 networking 2nd

ps command 2nd

 verifying httpd process

PS1 (Prompt String 1)

pstree command 2nd

PTR (pointer) records 2nd

public key authentication

 generating and using SSH keys

pump (DHCP client)

pvcreate command

pvdisplay command 2nd 3rd

pvmove command

pvscan command 2nd

pwconv command 2nd 3rd

pwunconv command 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Quagga, dynamic routing support

quantity modifiers (regular expressions) 2nd

query mode, rpm

quota command 2nd

quota.user and quota.group files

quotacheck command 2nd 3rd

 scheduling on routine basis

quotaoff command 2nd

quotaon command 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RAID (Redundant Array of Independent Disks)

 configuring

 RAID 1 (mirroring), creating

raidstart command

raidstop command

ranges (in regular expressions)

rawrite.exe command

rc script 2nd 3rd

rc.local script 2nd

rc.sysinit script 2nd 3rd 4th

rcp utility

rcS script 2nd

read comand

read permission 2nd

read-only directive

readers.conf file (INN)

 customizing newsgroups

readline

README files

ready-to-send (RTS) signals

rebooting

 init command, using

 shutdown command, using

 telinit command, using

recipes (Procmail)

 examples

records, DNS

recovery

 creating recovery disks

 planning

 system

 booting from rescue CD

 filesystem damage

 init or system initialization failure

 loss of key files

recursion, DNS server queries

recursive commands 2nd

 rm -r, -R

Red Hat Certified Engineer (RHCE) program

Red Hat Linux

 configuring as DHCP client

 creating boot disk

 dial-up connection configuration

 initrd and /linuxrc file

 keeping up to date

 mkinitrd

 netconfig tool

 network configuration, PCMCIA devices

 network interface configuration files

 PCMCIA support

 runlevels, customizing

 security information

 system initialization techniques

 system runlevel directories

redirection 2nd 3rd

 HTTP requests for Apache

 shell script results

redirection operators 2nd

registrars, domain name

registration, domain names

regular expressions 2nd 3rd

 awk program

 egrep command

 extracting lines from system logs

 examples

 anchors

 groups and ranges

 modifiers

 patterns

 sed (stream editor)

 grep command

 extracting lines from system logs

 mod_rewrite Apache module

 catch-all regular expression

 Perl

 sed (stream editor)

 removing nonmatching lines

 syntax

ReiserFS

relay, DHCP

relaying email

 checking for open relays

 open relays used by spammers

relays, DHCP

reminder messages (Majordomo)

remote printers, configuring 2nd

remote X clients 2nd

remove directive, modules.conf

removing directories

renaming files and directories

renice command 2nd

repquota command 2nd

resize2fs command 2nd

resolution (monitors)

resolv.conf file 2nd 3rd

 local system, setting as default DNS server

resolver (DNS) 2nd

resources

 .Xresources file 2nd

 assignment of 2nd

 modems

 setting limits on use of

 troubleshooting system resources

 editors

 environment variables and shells

 troubleshooting sytem resources

 shell environment

restoring

 files from tar archive

return command

return values

reverse DNS

 files

 on IP addresses assigned by ISP

 zone entry

reverse DNS file

rewinding tapes

rhosts authentication

rm command 2nd

rmdir command 2nd

rmmod command 2nd 3rd

root account

root directive

root name servers, hints for finding

root user

 monitoring use of account

 remote, NFS server configuration

round robin buffer

route commands 2nd 3rd 4th

 checking dial-up network connections

 checking routing information

routed

routers

 failure of

 relaying DHCP requests

routing

 checking with netstat and route

 configuring a router

 example networks

 firewall rule sets

 firewalling, miscellaneous issues

 getting routing working

 ipchains, using

 iptables, using

 configuring IP routing for dial-up connection

 dynamic

RPC daemons, NSF-related

RPC portmapper

rpc.lockd file

rpc.statd file

rpcinfo command

rpcinfo utility

RPM (Red Hat Package Manager) 2nd 3rd

 building packages

 modifying packages

 package verification

 packages, overview

 rpm command

 running rpm

 verifying packages 2nd

 checking before installation

 verification codes

rpm command

 running

rpmbuild command

 rebuilding RPM source package for other Linux systems

rsync utility 2nd

 common options

RTS (ready-to-send) signals

rules file (Debian packages) 2nd

runlevels 2nd

 boot process troubleshooting

 changing with init and telinit

 customizing

 Debian-based systems

 Red Hat and related distributions

 default

 determining system runlevel

 init process and /etc directory tree, overview

 runlevel 1

 runlevel command 2nd

 setting default

 single-user 2nd

 system runlevel directories on Red Hat

 typical, summary of

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Samba 2nd

 configuring server

 important files

 restarting smbd and nmbd

 Samba packages and source code

 Exam 201 review and exercises

 getting started with

 nmbd daemon

 browsing shared resources

 remote printers, configuring 2nd

 smb.conf file

 custom share section

 default sections

 smbd daemon

 source or binary distributions

 SWAT (Samba Web Administration Tool)

