
Table View of Contents

SAP HTMLB Guidelines

Print Version (PDF)

Read First

1. Introduction

● What is HTMLB?
● About the Reference

2. General

● Customer Branding and Style Editor
● Forms - Using Checkboxes
● Forms - Using Radio Buttons
● Forms - Using Different List Types
● Table View Functions
● Positioning Buttons
● Error Handling
● Accessibility of HTMLB controls - General

Information

3. Layout

● General Layout Strategy
● Layout Hierarchy
● Spacing Between Grouped Controls
● Spacing Between Single Controls

4. Layout Controls

● Content
❍ Control API

● Document
❍ Control API

● Page
❍ Control API

● Form
❍ Control API

● Flow Layout
❍ Usage and Types
❍ More Info
❍ Control API

file:///F|/resources/htmlb_guidance/contents.html (1 of 4) [17.02.03 10:29:32]

file:///F|/resources/htmlb_guidance/htmlb_guidance.zip

Table View of Contents

● Form Layout
❍ Usage and Types
❍ More Info
❍ Control API

● Grid Layout
❍ Usage and Types
❍ More Info
❍ Control API

5. Visible Controls

● Breadcrumb
❍ Usage and Types
❍ More Info
❍ Control API

● Button
❍ Usage and Types
❍ More Info
❍ Control API

● Chart
❍ Usage and Types
❍ More Info
❍ Control API

● Checkbox
❍ Usage and Types
❍ More Info
❍ Control API
❍ Control API (Group)

● Date Navigator
❍ Usage and Types
❍ More Info
❍ Control API

● Dropdown List Box
❍ Usage and Types
❍ More Info
❍ Control API

● File Upload
❍ Usage and Types
❍ More Info
❍ Control API

● Group
❍ Usage and Types
❍ More Info
❍ Control API

● Image
❍ Usage and Types
❍ More Info
❍ Control API

● Input Field
❍ Usage and Types

file:///F|/resources/htmlb_guidance/contents.html (2 of 4) [17.02.03 10:29:32]

Table View of Contents

❍ More Info
❍ Control API

● Item List
❍ Usage and Types
❍ More Info
❍ Control API

● Label
❍ Usage and Types
❍ More Info
❍ Control API

● Link
❍ Usage and Types
❍ More Info
❍ Control API

● List Box
❍ Usage and Types
❍ More Info
❍ Control API

● Radio Button
❍ Usage and Types
❍ More Info
❍ Control API
❍ Control API (Group)

● Table View
❍ Usage and Types
❍ More Info
❍ Control API

● Tabstrip
❍ Usage and Types
❍ More Info
❍ Control API

● Text Edit
❍ Usage and Types
❍ More Info
❍ Control API

● Text View
❍ Usage and Types
❍ More Info
❍ Control API

● Tray
❍ Control API

● Tree View
❍ Usage and Types
❍ More Info
❍ Control API

file:///F|/resources/htmlb_guidance/contents.html (3 of 4) [17.02.03 10:29:32]

Read First

Read First

What Is the Purpose of these Guidelines? | What Are the Major Building Blocks of the Guidelines? | Who Is the Target Audience? |
Status

What Is the Purpose of these Guidelines?

These guidelines describe how to develop usable and accessible Web applications and iViews using HTMLB and the SAP Portal
framework. These applications include applications that are part of the Portal framework, such as administration and
personalization applications.

What Are the Major Building Blocks of the Guidelines?

The three major building blocks are:

● General rules for the design and accessibility of Web applications
● Rules for the overall layout and for special layout controls
● A reference section - the main part of these guidelines - describing the look, behavior, usage and programming interface for

each HTMLB control

Who Is the Target Audience?

The guidelines address developers of Web applications and iViews using HTMLB and the SAP Portal framework.

They are also intended as a reference for user interface designers who consult application designers or are directly involved in
development projects.

Status

Version 1.0.4, 13 February 2003

Note: This version of the guidelines is a "frozen" version that corresponds to mySAP Enterprise Portal 5.0. It contains design and
usability information as well as descriptions of the API for the HTMLB controls. Links to examples and code samples, however,
have been removed because these may be subject to change.

If you are interested in more developer-oriented information, please visit the iView Studio Website at www.iviewstudio.com and go
to the the "Dev Zone." There you will find more resources and the option to download the Portal Development Kit (PDK). Some
code examples may also require that you have a Tomcat server running.

This guideline can be found in Resources on the SAP Design Guild Website (www.sapdesignguild.org).

file:///F|/resources/htmlb_guidance/read_first.html (1 of 2) [17.02.03 10:27:06]

http://www.iviewstudio.com/
http://www.sapdesignguild.org/

What is HTMLB?

What is HTMLB?

Basic Idea | How it Works | Form | Controls | Container | Events | Mobile Features

HTMLB (HTML-Business for Java) provides a full set of easy-to-use Web controls. These guidelines describe the HTMLB controls, their types,
usage, attributes, and how to set the attributes with the JSP-taglib and the classlib.

For each control there is a general page that describes its usage, types, and design-relevant attributes. This description is on the interaction
design level. A further page describes more technical issues, such as browser compatibility, editability in the Style Editor, and accessibility
issues. Thirdly, the Control API page provides a development-oriented view of the control with detailed descriptions of attributes and
parameters.

In addition, there are pages that describe general interaction design aspects, such as page layout, correct usage of certain often-used controls,
as well as hints on finding the right control for a given purpose.

Knowledge of Java, JSP (information can be found at http://java.sun.com) and HTML (information can be found at http://www.w3.org) is helpful
when reading this document.

Basic Idea

HTMLB allows a design-oriented page layout. It is designed to overcome typical servlet problems, such as:

● Visualization and business logic are not separate.
● Content management consumes a lot of qualified manpower. Skills in HTML, CSS, JavaScript etc. are essential.
● Development has to take care of different web clients and -versions.
● Maintaining the corporate identity through out the whole application is hard to achieve.
● Namespace conflicts with form elements

HTMLB provides the technological infrastructure for easy customer branding. See Customer Branding.

How it Works

HTML-Business for Java provides the user with a efficient set of controls - similar to Swing/AWT. The controls are based on servlets and JSP
pages. The developer uses bean-like components or JSP tags. Renderer classes finally translate the components into HTML-commands.

To demonstrate the similarity from HTMLB to Swing/AWT some synonyms.

HTMLB Swing/AWT

Form ContenPane, JFrame, JDialog
ControlComponent JComponent
Container ContainerContainer
Event AWTEvent, InputEvent ...

file:///F|/resources/htmlb_guidance/getting_started.html (1 of 3) [17.02.03 10:27:08]

http://java.sun.com/
http://www.w3.org/

What is HTMLB?

Form

It is basically the wrapping paper of your page and essential for the data transfer from the web client to the web browser and for the event
handling. Controls in the form must have unique control names. The control names are generated by the HTML-Business for Java renderer -
therefore you cannot use e.g. JavaScript to manipulate the controls.

Controls

GUI elements that are used to build an application. The controls are placed in a form. Every control has different attributes that define the
"look" of the control. Controls are checkboxes, radio buttons and grids to name a few.

Figure 1: Some HTMLB controls

Container

Container contain controls. Containers can contain containers - nesting. A simple container would be a 'tray' containing a 'gridLayout'. The
gridLayout contains 'textView' and 'inputField'.

Events

Components can respond to user action. The response is called an event. An event usually causes a submit (sending the form from the web
client to the web server). With the control that can create an event you specify the name of the event handling routine. The web server receives
the form, analyzes it and calls the event handling routine which does the further processing.

file:///F|/resources/htmlb_guidance/getting_started.html (2 of 3) [17.02.03 10:27:08]

What is HTMLB?