 WINS client, using as

/sbin directory 2nd 3rd 4th

/sbin/hotplug

/sbin/init 2nd

scanning, network

scp command 2nd

screen

script files

scripting languages

 PHP

 shells (sh and bash)

scripts 2nd 3rd 4th

 bash shell

 command substitution

 commands for

 file tests

 return values

 sending mail from

 CGI (Common Gateway Interface)

 environment

 executable

 invoking

 location, ownership, and permissions

 named-bootconf.pl

 network interface manipulation

 Perl

 adding new disks attached to HBA controller

 log watching

 running on Apache

 security

 using CPAN

 web logs, fetching and processing

 PHP, configuring Apache for

 scheduled execution

 at facility

 cron facility

 she-bang line

 shell scripts

 checking process status and sending alerts

 detecting changes in files

 IFS variable, security risks

 monitoring users and using awk

 using sed

 variables

 starting and stopping httpd

 startup 2nd

 synchronizing files across machines

SCSI (Small Computer System Interface) 2nd

 configuration

 device files

 disk drives, naming

 drive interfaces

 IDs

 Linux SCSI device files

 logical unit number

 kernel subdirectories

 termination

 types

secondary (mail) servers

secondary DNS server

secondary IDE interface

Secure Set Identifier (SSID)

security

 announcements

 Apache

 DNS server

 Exam 102 highlighter's index

 Exam 102 review questions and exercises

 filesystem

 host machines

 inetd

 shadow passwords

 log files (auth)

 logging and superuser mail

 NFS server

 packages, verifying

 password management

 Perl scripts

 rpm --checksig

 Samba (smb.conf file)

 Sendmail

 bastion host server

 historical problems with

 SGID workgroups

 SUID files

 syslog, using over network

 syslogd, configuring

 system

 auditing source code

 Exam 202 review

 FTP servers

 IDS (intrusion detection system) tools

 Kerberos

 router configuration

 scanning in general

 Secure Shell (OpenSSH)

 security alerts

 TCP wrappers

 updating Linux

 TCP wrappers for services

 user-level, setting up

 verification of Red Hat packages

 X window managers

sed (stream editor) 2nd

 postfix MTA logs, examining

 regular expression examples

 shell scripting and

self-monitoring, analysis, and reporting technology system (SMART)

self-signed certificate, creating

SELInux

Sendmail 2nd

 bastion host server

 configuring Sendmail for

 locking down

 configuration 2nd

 smart host parameter

 configuration files, building and editing

 delivering email

 SMTP delivery using DNS lookups

 SMTP delivery via smart host

 editing sendmail.cf file manually

 email aliases

 Exam 102 highlighter's index

 forwarding mail

 importance of

 local email delivery

 mail aliases

 managing mail traffic

 monitoring mail

 preparing for Majordomo

 queued mail (mailq command)

 restarting after configuration changes

 security

 defining accepted email domains

 defining trusted network

 testing configuration

 sending email from scripts

 starting and stopping

 startup script (example)

 virtual users, checking

 virtusertable file

sendmail.cf file

 editing manually

sendmail.mc file

 reverse aliasing

 SMART_HOST directives

serial interfaces

serial ports

 internal modems

server-to-client communications, port numbers

services

 inaccessible, determining cause

services file 2nd 3rd

services list, tcpd

session handling, cron jobs

setting quotas

%setup macro

SGID (Set Group ID)

 script files

 workgroups 2nd

SGID (Set Group ID) property, access modes

sh (Bourne shell) 2nd

 root and user prompts

 scripting with

shadow passwords 2nd 3rd

 host security and

 management commands

 problems with

sharable data

shared directory (Samba)

shared libraries 2nd

 adding locations

 dependencies

 external

 linking

 managing

shared object dynamic linker

she-bang line (scripts) 2nd 3rd

shell prompt (#)

shell variables 2nd 3rd 4th

 exported to become environment variables

 exporting

 HISTSIZE

 PATH

 PS1

shells 2nd 3rd

 bash

 aliases

 configuration files

 functions

 variables

 concepts common to

 CPAN

 default shell field (passwd file)