Mobile Features

The mobile features enhance the functionality of HTML-Business for Java for mobile devices such as Pocket PCs, WAP-enabled mobile
phones and other mobile device/browser combinations. The mobile features support a device-independent development of components for
mobile devices by providing special renderer classes. These renderer classes consider the special features of different mobile devices and the
browsers used.

 Top

file:///F|/resources/htmlb_guidance/getting_started.html (3 of 3) [17.02.03 10:27:08]

About the Reference

About the Reference

Structure of the Description | Controls

This page describes the structure of the the Control API pages for the HTMLB controls.

Structure of the Description

The description of the controls is structured in:

● General description - what is it
● Attributes of the control
● Overview of the attributes with possible values, defaults and the manipulation with the JSP-taglib and classlib.
● Example

The values column in the overview table specifies which type of parameter the attribute expects. This can be

● String
An ASCII string. Usually event handling routines, names, titles etc.

● Units
An integer value specified in web client units. According to the HTML standard units can be specified in

❍ Pixel (px)
Pixels are the smallest addressable unit on the web client. A web client has a maximum resolution, that is the number of horizontal times vertical pixel (e.g. 800x600,
1024x768 etc.) When you specify units in pixel you can make sure that your control is displayed on every web client in the same size.

Pixel is the default unit.

Example
Both expressions set the width of a control to 500 pixel.
width="500"
width="500px"

❍ Percent (%)
The percentage specified is calculated from the visible space of the web client. If e.g. a width of a control is specified with 50% the control uses half of the of the web
client width. The control changes its width according to the web client dynamically (e.g. if the web client window gets scaled).

Example
The width of a control is set to 30% of the web client.

width="30%"

● Numeric
A numeric expression.

● Others
If an attribute requires specific values. Booleans require "TRUE" or "FALSE" or text size can only be "LARGE", "MEDIUM" and "SMALL".

 Top

Controls

General

To use the controls you have to know about the syntax and the attributes of the controls. Every control has different attributes. In the description we describe the attributes
and gather the information in a table which shows the usage with the taglib and the classlib.

Syntax

Programming with the JSP taglib follows the XML syntax. Each control is "wrapped" in tags. To identify the tags as XML the prefix

● hbj: (stands for: HTML-Business for Java)

is used. Some controls (e.g. tray, group) also need a tag body. The tag body specifies the controls that are placed "inside" the tag. The syntax would be like:

file:///F|/resources/htmlb_guidance/introduction.html (1 of 3) [17.02.03 10:27:12]

About the Reference

Tag

 <hbj:mycontrol comment: begin of tag for HTMLB control
 attributes comment: setting of attributes of HTMLB control
 </hbj:mycontrol> comment: end of tag for HTMLB control

Tag with "quick" end of tag (only possible when the tag has no body)

 <hbj:mycontrol comment: begin of tag for HTMLB controls
 attributes comment: setting of attributes of HTMLB control
 /> comment: end of tag for HTMLB controls

Tag with body

 <hbj:mycontrol_withbody comment: begin of tag for HTMLB control
 attributes comment: setting of attributes of HTMLB control
 < comment: end of tag for HTMLB control
 <hbj:a_control_in_the_body
 attributes
 />
 <hbj:next_control_in_the_body
 attributes
 />
 more controls

 </hbj:mycontrol_withbody> comment: end of tag for HTMLB controls with body

Scriptlet

A scriptlet can contain any number of language statements, variable or method declarations, or expressions that are valid in the page scripting language.

Within a scriptlet, you can do any of the following:

● Declare variables or methods to use later in the file.
● Write expressions valid in the page scripting language.
● Use any of the implicit objects or any object declared with a <jsp:useBean> element.
● Write any other statement valid in the scripting language used in the JSP page (if you use the Java programming language, the statements must conform to the Java

Language Specification).

Any text, HTML tags, or JSP elements must be written outside the scriptlet.

Scriptlets are executed at request time, when the JSP container processes the client request. If the scriptlet produces output, the output is stored in the out object.

Certain attributes (if the column "JSP taglib" in the attribute table to each control has no entry) can only be assigned using scriptlets. The scriptlet has to be placed in the tag
body of the HTMLB control. The scriptlet starts with <% and ends with %>. The following example uses the button control and sets some attributes with a scriptlet.

<hbj:button
 id="OrderConfirm"
 width="100px"
 tooltip="Click here to confirm order"
 onClick="ProcessConfirm"
 disabled="false"
 design="STANDARD"
 >
 <% comment: start scriptlet in the tag body
 OrderConfirm.setText("Confirm"); comment: set the text for the button
 OrderConfirm.setWidth("125px"); comment: set "width" - this overrides
 "w
idth" set in attribute section
 %> comment: end of scriptlet
</hbj:button>

file:///F|/resources/htmlb_guidance/introduction.html (2 of 3) [17.02.03 10:27:12]

About the Reference

Result

Enumeration Values

In the classlib column some values have to be set as enumeration values. In the classlib column you find the class name and the enum (separated by a dot).

● Example
breadcrumb.setSize(BreadCrumbSize.MEDIUM)

For an executable program you have to add the location of the enum. That is:

● com.sapportals.htmlb.enum.

So according to the example above you have to specify:

● Your program:
breadcrumb.setSize(com.sapportals.htmlb.enum.BreadCrumbSize.MEDIUM)

To save some typing when you enumeration values more often the package can be imported:

● <%@ page import="com.sapportals.htmlb.enum.BreadCrumbSize, " %>

Boolean Values

Taglib:
Boolean values are specified as string and can be lowercase and/or uppercase.

Classlib:
Boolean values are specified as boolean and have to be specified only in lowercase characters.

 Top

file:///F|/resources/htmlb_guidance/introduction.html (3 of 3) [17.02.03 10:27:12]

Customer Branding and Style Editor

Customer Branding and Style Editor

Style Editor | HTMLB Controls and Style Editor

Portal software must reflect the customer’s corporate identity and branding guidelines. For this reason, we provide a technological infrastructure and tools to
support customers in this goal. The current portal release offers a certain amount of design flexibility that allows our customers to fulfill their branding needs.

This flexibility is achieved by:

● Placing all design information into cascading style sheets (CSS) instead of writing it directly into the code. As far as possible, images are defined with the
CSS attribute background-image.

● Using only central CSS in all HTMLB controls.
● Shipping predefined design variants (color templates) of the portal among which our customers can choose.
● Providing the Style Editor tool for supporting branding activities at the customers' sites.

Below you see the portal with the Mango and Polarwind standard design and the same portal with a customized design.

Figure 1: Portal standard design Mango and Polarwind

file:///F|/resources/htmlb_guidance/customer.html (1 of 6) [17.02.03 10:27:11]

Customer Branding and Style Editor

Figure 2: Example of a customized design

 Top

Style Editor

The Style Editor is a Web-based tool, which allows a designer or administrator to copy and then modify any of our predefined color templates to create a new
design. With the Style Editor, an authorized user can change the look-and-feel of the portal without having to be an HTML expert. For example, no knowledge
about CSS attribute names is required. Below, you see the entry screen of the Style Editor, where users can select between predefined and customized
designs, provided the customer created such.

file:///F|/resources/htmlb_guidance/customer.html (2 of 6) [17.02.03 10:27:11]

Customer Branding and Style Editor

Figure 3: Design selection screen showing all available color templates

A clearly defined number of styles, such as the background colors, font colors, or images are presented on the user interface. Users can immediately check
their changes in the preview area.