 defined

 entering commands at prompt

 environment

 Exam 102 highlighter's index

 Exam 102 review questions and exercises

 job control 2nd

 kill command

 overview

 scripting

 bash

 learning

 scripts

 basic bash scripts

 creating bash script

 environment

 executable files

 invoking

 location, ownership, and permissions

 she-bang line

 starting/stopping processes

 security risks

 sessions

 troubleshooting

shift command

showmount command 2nd

shutdown

 init command, using

 shutdown command, using 2nd

 telinit command, using

SIGHUP signal

SIGINT (interrupt signal)

signals 2nd

 cron jobs

 flow control

 interactive, listed

 kill command

signing Debian packages

single-user mode 2nd

single-user runlevel

slapd

slapd.conf file

slaptest command

slave disk drive

slave server (NIS)

sldap.conf file

slurpd

SMART (self-monitoring, analysis, and reporting technology)

smart host

 mail delivery via

smartctl utility

smartd

smartmontools

smbclient command

smbd

smbmount command 2nd

smbpasswd program

smbprint utility

smbstatus program

smbtestparm command

SMP (symmetric multiprocessing) kernel

SMS alerts, sending from scripts

SMTP (Simple Mail Transfer Protocol) 2nd

 delivery via a smart host

 email delivery based on DNS lookup

snapshots (LVM)

sndconfig command

Snort

 configuring

 rules, understanding

SOA (start of authority) records

 forward DNS files

 reverse DNS files

soft limit (disk quotas)

 grace period

software updates, potential problems

sort command

sorting mail

sound cards 2nd

 configuration 2nd

source code

 Apache, installing from

 installing programs from

 kernel

 making and installing programs from 2nd 3rd

 compiling bash (example)

 installing compiled software

 open source and free sofware, getting

 open source sofware, compiling

 security auditing

 buffer overflows

 checking input

 executing sub programs

 temporary files, unsafe creation

source command 2nd

source packages, Debian

source RPM (SRPM) packages, building RPM packages from

sourcing of configuration files

spam, configuring Sendmail to prevent

spec files

 gzip package (example)

SPECS directory

split command 2nd

spoofing source addresses of packets

spool directories

SQL injection

Squid 2nd

 as web accelerator

 configuration

 authentication

 configuring to authenticate against Apache file

 ncsa_auth command

 configuration (Squid.conf)

 acl option

 cache_access_log option

 cache_dir option

 cache_mem option

 http_port option

 history

 installation

 web site

src.rpm files

SRPM (source RPM) package, building RPM packages from

SSH (Secure Shell) 2nd

 network troubleshooting and

 OpenSSH

 installing and configuring

 TCP wrappers

 OpenSSH, setting up

 port forwarding

 rsync, using with

 server reliance on reverse DNS lookups

ssh-agent command

ssh-keygen command

sshd

SSID (Secure Set Identifier)

SSL (Secure Sockets Layer), Apache mod_ssl module

stable kernels

stack of protocols

standard error (stderr) 2nd

standard I/O

standard input (stdin) 2nd 3rd

 printing file with lpr

standard output (stdout) 2nd

startup, system 2nd

 customizing

 initrd images

 runlevels

 system initialization scripts

 recovery

 booting from rescue CD

 filesystem damage

 init or system initialization failure

 loss of key files

 scripts

static data

static IP address assignment, DHCP

statically linked programs 2nd

stderr (standard error)

stdout (standard output) 2nd

sticky bit 2nd

strace command

 network troubleshooting

stratum 1 servers

streaming devices

streams 2nd

subnet masks 2nd

 setting with ifconfig

subnets 2nd

 DHCP and

 reverse DNS filenames 2nd

substitution, command history

substitution, commands

SUID (Set User ID) 2nd

 access mode property

 script files

 security concerns

sum command

superblock

superuser

 email from system on security issues

 home directory

swap partitions 2nd

 creating

swap space

 guidelines for

 managing

 size of 2nd

swapoff command

swapon command

SWAT (Samba Web Administration Tool)

switches, failure of

symbolic access modes 2nd

 chmod command

symbolic links 2nd 3rd

 finding

 tar and cp utilities

symmetric multiprocessing (SMP) kernel

sync command

synchronous connections

syntax, commands 2nd

sysctl command 2nd 3rd

 listing, viewing and changing writeable /proc file entries

 security-related tuning of /proc/sys/net/ipv4 directory

sysctl.conf file 2nd

 IP routing

sysinit script

syslog system 2nd

 boot-time messages

 logging and superuser mail

 mail messages, logging

 setting up clients

 setting up server

 system applications, debugging

 tcpd logging

 troubleshooting problems with

 using central logs

syslogd

 authpriv facility 2nd

 configuring

 enabling network listening

syslogd.conf file

system administration 2nd

 automating tasks using scripts

 automating tasks with at 2nd

 automating tasks with cron 2nd

 backups 2nd

 concepts and strategies

 device files

 mt command

 restoring files from tar archives

 scripts called by cron

 tar utility, using

 verifying tar archives

 customizing and automating the system

 daemons and services

 Exam 102 review questions and exercises

 network services

 Apache web server

 DNS

 inetd

 MTA (Mail Transfer Agent)

 NFS and Samba daemons

 Secure Shell (OpenSSH)

 xinetd

 security 2nd

 hosts 2nd

 packages, verifying

 password management

 SGID workgroups

 SUID files

 TCP wrappers

 user-level 2nd

 system log files 2nd

 configuring syslogd

 information stored in

 rotation of

 system maintenance

 review questions and exercises

 time, maintaining

 troubleshooting, Exam 201 review

 user and group management 2nd

 commands

 groups and group file

 shadow passwords

 user accounts and password file

 user environment and system environment variables 2nd

 home directory, setting

 system startup scripts

system command

system initialization scripts 2nd

 failure of

System V (SysV) Unix, printing

system-config-network-tui tool 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tac command 2nd

tail command 2nd

 examining log files

tainted data, tracking with Perl

talk and finger servers, eliminating

tape drives

 verifying function for backups

tar utility 2nd 3rd

 decompression capability

 extracting compressed Apache files

 restoring files from tar archives

 tarfiles

 verify and compare options

 verifying archives

tarballs

targets (Makefile)

TCP (Transmission Control Protocol) 2nd

 lising all TCP-based connections

TCP wrappers 2nd 3rd 4th

 access checks for services, activating

 network services

 OpenSSH

 verifying system configuration

TCP/IP (Transmission Control Protocol/Internet Protocol)

 configuration and troubleshooting 2nd

 DHCP

 fundamentals

 addressing and masks

 suite of protocols

 utilities

 services

tcpd 2nd

 access control

 services and foreign hosts lists

 configuration

 logging 2nd

tcpdump utility

 expressions

 monitoring network traffic (examples)

 session showing ARP request/reply

 showing ARP requests with no answers

 tcpdump command, syntax and options

tcsh

tee command

telinit command

Telnet

 Kerberos, using

 telnet client program

 using in network troubleshooting

telnet command 2nd

temporary files, security risks

TERM

terminal emulators 2nd

terminals (X) 2nd 3rd

terminating processes

terminators (SCSI bus)

test command 2nd

testparm program

tethereal utility

Texinfo

text editors

 Emacs

 vi 2nd 3rd

text files

 Linux documentation

 searching with regular expressions 2nd 3rd

text matching operators

text streams

 processing with filters 2nd 3rd

Thomson Prometric

threads

threats (classifications), for disaster and recovery planning

timeout directive

/tmp directory 2nd 3rd

/tmp partition

 guidelines for

 size of

top command 2nd

 aliasing

touch command 2nd

tr command 2nd

traceroute command 2nd 3rd 4th

translation, print data

Tripwire

 overview

 policy files

 tripwire commands

 twadmin command

troubleshooting

 boot loaders

 boot stages

 environment configurations

 general

 networks

 tcpdump, using

 Telnet, using

 recovery disks, creating

 system resources

 editors

 environment variables and shells

 kernel parameters

 shell environment

trusted network, defining

TSIGs (transaction signatures)

tune2fs command 2nd

tune2fswas command

twm window manager

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Ubuntu Linux, network configuration tool

UDP (User Datagram Protocol) 2nd

 system logging, security and

UHCI (Universal Host Controller Interface)

UID (user ID) 2nd

ulimit command 2nd

umask command

umount command 2nd 3rd 4th

uncompress program

unexpand command

uninstall mode, rpm

uniq command

Universal Host Controller Interface (UHCI)

Unix

 BSD versus SysV printing

Unix98, ps command options

unprivileged ports

until command

until loops

UPD (User Datagram Protocol)

 listing UDP-based connections

update-modules command

update-rc.d command

updatedb command 2nd

upgrade mode, rpm

upstream clients (INN)