The Style Editor creates the CSS files for all platforms and browser versions that SAP Portals supports. Note that style sheets cannot be edited directly. The
following example shows the user interface for changing the look of the tabstrip control.

file:///F|/resources/htmlb_guidance/customer.html (3 of 6) [17.02.03 10:27:11]

Customer Branding and Style Editor

Figure 4: Customizing the tabstrip control

Note: Customer branding with the Style Editor works for central CSS only. Imagine that a customer wants to change the light blue color of the standard design
to a light yellow all over the portal content area. If you as a developer defined an area with a light blue background directly in your code, the customer has no
chance to change this color. Therefore, use central rendering mechanisms only.

 Top

HTMLB Controls and Style Editor

The look of most visible HTMLB controls can be adapted with the Style Editor. See section Editability in Style Editor on the More Info page for the respective
HTMLB controls.

Controls that use common styles only, such as the standard font color, are not presented in the Style Editor. Examples for these controls are the checkbox, the
dropdown list box, and the radio button. The look of these controls can be customized by changing common styles, such as text, links, or cursor definitions.

Browser Platforms

There is a difference with respect to which attributes can be edited or not on different browser platforms. In general, the options for Netscape 4.7 are more
restricted than those for other Web browsers.

The following controls cannot be changed for Netscape 4.7 as target platform:

● Cursor: Cursor for clickable and non-clickable elements
● Input Field: Background color of editable and non-editable input fields
● Button: Buttons have the default HTML look (gray and 3D); only the font type and size can be changed via common styles
● Text Edit: The default HTML element is used; only the font type and size can be changed via common styles

file:///F|/resources/htmlb_guidance/customer.html (4 of 6) [17.02.03 10:27:11]

Customer Branding and Style Editor

For details with respect to specific controls, see section Editability in Style Editor on the More Info pages.

Common Styles

There are so-called common styles, which affect more than one control in the content area. We list these styles here, in order to avoid redundant lists for each
control.

While for Internet Explorer 5 and above, the common styles affect the controls cursor, input field, link and text, for Netscape 4.7 common styles affect only
link and text.

Control Style IE 5 and above Netscape 4.7

Cursor Cursor for Clickable Elements x

Cursor for Non-Clickable Elements x

Input Field Background Color for Editable Fields x

Background Color for Non-Editable Fields x

Link Font Color for Unvisited Links x x

Text Decoration for Unvisited Links x x

Font Color for Active Links x

Text Decoration for Active Links x

Font Color for Links on Mouseover (Hover) x

Text Decoration for Links on Mouseover x

Font Color for Visited Links x x

Text Decoration for Visited Links x x

Text

Text Styles Standard Font Family x x

Standard Text Standard Font Size x x

Standard Font Color x x

Standard Font Style x x

Standard Font Weight x x

Non-Standard Text Font Size for Small Text x x

Font Size for Large Text x x

Font Size for Extra Large Text x x

Font Style for Text Used as a Reference x x

Font Color for Headlines x x

Font Weight for Headlines x x

Font Weight for Emphasized Text x x

Table 1: Common styles for controls and different browsers platforms

file:///F|/resources/htmlb_guidance/customer.html (5 of 6) [17.02.03 10:27:11]

Forms - Using Checkboxes

Forms - Using Checkboxes

Alignment | Dependent Fields | Related Controls

Checkboxes offer one or multiple choices to
the user. The user can select none, one, or
as many options as desired in a group of
checkboxes.

Figure 1: A checkbox group

This page covers the arrangement of checkboxes, that is, their spatial and dependency relation to fields and other elements in form-like structures.
For details on the checkbox control itself, see Checkbox.

Checkbox groups offer users a set of multiple options that may be arranged either horizontally (2-3 checkboxes), vertically (not more than about 12
checkboxes), or in a matrix-like fashion. Note that checkbox groups are appropriate for static and relative small numbers of options only. Use the
table view for larger and dynamic option sets.

Arrangement

For the alignment of checkboxes we distinguish the following cases:

● Checkboxes that refer to adjacent fields
● Checkboxes that do not refer to elements but should be included in field groups
● Checkboxes that can be arranged as an independent block of information

Case 1: Checkboxes that Refer to One or More Fields

Align dependent checkboxes with the left border of other input elements (figure 1a-b). Place the checkbox labels right to the checkbox (done
automatically for the checkbox control).

Figure 1a-b: Checkbox that refers to one input field above it (left) or to two (City and Street, right)

file:///F|/resources/htmlb_guidance/checkbox_layout.html (1 of 5) [17.02.03 10:27:53]

Forms - Using Checkboxes

Alternatively, a single checkbox can be placed to the right of a reference field (figure 1c) if space permits. If there is more than one reference field
place the checkbox right to the bottom reference field.

Figure 1c: Checkbox that refers to an input field left of it (equivalent to figure 1a)

Case 2: Checkboxes that are Included in a Field Group

If checkboxes are included in a field group but do not refer to a certain field, place the checkbox labels to the left and align the checkboxes
themselves with the other input fields (figure 2a).

Note: In this case you have to set the checkbox text to an empty text and use the label control for the label.

Alternatively, you can add a label that is left-aligned with the other labels of the group and use the checkbox text for additional information (figure 2b).
In that case, only the first checkbox should have a label that describes the whole group.

Figure 2a-b: Checkbox within a field group, either with label to the left (left), or with two labels

If space permits you can alternatively use a horizontal checkbox group that occupies one line (typically for 2-3 checkboxes, figure 2c)

file:///F|/resources/htmlb_guidance/checkbox_layout.html (2 of 5) [17.02.03 10:27:53]

Forms - Using Checkboxes

Wrong alignment because the checkbox does not refer to the password
field

Figure 2c-d: Horizontal checkbox group within a field group (left); indented checkbox without group label (right)

Note: Do not use an arrangement without a group label in this case (figure 2d) because it may lead to misinterpretations. Such a layout suggests a
dependency from the field above the group to the user. Even though the layout in figure 2d is the same as in 1a, the usage is incorrect because the
checkbox does not refer to the password field. Therefore, use it only if such a dependency does exist (case 1).

Case 3: Checkboxes that Form an Independent Information Block

If checkboxes are arranged in a checkbox group, they are left aligned with other labels and arranged in a matrix-like fashion. Such groups have either
to be included in a group control (see figure 3a) or separated from the field group by white space (figure 3b).

Figure 3a-b: Checkbox group that forms an information unit of its own - either included in a group (left) or separated by an
empty line (right)

Instead of a matrix, you can use a horizontal arrangement if there are only few checkboxes. In this case, set the columnCount attribute of the the
checkbox group control to a value that results in one row only.

There are two possible arrangements for horizontal checkbox groups:

● The checkbox row can be introduced by a label to the left - in this case align the checkboxes with other elements and use the label control for the
label (figure 4a)

● The checkbox row does not have an introductory label (figure 4b)

Separate the horizontal checkbox group from preceding fields by an empty line.

Note: An "extreme" case of a horizontal checkbox group is a single checkbox.

file:///F|/resources/htmlb_guidance/checkbox_layout.html (3 of 5) [17.02.03 10:27:53]

Forms - Using Checkboxes

Figure 4a-b: Example of a horizontal checkbox group, either with an introductory label to the left (left), or without an
introductory label (right).

For more than two to three checkboxes a vertical arrangement with or without label may be more appropriate (see figure 5a and 5b).

Figure 5a-b: Example of a vertical checkbox group, either with an introductory label to the left (left), or without (right)

 Top

Dependent Fields

In some cases, the state of input fields, dropdown list boxes, or other controls may depend on the setting of a checkbox. Below we present a simple
example where users may enter their contact preferences (figure 6a). An unchecked checkbox describes the default case; it it is set the input field
below it is read-only. A checked checkbox describes the less frequent case. If the user checks the checkbox, the input elements are ready for input.

file:///F|/resources/htmlb_guidance/checkbox_layout.html (4 of 5) [17.02.03 10:27:53]

Forms - Using Checkboxes

Figure 6: Checkboxes that controls the editability of the input field(s) below the checkbox

If there are more dependent elements indent the dependent group so that their labels are left aligned with other input fields (top checkbox). If there is
only one dependent field, usually a field label is not needed (bottom checkbox).

 Top

Related Controls
Radio Button, Dropdown List Box, List Box, Label, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/checkbox_layout.html (5 of 5) [17.02.03 10:27:53]

Forms - Using Radio Buttons

Forms - Using Radio Buttons

Alignment | Dependent Fields | Design Alternatives | Related Controls

Radio buttons provide users with a single
choice from a set of alternative options

Figure 1: A radio button group

This page covers the arrangement of radio buttons, that is, their spatial and dependency relation to fields and other elements in form-like structures. For
details on the radio button control itself, see Radio Button.

Radio button groups offer users a set of alternative choices that may be arranged either horizontally (2-3 radio buttons), vertically (not more than about
12 radio buttons), or in a matrix-like fashion. Note that radio button groups are appropriate for static and relative small numbers of options only. Use the
table view for larger and dynamic data sets.

Alignment

For the alignment of radio buttons we distinguish the following cases:

● Radio buttons that refer to adjacent fields
● Radio buttons that do not refer to elements but should be included in field groups
● Radio buttons that can be arranged as an independent block of information

In general, the first two cases are not as common as for checkboxes.

Case 1: Radio Buttons that Refer to One or More Fields

Align dependent radio buttons with the left border of other input elements (figure 1). Place the radio button labels right to the radio button (this is done
automatically for the radio button control).

Figure 1: A pair of radio buttons that refers to the input field above it (profession)

file:///F|/resources/htmlb_guidance/radiobutton_layout.html (1 of 5) [17.02.03 10:28:06]

Forms - Using Radio Buttons

Note: If there are too many alternatives, consider using a dropdown list box instead of the radio button group.

As noted below, this arrangement should only be used if there is a dependency from other fields above the radio button group.

Case 2: Radio Buttons that are Included in a Field Group

If radio buttons are included in a field group but do not refer to a certain field, do the following (figure 2a-b):

● Place the description of the radio button group to the left of the group and align it with the other field labels
● Align the radio buttons with the other input fields
● Use a label control for the group label

You can use a vertical radio button group, or if space permits a horizontal radio button group that occupies only one line.

Figure 2a-b: Radio buttons within a field group with group label to the left (left shows vertical, right shows horizontal
arrangement)

In general, radio button groups within a field group should have a descriptive label for the group and a label to the right of each radio button.

Rationale: A radio button group is functionally equivalent to a dropdown list box. The group label corresponds to the label for the dropdown list box; the
labels to the right of the radio buttons correspond to the list box items.

Wrong level of labels (male/female is are subcategories) Wrong alignment because the radio buttons do not refer to the name fields

Figure 2c-d: Radio buttons within a field group with two labels to the left of the radio buttons (left) and to the right (right)

file:///F|/resources/htmlb_guidance/radiobutton_layout.html (2 of 5) [17.02.03 10:28:06]

Forms - Using Radio Buttons

Do Not

● A layout without a label for the radio button group and with labels to the left (figure 2c) is harder to understand because the labels are not on the
same semantic level as the surrounding field labels.

● Also do not use an arrangement without a group label in this case (figure 2d) because it is equally hard to understand and may lead to
misinterpretations. Such a layout suggests a dependency from the field above the group to the user. Even though the layout in figure 2d is the same
as in 1a, the usage is incorrect because the radio buttons do not refer to the "Last name" field. Therefore, use it only if such a dependency does exist
(case 1).

Case 3: Radio Buttons that Form an Independent Information Block

If radio buttons are arranged in a separate radio button group, arrange them in a matrix-like fashion and left-align them with other elements on the page
or in the application. Such groups have either to be included in a group control (see figure 3a) or separated from the field group by white space (figure
3b).

Figure 3a-b: Radio button group that forms an information unit of its own - either included in a group (left) or separated by an
empty line (right)

Instead of a matrix, you can use a horizontal arrangement if there are only few radio buttons. In this case, set the columnCount attribute of the the radio
button group control to a value that results in one row only.

There are two possible arrangements for horizontal radio button groups:

● The radio button row can be introduced by a label to the left or a header above - in this case align the radio buttons with other elements and use the
label control for the label or header (figure 4a-b)

● The radio button row does not have an introductory label (figure 4c-d)

Separate the horizontal radio button group from preceding fields by an empty line.

file:///F|/resources/htmlb_guidance/radiobutton_layout.html (3 of 5) [17.02.03 10:28:06]

Forms - Using Radio Buttons

Figure 4a-d: Horizontal radio button groups, either with an introductory label to the left (top left), a heading (bottom left), or
without an introductory label (right)

Note: Do not use a single radio button because there are two problems with it: (1) Users cannot deselect a single radio button; after it has been selected,
it remains so. (2) Users see the name of one option only; they often can only guess what the alternative option is.

 Top

Dependent Fields

In some cases, the state of an input field, dropdown list box, or other control may depend on the setting of a radio button group. Below we present two
simple examples, where users may either enter their nationality (figure 5a), or their payment method (figure 5b). The first radio button describes the
default case; if it is set, the input fields below it are read-only (see this state). The second radio button describes the less frequent case; if it is set, the
dependent input fields are ready for input. Alternatively, in the first example a dropdown list box could be used instead of the input field if the alternatives
are known and their number is not too large.

Figure 5a-b: Vertical radio button group that controls the editability of one (left) or several (right) input fields below the group

file:///F|/resources/htmlb_guidance/radiobutton_layout.html (4 of 5) [17.02.03 10:28:06]

Forms - Using Radio Buttons

Do not use this layout for more than one dependent element. If there are more dependent elements indent the dependent group so that the labels are left
aligned with other input fields (figure 5b).

 Top

Design Alternatives

Radio buttons are similar in function to dropdown list boxes and list boxes with respect to offering users a single choice. Use radio buttons for very small
item numbers (2-6) and if the users should immediately see all alternatives.

See Forms - Using Different List Types for hints on when to choose between those controls.

 Top

Related Controls

Dropdown List Box, Checkbox, List Box, Label, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/radiobutton_layout.html (5 of 5) [17.02.03 10:28:06]

Forms - Using Different List Types

Forms - Using Different List Types

Design Options for Lists | Dropdown List Box vs. List Box | Item List | Related Controls

Design Options for Lists

HTMLB offers several controls for displaying and editing data sets and for selecting from data sets.

● Checkbox: multiple selection from small data sets (static)
● Radio Button: single selection from small data sets (static)
● List Box: Single selection from small data sets (static)
● List Box: Single selection from small to medium data sets (dynamic or static)
● Item List: Display of small to medium data sets in one column - ordered or unordered (static)
● Table View: Display and editing of data sets in a variety of display variants - in ore ore more columns (dynamic), single- or

multiple-selection possible

For information on the respective controls themselves, see Checkbox, Radio Button, List Box, Item List, and Table View.

Below we discuss the design options in more detail, especially with respect to overlapping application areas.

Note: The cases of checkbox and radio button groups are not discussed here; see Forms - Using Checkboxes and Forms - Using
Radio Buttons for details on the layout options for these controls.