USB devices

 configuring 2nd 3rd

 classes of USB devices

 controllers

 hotplug

 topology

 USB drivers

 finding assigned device file

usbview command

Usenet newsgroups 2nd

 archives

 contributing to

user access mode

user accounts 2nd

 environment, tuning

 password file and

 review questions and exercises

 setting home directory

 shadow passwords

user ID (UID) 2nd

user prompt ($)

user variables in shell scripts

useradd command 2nd

userdel command 2nd

usermod command 2nd

username

USERNAME environment variable

users

 classes of, in access modes

 crontabs

 file access

 FTP acccess

 monitoring 2nd

 notifying of system issues

 quota limits

 security, setting up

/usr filesystem 2nd 3rd 4th

 /doc

 /local dirctory

 /man

 /sbin/sendmail

 /share/doc

 /share/man

 /src/linux-kernel-version

 contents

 subdirectories

/usr partition

 guidelines for

 size of

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

/var directory 2nd 3rd 4th

 /lib/dpkg

 /log directory

 /log/dmesg

 /log/messages 2nd 3rd

 named configuration

 rotation

 /log/wtmp file, rotation

 /named/

 /spool/cron/crontabs

 /spool/lpd

 subdirectories

/var partition

 guidelines for

 size of

variable data

variables

 cron environment

 environment variables

 inheritance in shell environment

 queried with mod_rewrite

 shell 2nd

 shell scripts

verify mode, rpm

versions, kernel

vertical refresh frequency (monitors)

Very Secure FTP Daemon (vsftpd)

vfat filesystem 2nd

vg* commands

vgchange command

vgdisplay command 2nd

vgscan command

vi editor 2nd

 commands

 troubleshooting

VI Improved

video

 kernel subdirectories

 XFree86 hardware

virtual consoles

virtual hosts

 defining default settings for requests not matching

virtual interfaces, configuring with ifconfig

virtual memory partition

Virtual Private Network (VPN), configured with ifconfig

virtual users

 checking

 reversing accounts

VirtualHost container (Apache)

 access control

 SSL connections, handling

virtusertable file (Sendmail) 2nd 3rd

volume groups

 adding disks

 creating

 displaying properties

 listing with pvscan

 removing

 removing hard disks

VPN (Virtual Private Network), tunnel end-points configured with ifconfig

vsftpd (Very Secure FTP Daemon)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w command

wc command 2nd

web accelerator, Squid as

web logs, fetching and processing with Perl

web services

 Apache

 configuring

 installing

 Exam 202 review

 Squid

web site for this book

web sites, Linux-related

well-known ports

WEP (Wireless Equivalent Privacy)

whatis command 2nd

which command 2nd

while command

while loops

who command

whois

 fwhois command

wildcards

 file-naming 2nd

window managers 2nd 3rd 4th 5th

 default, starting

 security

 X libraries

Windows systems

 creating boot floppy

 FAT filesystems 2nd

 Group Policy Editor

 remote printer, configuring 2nd

winmodems

WINS (Windows Internet Name Service) 2nd

 browsing shared resources

wireless card, configuring

Wireless Equivalent Privacy (WEP)

word boundaries, matching with regular expressions

workgroup directory, setting up

workgroups, SGID 2nd

write permission 2nd

wvdial command

wvdial.conf file (examples)

wvdialconf command

 examples of successful execution

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X clients

X fonts

X libraries

X Servers

 selecting and configuring

X terminals

 xdm for

X Window System 2nd

 controlling applications with .Xresources

 display manager, setting up

 installing and configuring X11 2nd

 make xconfig (kernel configuration)

 make xconfig tool

 overview of X

 review questions and exercises

 SSH session

 window manager, installing and customizing 2nd

 X terminals

Xaccess file, configuring access to xdm

xargs command

Xconfigurator tool

xdm 2nd

 configuring

 basic customization

 configuration files, listed

 running automatically

 running manually

 for X terminals

XDMCP (xdm Control Protocol)

XF86Config file 2nd

 automated configuration tools

 example for XFree86 v3.3.3

 example for XFree86 v4.0

XFree86

 configuration

 displaying version information

 fonts

 installing and configuring

 installing XFree86

 X server

 starting

 web site

xfs (X fonts server) 2nd 3rd

 example config file

xhost command

xinetd 2nd

 access control

 xinetd.conf file

 frequently used options

 modular configuration

.Xresources file 2nd

xterm 2nd

 resource configuration file

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAST/Yast2 tools

ypbind (NIS client) 2nd

ypcat tool 2nd

ypdomainname tool

ypinit tool

ypmatch tool

yppasswd tool

yppasswdd tool

yppoll tool 2nd

yppush tool 2nd

ypserv tool

ypwhich tool

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zebra, dynamic routing support

zImage kernel image

zombie process

zone transfers

zones, DNS

 creating and maintaining

 forward zones

 reverse DNS files

 tools

	LPI Linux Certification in a Nutshell, 2nd Edition
	Table of Contents
	Copyright
	Preface