 Top

Dropdown List Box vs. List Box

The overview above showed that a list box is similar in function to a dropdown list box - both offer a list of items where users can
select one item from, that is, both are single-selection lists. Here you find criteria for choosing between both controls. In addition, we
provide hints when a set of radio buttons is the appropriate choice.

file:///F|/resources/htmlb_guidance/list_layout.html (1 of 4) [17.02.03 10:27:26]

Forms - Using Different List Types

Figure 1: Dropdown list box (left) vs. list box

When Use a List Box?

● If there is more space on the page
● For larger item numbers
● If users need to know the context of the current selection, that is, the item set or at least part of it
● If users need to carefully consider their choice
● For users with low mouse abilities

When Use a Dropdown List Box?

● In table views
● If space is limited - it occupies one line only
● For smaller item numbers (up to 20 items)
● If users only need to know the current selection, not the whole set
● In shufflers

When Use Radio Buttons?

For very small item numbers (2-6) and if the users should immediately see all available alternatives, use radio buttons.

Use larger radio button sets only in special cases, where it is important that all options are visible, where users are untrained,
and/or where an application imitates a paper-form, such as a Web-based questionnaire or ordering form.

Note: For multiple choices use checkboxes instead of radio buttons.

 Top

Item List vs. List Box

Both item lists and list boxes can be used for displaying a set of options. While list boxes can also be used for selecting items we
focus here on the display aspect. Item lists are static lists with a "paper-like" appearance; they can be ordered or unordered. List
boxes, however, have a "form-like" appearance and also may contain more items than are visible.

file:///F|/resources/htmlb_guidance/list_layout.html (2 of 4) [17.02.03 10:27:26]

Forms - Using Different List Types

If you consider to use a list box, you may check whether a table might also be a valid design option. We also provide some hints for
this option.

Figure 2: Item list (ordered, left) vs. list box

When Use an Item List?

● In paper-like applications, such as news, articles, etc.
● If it is possible to display all items or if the page or application as a whole can be scrolled
● If the number of items is fixed

When Use a List Box?

● In form-like applications, typically together with other form elements, such as input fields and selection elements
● If a selection is needed
● If space may not suffice to display the whole list
● If the application or page cannot be scrolled in order to display more items
● If bullets or numbers should not appear

When May a Table View Be Used?

In the following, we list scenarios, where a table view may be used instead of a list box. Note that this an option to consider, not a
recommendation. The only exception is multiple-selection, which is available for the table view only.

Typically, you would use the table view in the transparent design for this application. Also note that a table view introduces "visual
overhead", such as the title, column headers, and scroll buttons.

● In form-like applications where the data form a separate information unit that cannot be mixed with fields
● Where a multiple-column display is needed
● Where scroll buttons are preferred over scrollbars (page-wise scrolling)
● Where multiple-selection is needed (this is currently not possible with list boxes)

Note: Static multiple-selection can also be implemented using a checkbox group.

file:///F|/resources/htmlb_guidance/list_layout.html (3 of 4) [17.02.03 10:27:26]

Forms - Using Different List Types

 Top

Related Controls

Checkbox, Item List, Dropdown List Box, List Box, Radio Button, Table View

 Top

file:///F|/resources/htmlb_guidance/list_layout.html (4 of 4) [17.02.03 10:27:26]

Table View Functions

Table View Functions

Placement of Buttons for Functions | Functions Referring to Table View Columns, Sorting | Functions Referring to Table View Rows
| Filtering, Shufflers | Related Controls

Figure 1: Example of a table view with different column types and an erroneous input field

Table views not only present data in a tabular fashion, or allow for tabular data entry. They also provide a number of functions, part
of which change the presentation of the data, while other functions may change the data themselves.

Table view functions may refer to the table view as a whole, to columns, to rows (= items), or to single cells. These cases are
described below; in addition often-used functionalities, such as sorting and filtering are covered.

Note: Here, we do not cover functions that are included in the table view framework, such as scroll functions. See Table View for
these functions.

For details on the table view control itself, see Table View.

 Top

Placement of Buttons for Functions

Location

Place buttons acting on a table view as a whole below the table view and left-aligned with the table. Place the emphasized button to
the left if there is one.

file:///F|/resources/htmlb_guidance/table_usage.html (1 of 3) [17.02.03 10:28:26]

Table View Functions

Button Groups

Separate button groups by a spacer (non-breaking space).

 Top

Functions Referring to Table View Columns, Sorting

Buttons Referring to Columns

Some functions, for examples Sort, refer to certain columns. Place buttons with small icons into the column headers to speed up
interaction.

If there are alternative variants of a function (e.g. different sort orders or calculations), consider to display only one icon at a time in
order to save space, instead of displaying two or more icons in parallel.

Do not use more than three icons in a column header.

Links in Column Headers

If it is evident what a function does, you can also use a link in the column header text.

 Top

Functions Referring to Table View Rows

Functions referring to table rows typically refer to the item the data of which are displayed in a row. These functions can either be
presented as

● Buttons,
● Icons, or
● Links

Use buttons for most functions. Use icons and links for the following exception cases:

● Icons: Web standards, such as Delete, Info, Help, or Shopping Basket
● Links: Navigation functions, such as Details (place the link in the name or ID column), additional information, etc.

As a general rule for selecting the correct control, care for the application context and the respective "Web standards".

Table Cells: Links vs. Buttons

Note that links are not self-explaining. Therefore, use links only where their purpose is evident. Add tooltips to links to support
users.

file:///F|/resources/htmlb_guidance/table_usage.html (2 of 3) [17.02.03 10:28:26]

Table View Functions

See Links vs. Buttons for more information.

 Top

Filtering, Shufflers

Offer filters as much as possible. Filters help to reduce the amount of data displayed in a table view. This helps users and
improves performance.

Use shufflers for creating filter statements. See the respective section on shufflers in the iView Guidelines.

Placement

Place the shuffler statement above the table view and left-align it.
Reason: A left-aligned shuffler is not hidden from view if the window size is altered.

Button

Use a button labeled Go to start the filtering process. Use events on dropdown list boxes for simple cases only (one dropdown list
box with label).

 Top

Related Controls

Tree View, Item List, List Box

 Top

file:///F|/resources/htmlb_guidance/table_usage.html (3 of 3) [17.02.03 10:28:26]

Positioning Buttons

Positioning Buttons

Positioning | Overview of Positioning Rules | Related Controls

Buttons are used for
explicit functions that
refer to a given object or
serve for navigational
purposes

Figure 1: Example of an iView containing groups with buttons and two buttons belonging to the iView
itself

 Top

Positioning

Place buttons below the object they refer to. If space is scarce, place the buttons to the right of the object (for several objects place
them to the right of the bottom object).

How to make clear which object(s) a button refers to:

● Place the buttons inside, or close to the object.

file:///F|/resources/htmlb_guidance/button_layout.html (1 of 4) [17.02.03 10:27:20]

Positioning Buttons

Example: Place buttons inside group boxes, place buttons close to the fields they refer to

Figure 2: Example of a button inside a group referring to a list box

● Left-align button and object.
Example: Left align buttons referring to a field with the field label

Figure 3: Example of left-aligned buttons inside a group

● Place button(s) on the same level (area, group box) as the objects which are affected by the action.
Example: Place buttons that refer to fields in a group box or area within that group box, or area (figure 2 and 3)

● Show/hide objects: When an object is hidden, buttons are also hidden.
Example: If a table is hidden, the related buttons are also hidden

Figure 4: Example of a left-aligned button group containing an emphasized button

● If an emphasized button (see Types) is a member of a button group, it is the leftmost button in this group.