	Part I: General Linux Exam 101
	Chapter 1. LPI Exams
	Section 1.1. Exam 101 Overview

	Chapter 2. Exam 101 Study Guide
	Section 2.1. Exam Preparation

	Chapter 2. Hardware and Architecture (Topic 1.101)
	Section 3.1. Objective 1: Configure Fundamental BIOS Settings
	Section 3.2. Objective 3: Configure Modems and Sound Cards
	Section 3.3. Objective 4: Set Up Non-IDE Devices
	Section 3.4. Objective 5: Set Up Different PC Expansion Cards
	Section 3.5. Objective 6: Configure Communications Devices
	Section 3.6. Objective 7: Configure USB Devices

	Chapter 4. Linux Installation and Package Management (Topic 1.102)
	Section 4.1. Objective 1: Design a Hard Disk Layout
	Section 4.2. Objective 2: Install a Boot Manager
	Section 4.3. Objective 3: Make and Install Programs from Source
	Section 4.4. Objective 4: Manage Shared Libraries
	Section 4.5. Objective 5: Use Debian Package Management
	Section 4.6. Objective 6: Use Red Hat Package Manager (RPM)

	Chapter 5. GNU and Unix Commands (Topic 1.103)
	Section 5.1. Objective 1: Work on the Command Line
	Section 5.2. Objective 2: Process Text Streams Using Filters
	Section 5.4. Objective 3: Perform Basic File Management
	Section 5.5. Objective 4: Use Streams, Pipes, and Redirects
	Section 5.6. Objective 5: Create, Monitor, and Kill Processes
	Section 5.7. Objective 6: Modify Process Execution Priorities
	Section 5.8. Objective 7: Search Text Files Using Regular Expressions
	Section 5.9. Objective 8: Perform Basic File Editing Operations Using vi

	Chapter 6. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104)
	Section 6.1. Objective 1: Create Partitions and Filesystems
	Section 6.2. Objective 2: Maintain the Integrity of Filesystems
	Section 6.3. Objective 3: Control Filesystem Mounting and Unmounting
	Section 6.4. Objective 4: Set and View Disk Quotas
	Section 6.5. Objective 5: Use File Permissions to Control Access to Files
	Section 6.6. Setting Up a Workgroup Directory
	Section 6.7. Objective 6: Manage File Ownership
	Section 6.8. Objective 7: Create and Change Hard and Symbolic Links
	Section 6.9. Objective 8: Find System Files and Place Files in the Correct Location

	Chapter 7. The X Window System (Topic 1.1.10)
	Section 7.1. An Overview of X
	Section 7.2. Objective 1: Install and Configure X11
	Section 7.3. Objective 2: Set Up a Display Manager
	Section 7.4. Objective 4: Install and Customize a Window Manager Environment

	Chapter 8. Exam 101 Review Questions and Exercises
	Section 8.1. Hardware and Architecture (Topic 1.101)
	Section 8.2. Linux Installation and Package Management (Topic 1.102)
	Section 8.3. GNU and Unix Commands (Topic 1.103)
	Section 8.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 1.104)
	Section 8.5. The X Window System (Topic 1.110)

	Chapter 9. Exam 101 Practice Test
	Section 9.1. Questions
	Section 9.2. Answers

	Chapter 10. Exam 101 Highlighter's Index
	Section 10.1. Hardware and Architecture
	Section 10.2. Linux Installation and Package Management
	Section 10.3. GNU and Unix Commands
	Section 10.4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard
	Section 10.5. The X Window System

	Part II: General Linux Exam 102
	Chapter 11. Exam 102 Overview
	Chapter 12. Exam 102 Study Guide
	Section 12.1. Exam Preparation

	Chapter 13. Kernel (Topic 1.105)
	Section 13.1. Objective 1: Manage/Query Kernel and Kernel Modules at Runtime
	Section 13.2. Objective 2: Reconfigure, Build, and Install a Custom Kernel and Kernel Modules

	Chapter 14. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)
	Section 14.1. Objective 1: Boot the System
	Section 14.2. Objective 2: Change Runlevels and Shut Down or Reboot System

	Chapter 15. Printing (Topic 1.107)
	Section 15.1. An Overview of Printing
	Section 15.2. Objective 2: Manage Printers and Print Queues
	Section 15.3. Objective 3: Print Files
	Section 15.4. Objective 4: Install and Configure Local and Remote Printers