● Navigational buttons are placed at the bottom left of a screen (or screen area).

 Top

Overview of Positioning Rules

file:///F|/resources/htmlb_guidance/button_layout.html (2 of 4) [17.02.03 10:27:20]

Positioning Buttons

The following table summarizes the rules for button placement.

Object Example Placement

Single
object

Field Right to the object

Figure 5: Button next to field

Several
objects

Field group Default case: left-aligned below the bottom object
If space is scarce: to the right of the bottom object (see figure 4)

Area,
tabstrip,
group box

Group box At the bottom, left-aligned (see figure 3)

Table View
(fixed size)

Table based on
Table View control
or Portal Data
Viewer

Below the table, left-aligned with the table

Figure 6: Button below a table

Special
case: Long
table

Scrolling table Above and below the table, left-aligned
Alternative: Implement a special frame for buttons above a table, which does not scroll.

Table 1: Rules for button placement

Usage guidelines for the different button types and sizes are presented in Button.

file:///F|/resources/htmlb_guidance/button_layout.html (3 of 4) [17.02.03 10:27:20]

Positioning Buttons

 Top

Related Controls

Link, Input Field, Group, Table View

 Top

file:///F|/resources/htmlb_guidance/button_layout.html (4 of 4) [17.02.03 10:27:20]

Error Handling

Error Handling

Error Prevention | Error Handling for Fields | Error Handling in Tables

Beside help, error handling is an important aspect of user support. Error handling helps users to overcome problem situations and
to continue their work.

Typically, error handling is done by indicating the location where the error occurred and by sending an error message that notes the
error, explains the reason for it and - ideally - provides hints on how to remedy the error situation.

For details on message texts see chapter Formulating Messages in the SAP Reference Lists on the SAP Design Guild.

This page covers three areas: (1) error prevention, (2) error handling for fields, and (3) error handling in tables.

Error Prevention

Error Prevention Comes First!

Before handling errors, you should first ask how errors can be prevented. Generally, you should design iViews and Web
applications so that errors cannot occur. Preventing errors - instead of remedying them - has the following benefits:

● Users cannot come into error situations - many users have problems with recovering from errors.
● The users' work is not interrupted by error messages.
● Users are not confused or puzzled by (often cryptic) error messages.
● There is no need for a screen area that display errors.

If it is not possible to prevent errors, follow the guidelines presented below.

How You can Prevent Errors

Often it needs some rethinking and the giving up "old habits" to find design solutions that prevent errors instead of sending an error
message after an error has occurred.

In the following we provide some ideas and examples that may stimulate your imagination when looking for ways how errors can be
prevented.

Prevent Wrong or Invalid Inputs - General

● Use precise descriptions and instructions - do not be too short (especially for Web applications)
● Indicate required fields (through a red asterisk *) and an explaining text

Prevent Wrong or Invalid Inputs

● Numeric fields: Prevent users from entering letters by parsing the input string.
● Date and time fields: Provide "intelligent" date and time fields that are preformatted, or provide selection controls instead of

input fields (dropdown lists, spin buttons, calendar controls).
● Currency fields: Use preformatted fields.

file:///F|/resources/htmlb_guidance/error_handling.html (1 of 4) [17.02.03 10:28:24]

Error Handling

Prevent Incomplete Inputs

● Indicate required fields (through a red asterisk *) and an explaining text

Prevent Invalid Actions

● Disable buttons that cannot be used in the current context.
● Do not offer functionality that is not needed.

Prevent Disastrous Actions

● If actions can have severe consequences for the user, add explaining texts to the respective buttons and inform the users
about the consequences

● Send dialogs if users can loose data

Use Controls in the Correct and Intended Ways

● Do not use screen elements where uses expect to use them in any order, if there are dependencies or if a certain sequence of
steps has to be followed.
Example: Do not use tabstrips for views that depend on each other and cannot be viewed at random. At best, do not force
users to perform steps in a fixed sequence.

● In general, do not use controls in other than the intended ways. "Creative" use of controls clashes with the users' expectations
and may lead to severe usage problems.
Example: Do not misuse checkboxes as radiobuttons just because you like the look of the checkboxes better.

Make the Page/iView and its Purpose Clear to the User

● Often important information is hidden while unimportant information dominates the page. In other cases users simply have no
clue what an application's purpose is. Thus, provide the necessary information and arrange it so that relevant things are
recognized first - this way users realize what to do on a screen and how.

● Use precise descriptions and instructions - do not be too short (especially for Web applications)

Error Handling for Fields

Set the field or fields where an error occurred to the error state (see input field) and place an error message as close to the field
where the error occurred as possible (if there is more than one field, place the message at the first error field). Place the cursor into
the (first) error field.

Avoid Popups!

Popups interrupt the users' work flow and thus annoy them.
Exception: You may use popups for severe errors like aborts that need direct user intervention.

Future Development

After validation of a field, the error message will appear in a line directly below the field. As this change in layout can be performed
locally, there will be no major screen flicker.

iViews: In addition, iViews (trays) will have a status bar where a general error message will appear. This status bar may also
display warnings and success messages (an icon will indicate the type of the message). The location of the status bar can be either
below the title bar or at the bottom of the tray (open). The status bar may be hidden by the application.

file:///F|/resources/htmlb_guidance/error_handling.html (2 of 4) [17.02.03 10:28:24]

Error Handling

Error Handling in Tables

Errors can appear in table views for different reasons. For example, a user may enter invalid data, or certain items from a set
cannot be posted. These cases have to be handled differently.

Input Errors

If a user enters invalid data, highlight the erroneous fields and scroll the table to the first field where an error occurred.

If an error message is needed, place it below the table view or - if possible - in a table row directly below the row where the error(s)
occurred.

Future Development

Table views will have a status bar, where the error message will appear. Place the cursor into the error field and scroll the table to
make the field visible in case it is hidden from view.

If there is more than one error field, display the message for the first error field, place the cursor into that field and scroll the table to
make it visible if necessary.

If the cursor is placed into a subsequent error field, display the message for the respective field. If an error is corrected move the
cursor to the subsequent error field if there is one and display the respective error message.

If the focus is outside the table view, display the first error message again.

iViews: In addition the planned status bar of an iView (tray) may display a general error message.

Posting Errors

Posting errors often do not require to cancel the whole posting process. It is only necessary to correct and re-post those items that
were erroneous. Therefore, redisplay the table view with the erroneous items only and provide the user with a possibility to correct
the items. Place an error message above the table.

Future Development

Place the error message inside the status bar of the table view.

 Top

Related Controls

Flow Layout, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/error_handling.html (3 of 4) [17.02.03 10:28:24]

Accessibility of HTMLB Controls

Accessibility of HTMLB Controls

General Information | References

General Information

This page offers general information for application developers using HTMLB who want to make their Web applications accessible.
For details see section Accessibility on the More Info page for the respective controls.

Most accessibility features are already provided by the central rendering engine of HTMLB. Therefore, application developers only
have to add those features that cannot be provided by default.

As an application developer, keep in mind that you cannot affect page elements on the basis of HTML tags or attributes. The only
interface to the HTMLB controls is the HTMLB programming interface -- the HTMLB attributes and methods for the respective
controls.

Examples

● Application developers cannot set the title attribute of elements in order to extend descriptions, they have to use the setTooltip
method, instead.

● They also cannot set the summary attribute of tables, they have to use the setSummary method provided by HTMLB.

Descriptions

The central HTMLB rendering engine already provides general descriptions for HTMLB controls, such as the type, the state, and on-
screen text. Therefore, application developers only have to complement descriptions in case that users need more specific
descriptions or instructions. The descriptions written by the application developers are added to the default descriptions that are
provided by the central rendering mechanism.

Examples

● A button description has to be extended if a button opens a new window.
● In general, a description has to be extended if a button introduces an interaction that cannot be recognized by a blind user.

Accessibility Flag

Also note that the resulting description that is sent to the users depends on the state of the accessibility flag:

● If the accessibility flag is set, the default description is extended by the description that the application developer provided.
● If the flag is not set only the description that the application developer provided is sent to the user.

Keyboard Accessibility

As application developers cannot set HTML attributes directly, they do not have access to the tabIndex attribute of elements.
Consequently, application developers cannot add elements to the accessibility hierarchy themselves in order to make them
keyboard accessible.

Input Elements and Corresponding Labels

file:///F|/resources/htmlb_guidance/accessibility.html (1 of 2) [17.02.03 10:28:27]

Accessibility of HTMLB Controls

Input elements, such as checkboxes, dropdown listboxes, input fields, radiobuttons, and text edit controls need to be connected to
a label, so that screen readers recognize the association of the label with the input element. Use the HTMLB label control for this
purpose (use method setLabelFor for identifying the corresponding control).

The connection between a label and its corresponding input element also simplifies the interaction with the element when using the
keyboard or mouse.

 Top

References
● SAP Portals Accessibility Guidelines
● API Java Docs

 Top

file:///F|/resources/htmlb_guidance/accessibility.html (2 of 2) [17.02.03 10:28:27]

General Layout Strategy

General Layout Strategy

Structure of the Layout Section in these Guidelines | General Page Layout Aspects

This page describes a general strategy for layouting Web pages, applications, and iViews. Layouting a page is not just "throwing"
controls on a page. Several aspects have to be considered, such as

● Flow of control - how the user progresses through a page when doing his or her work
● Dependencies - how elements on a page affect each other
● Togetherness - which elements on a page belong to each other, there may be closer and farther relations between elements
● Aesthetics and general Gestalt principles - how information can be effectively communicated visually

There are three steps in layouting - these can be done in the following sequence: Determine the ...

1. Sequence of elements (vertical, horizontal)
2. Nesting of elements
3. Spacing between elements at different hierarchy levels.

The sequence takes care of the flow of control, dependencies, and information about which elements belong together - the latter in
a more linear fashion. The nesting also takes care of dependencies and of togetherness -- but in a hierarchical or top-down
fashion. The spacing takes care for aesthetics and the proper application of Gestalt principles (mostly togetherness).

 Top

Structure of the Layout Section in these Guidelines

This page covers general layout aspects, such as the roles of sequence, nesting and spacing. Layout Hierarchy covers the detailed
nesting, that is, which objects have to be on the same level and which can be nested. The pages on Flow Layout, Grid Layout, and
the pages on spacing (single and grouped controls) cover the details of spacing.

 Top

General Page Layout Aspects

The Role of Sequence

The sequence of elements should typically be determined by the flow of control, that is, the way how users perform their tasks.
Often, however, a task may not be linear or users have to step back because of errors. Here, the page designer has to find a
"natural" sequence that fits most users and scenarios.

In addition, conventions, such as the reading direction, play an important role for the arrangement of elements. For Western
cultures, the typical arrangement of elements is from left to right and from top to bottom, just like the reading direction.
Dependencies are also typically communicated this way. "First things first" is also a motto, which expresses that there is a "natural
progression" in most things we do. For example, when entering a customer's address we start with the name, which is the main
information that determines the remainder of the information - we do not start with the street and house number, even though one

file:///F|/resources/htmlb_guidance/layout_general.html (1 of 3) [17.02.03 10:28:28]

General Layout Strategy

might infer the customer's name from that information.

Such a rule may be natural to everybody and most designers follow it without even thinking about it. Problems occur, however, if
this rule is broken, and the flow or dependencies go into the opposite direction. Such reversals often present severe obstacles for
users.

Arranging elements on a page is the first step in page design. This can also be done in a prototypical fashion and tested with users
(for example with paper prototypes) without worrying for the details of the page design.

The Role of Nesting

There are two basic ways to visually indicate the relation between elements - closeness and nesting. Closeness means that
objects, which are located closely together, are perceived as more closely related than objects that are farther apart from each
other. Closeness of elements is typically combined with direction to indicate flow of control or dependencies. For example, first you
enter a value into a search field (left) and then you click the related Go button next to it (right).

Nesting is used to indicate more complex hierarchical relations and dependencies between objects. Nesting is also a way to hide
details from users because users can first deal with the high-level objects and then decide, which one they want to inspect more
closely.

Nesting can make pages much more complex than simple sequencing of elements because nesting requires the introduction of
borders or other visual separators that may clutter pages visually. Therefore, nesting rules have been established that aim to
prevent the creation of overly complex pages (see Layout Hierarchy and the respective controls). Spacing can help to reduce the
cluttering effect but often requires more space than is available.

Nesting can also be explored in a prototypical fashion (paper prototypes, HTML prototypes); here, the prototype may already be
more detailed than in the initial phase.

The Role of Spacing

Spacing is very importing in communicating which elements belong together; it also affects readability and the ability of users to
recognize information on a page.

In general, application developers should not need to bother with the details of spacing, that is, with how many pixels they have to
insert between, for example, a button and the border of a group. There are two HTMLB controls, the grid layout and the flow layout,
which take care for the exact spacing. In addition, containers, such as the tray and the group, also care for the outer spacing.

Note: Currently, the spacing controls do not work as intended. Therefore, developers should consult the pages on the grid layout
and on the flow layout for the limitations of these controls.

Only high-level prototypes that intend to offer a realistic preview of a final page need to bother with detailed spacing.

 Top

Related Controls

Flow Layout, Grid Layout

file:///F|/resources/htmlb_guidance/layout_general.html (2 of 3) [17.02.03 10:28:28]

Layout Hierarchy

Layout Hierarchy

From Containers to the Layout Hierarchy | Layout Hierarchy for iViews and Web Applications | Table Overview of the Layout
Hierarchy | General Nesting Rules | Related Controls

This page describes the layout hierarchy of Web pages, which defines the options for nesting page elements. In short, this page
tells designers, which page element can be placed into which container element - including placing containers inside containers.

The layout hierarchy is the basis for establishing textual layout rules for pages and page sections. The main goal of such rules is to
prevent overly complex and visually cluttered pages caused by excessive nesting.

Note: These rules do not comprise the spacing between and within elements.

 Top

From Containers to the Layout Hierarchy

Page elements can either be containers or non-containers. Containers can contain other elements, non-containers not. The layout
hierarchy described below basically deals with container elements, that is, with elements that can contain other elements including
other containers. This is critical because too much nesting can let a page appear visually overloaded.

Application Containers

At the root of the layout hierarchy there is a "root" container that contains the application. In the Web or portal environment, there
are two cases to consider:

● The application container is a simple background, such as a frame or window. This is the case for the so-called Web
applications, including the portal administration applications

● The application container is a tray or tile. The container which may have elements and controls on its own; the application that
resides inside this container may use the services of the container. From the application's point of view the container is all it
knows about -- at least from a design perspective.

Container Controls Inside Applications

Inside an application, container controls define the layout hierarchy of an application. Such containers are:

● Areas (Web applications only)
● Tabstrips
● Groups
● Subgroups (group of simple elements with or without heading - not included in a group control)

A Matter of Interpretation - Linear Sequences vs. Sequences of Containers

From a technical point of view, not all of these containers are "real" containers. Areas are subdivisions of an application. That is,
areas form a linear sequence within an application. Subgroups are groups of simple page elements that may be introduced by a
heading. Typically, they are separated from the remainder of the page by whitespace or separator lines.