	Chapter 16. Documentation (Topic 1.108)
	Section 16.1. Objective 1: Use and Manage Local System Documentation
	Section 16.2. Objective 2: Find Linux Documentation on the Internet
	Section 16.3. Objective 5: Notify Users on System-related Issues

	Chapter 17. Shells, Scripting, Programming, and Compiling (Topic 1.109)
	Section 17.1. Objective 1: Customize and Use the Shell Environment
	Section 17.2. Objective 2: Customize or Write Simple Scripts

	Chapter 18. Administrative Tasks (Topic 1.111)
	Section 18.1. Objective 1: Manage Users and Group Accounts and Related System Files
	Section 18.2. Objective 2: Tune the User Environment and System Environment Variables
	Section 18.3. Objective 3: Configure and Use System Log Files to Meet Administrative and Security Needs
	Section 18.4. Objective 4: Automate System Administration Tasks by Scheduling Jobs to Run in the Future
	Section 18.5. Objective 5: Maintain an Effective Data Backup Strategy
	Section 18.6. Objective 6: Maintain System Time

	Chapter 19. Networking Fundamentals (Topic 1.112)
	Section 19.1. Objective 1: Fundamentals of TCP/IP
	Section 19.2. Objective 3: TCP/IP Configuration and Troubleshooting
	Section 19.3. Objective 4: Configure Linux as a PPP Client

	Chapter 20. Networking Services (Topic 1.113)
	Section 20.1. Objective 1: Configure and Manage inetd, xinetd, and Related Services
	Section 20.2. Objective 2: Operate and Perform Basic Configuration of Mail Transfer Agent (MTA)
	Section 20.3. Objective 3: Operate and Perform Basic Configuration of Apache
	Section 20.4. Objective 4: Properly Manage the NFS and Samba Daemons
	Section 20.5. Objective 5: Set Up and Configure Basic DNS Services
	Section 20.6. Objective 7: Set Up Secure Shell (OpenSSH)

	Chapter 21. Security (Topic 1.114)
	Section 21.1. Objective 1: Perform Security Administration Tasks
	Section 21.2. Objective 2: Set Up Host Security
	Section 21.3. Objective 3: Set Up User-level Security

	Chapter 22. Exam 102 Review Questions and Exercises
	Section 22.1. Kernel (Topic 1.105)
	Section 22.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)
	Section 22.3. Printing (Topic 1.107)
	Section 22.4. Documentation (Topic 1.108)
	Section 22.5. Shells, Scripting, Programming, and Compiling (Topic 1.109)
	Section 22.6. Administrative Tasks (Topic 1.111)
	Section 22.7. Networking Fundamentals (Topic 1.112)
	Section 22.8. Networking Services (Topic 1.113)
	Section 22.9. Security (Topic 1.114)

	Chapter 23. Exam 102 Practice Test
	Section 23.1. Questions
	Section 23.2. Answers

	Chapter 24. Exam 102 Highlighter's Index
	Section 24.1. Kernel (Topic 1.105)
	Section 24.2. Boot, Initialization, Shutdown, and Runlevels (Topic 1.106)
	Section 24.3. Printing (Topic 1.107)
	Section 24.4. Documentation (Topic 1.108)
	Section 24.5. Shells, Scripting, Programming, and Compiling
	Section 24.6. Administrative Tasks (Topic 1.111)
	Section 24.7. Networking Fundamentals (Topic 1.112)
	Section 24.8. Networking Services (Topic 1.113)
	Section 24.9. Security (Topic 1.114)

	Part III: General Linux Exam 201
	Chapter 25. Linux Kernel
	Section 25.1. Objective 1: Kernel Components
	Section 25.2. Objective 2: Compiling a Kernel
	Section 25.3. Objective 3: Patching a Kernel
	Section 25.4. Objective 4: Customizing a Kernel

	Chapter 26. System Startup
	Section 26.1. Objective 1: Customizing System Startup and Boot Processes
	Section 26.2. Objective 2: System Recovery

	Chapter 27. Filesystem
	Section 27.1. Objective 1: Operating the Linux Filesystem
	Section 27.2. Objective 2: Maintaining a Linux Filesystem
	Section 27.3. Objective 3: Creating and Configuring Filesystem Options

	Chapter 28. Hardware (Topic 2.204)
	Section 28.1. Objective 1: Configuring RAID
	Section 28.2. Objective 2: Adding New Hardware
	Section 28.3. Objective 3: Software and Kernel Configuration
	Section 28.4. Objective 4: Configuring PCMCIA Devices

	Chapter 29. File and Service Sharing (Topic 2.209)
	Section 29.1. Objective 1: Configuring a Samba Server
	Section 29.2. Objective 2: Configuring an NFS Server

	Chapter 30. System Maintenance (Topic 2.211)
	Section 30.1. Objective 1: System Logging
	Section 30.2. Objective 2: Packaging Software
	Section 30.3. Objective 3: Backup Operations

	Chapter 31. System Customization and Automation (Topic 2.213)
	Section 31.1. Objective 1: Automating Tasks Using Scripts

	Chapter 32. Troubleshooting (Topic 2.214)
	Section 32.1. Objective 1: Creating Recovery Disks
	Section 32.2. Objective 2: Identifying Boot Stages
	Section 32.3. Objective 3: Troubleshooting Boot Loaders
	Section 32.4. Objective 4: General Troubleshooting
	Section 32.5. Objective 5: Troubleshooting System Resources
	Section 32.6. Objective 6: Troubleshooting Environment Configurations

	Chapter 33. LPI Exam 201 Review Questions and Exercises
	Section 33.1. Linux Kernel (Topic 2.201)
	Section 33.2. System Startup (Topic 2.202)
	Section 33.3. Filesystem (Topic 2.203)
	Section 33.4. Hardware (Topic 2.204)
	Section 33.5. File and Service Sharing (Topic 2.209)
	Section 33.6. System Maintenance (Topic 2.211)
	Section 33.7. System Customization and Automation (Topic 2.213)
	Section 33.8. Troubleshooting (Topic 2.214)

	Chapter 34. Exam 201 Practice Test
	Section 34.1. Questions
	Section 34.2. Answers

	Part IV: General Linux Exam 202
	Chapter 35. Networking Configuration (Topic 2.205)
	Section 35.1. Objective 1: Basic Networking Configuration
	Section 35.2. Objective 2: Advanced Network Configuration and Troubleshooting

	Chapter 36. Mail and News (Topic 2.206)
	Section 36.1. Objective 2: Using Sendmail
	Section 36.2. Objective 3: Managing Mail Traffic
	Section 36.3. Objective 1: Configuring Mailing Lists
	Section 36.4. Objective 4: Serving News
	Section 36.5. Conclusion

	Chapter 37. DNS (Topic 2.207)
	Section 37.1. Objective 1: Basic DNS Server Configuration
	Section 37.2. Objective 2: Create and Maintain DNS Zones
	Section 37.3. Objective 3: Securing a DNS Server

	Chapter 38. Web Services (Apache and Squid, Topic 2.208)
	Section 38.1. Installing Apache
	Section 38.2. Configuring Apache
	Section 38.3. Squid: History and Overview
	Section 38.4. Squid Authentication
	Section 38.5. Squid as Web Accelerator

	Chapter 39. Network Client Management (Topic 2.210)
	Section 39.1. Objective 1: DHCP Configuration
	Section 39.2. Objective 2: NIS Configuration
	Section 39.3. Objective 3: LDAP Configuration
	Section 39.4. Objective 4: PAM Authentication

	Chapter 40. System Security (Topic 2.212)
	Section 40.1. Objective 2: Configuring a Router
	Section 40.2. Objective 3: Securing FTP Servers
	Section 40.3. Objective 4: Secure Shell (SSH)
	Section 40.4. Objective 5: TCP Wrappers
	Section 40.5. Objective 6: Security Tasks

	Chapter 41. Network Troubleshooting (Topic 214)
	Section 41.1. Network Troubleshooting Essentials
	Section 41.2. Common Troubleshooting Commands
	Section 41.3. Hardware Problems
	Section 41.4. Network Device Configuration Files
	Section 41.5. DNS Errors
	Section 41.6. Determining the Cause of Inaccessible Services
	Section 41.7. Conclusion

	Chapter 42. Exam 202 Review Questions and Exercises
	Section 42.1. Networking Configuration (Topic 2.205)
	Section 42.2. Mail and News (Topic 2.206)
	Section 42.3. DNS (Topic 2.207)
	Section 42.4. Web Services (Topic 2.208)
	Section 42.5. Answers
	Section 42.6. Network Client Management (Topic 2.210)
	Section 42.7. System Security (Topic 2.212)
	Section 42.8. Network Troubleshooting (Topic 2.214)

	Chapter 43. Exam 202 Practice Test
	Section 43.1. Questions
	Section 43.2. Answers

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