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (1 of 6) [17.02.03 10:28:11]

Layout Hierarchy

From a layout point of view, however, it is easier to view areas and subgroups as "real" containers - for the layout process this does
not make any difference. The advantage of regarding these elements as real containers is that a layout can be expressed in a
hierarchical or treelike fashion, which makes it easy to gain an overview of the page or application structure.

Non-Containers

While containers create the "skeleton" of a page, non-containers are the "flesh" of a page. These elements are fields, buttons,
selection elements, text units, and tables. As these elements differ in complexity, nesting rules ensure that a page cannot become
too complex. For example, table views are similar in complexity to groups and tabstrips. Therefore, they are placed on the same
level in the layout hierarchy as these containers. A respective rule that takes this aspect into account would state that table views
may not be placed into groups or tabstrips if they are the only control that is inside the container.

Separators

Separators, such as line or whitespace "separate" elements or containers. Therefore, they are difficult to integrate into a
hierarchical model of a page layout. They can be viewed as "concluding elements" or "borders" of containers (they are easier to
integrate into a "linear" model of the layout).

Note that separators are different. While you would separate containers or elements that are on the same hierarchy level
whitespace, you would use lines because that would introduce unnecessary framing.

Creating the Layout Hierarchy

The layout hierarchy is created by placing containers and simple elements on a page. The rules presented below govern how page
elements can be combined, either by sequencing them vertically or horizontally, or by nesting.

Containers may contain containers (nodes), simple elements (leaves), or both. In addition, non-containers may reside on the same
hierarchy level as containers. But they are "end nodes" and do not continue the layout hierarchy.

Example: A table view may reside on the same level as a group or a tabstrip

The layout rules presented below specify:

● Which containers may contain which other container(s) - including itself
● The specific conditions for the nesting, for exampe, alone or together with other elements
● How many levels deep the nesting may be
● Which simple elements may be placed into which container - and the specific conditions for this
● Which containers and which simple elements are on the same hierarchy level

 Top

Layout Hierarchy for iViews and Web Applications

Depending on the container elements used, different application types can have different layout hierarchies. In the case of the
portal environment, there are Web applications and iViews. Both application types use different containers, serve different
purposes, and therefore differ in complexity with respect to the layout.

iView

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (2 of 6) [17.02.03 10:28:11]

Layout Hierarchy

● Tray = iView container
❍ Tabstrip - may contain:

■ Group (if it is not the only element)
■ Subgroup
■ Table View (if it is not the only element)
■ Simple Elements
■ Separators

❍ Group - may contain:
■ Group (if it is not the only element, different group types only)
■ Subgroup
■ Table View (if it is not the only element)
■ Simple Elements
■ Separators

❍ Subgroup - may contain:
■ Simple Elements
■ Separators

❍ Table View
❍ Simple Elements
❍ Separators

Generally, there should not be more than one level of nesting within trays/iViews. Also note that tabstrips may not be nested.

Simple elements are: input fields, selection elements, text, buttons, ...

Note: A similar tree can be created for real iViews based on the elements used.

Web Application

● Application Background = Window/frame background = application container
❍ Area - may contain:

■ Tabstrip - may contain:
■ Group (if it is not the only element)
■ Subgroup
■ Table View (if it is not the only element)
■ Simple Elements
■ Separators

■ Group - may contain:
■ Tabstrip (if it is not the only element)
■ Group (if it is not the only element, different group types only)
■ Subgroup
■ Table View (if it is not the only element)
■ Simple Elements
■ Separators

■ Subgroup - may contain:
■ Simple Elements
■ Separators

■ Table View
■ Simple Elements
■ Separators

❍ Single elements??? - Open

Generally, there should not be more than one level of nesting within Web applications. Also note that tabstrips may not be nested.

Simple elements are: input fields, selection elements, text, buttons, ...

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (3 of 6) [17.02.03 10:28:11]

Layout Hierarchy

Note: A similar tree can be created for real Web applications, based on the elements used.

Note: The critical question for Web applications is, whether single elements and containers other than areas can be placed on the
application background. Currently, the application background may not be used for non-container elements (see the IAC Guidelines
in the SAP Design Guild). In R/3 applications, header data may be placed on the application background; there is no such a
container concept in R/3 applications as areas.

 Top

Table Overview of the Layout Hierarchy

The following table overviews present a more detailed description of the layout hierarchy for iViews and Web applications. Red cells
explicitly prohibit certain nestings. Yellow cells indicate cases where elements can be placed into other elements with certain
restrictions only (see also the reasons for these rules).

iView

Element
below can be placed
within Container
to the right

Container

iView (Tray) Tabstrip Group Subgroup

Tabstrip yes: together with other
elements
no: as single element

no no * no

Group yes: together with other
elements
no: as single element

yes possible - but use with
care!

one level at maximum -
use different types for
the nesting

no

Subgroup yes yes yes no

Table View yes: together with other
elements
no: as single element

yes no * no

Text Area, Graphic yes yes yes no

Separator
(White Space, Line)

yes yes yes no

Heading yes: for subgroup, text
area, graphic

yes: subgroup, text area,
graphic

yes: subgroup, text area,
graphic

yes (as heading for the
subgroup)

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (4 of 6) [17.02.03 10:28:11]

Layout Hierarchy

Field, Selection
Element, Icon, Button

yes yes yes yes

Legend

● *) As iViews are simple applications, tabstrips and table views should not be placed into group controls.
● Red cells: Nesting forbidden
● Yellow cells: Nesting allowed under certain conditions only
● The bold no's indicate common errors, such as nested tabstrips.

Web Application

Element
below can be placed
within Container
to the right

Container

Application (Background) Area Tabstrip Group Subgroup

Tabstrip ??? yes (can be a single
element with area
header as title)

no yes: together with
other elements
no: as single element

no

Group ??? yes: together with
other elements
no: as single
element

yes possible - but use
with care!

one level at maximum
- use different types
for the nesting

no

Subgroup ??? yes yes yes no

Table View ??? yes yes yes: together with
other elements
no: as single element

no

Text Area, Graphic ??? yes yes yes no

Separator
(White Space, Line)

??? yes yes yes no

Heading ??? yes: group, text
area, graphic

yes: subgroup, text
area, graphic

yes: subgroup, text
area, graphic

yes

Button ??? yes yes yes yes

Field, Selection
Element, Icon

??? yes: Header data,
group ???
no: other data ???

yes yes yes

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (5 of 6) [17.02.03 10:28:11]

Layout Hierarchy

Legend

● Red cells: Nesting forbidden
● Yellow cells: Nesting allowed under certain conditions only
● The bold no's indicate common errors, such as nested tabstrips.
● ??? Open (placement of elements on the application background)

 Top

General Nesting Rules

The following nesting rules are derived from the table overviews above and arranged according to design rationales, such as
avoiding too much framing and avoiding redundant headers.

Avoid Redundant Headers

The nesting rules defined for the layout hierarchy strive for avoiding redundant headings. Thus, do not place:

● Singular group boxes within areas (Web applications only), or tabstrips
● Singular tables with a table heading within group controls

Avoid Too much Framing (Visual Complexity)

Too many frames and borders make screens visually complex and waste screen space. Thus, do not place:

● Singular tables with a table header within group controls - use a table heading instead
● Singular tabstrips within group controls - Web applications: place them in areas instead; use header texts, or the area header

as a title for the tabstrip
● Group controls within group controls - use groups with text headers and separators instead (not forbidden but should be used

with care - try to use different types for the nesting)
● Tabstrips within tabstrips - nesting tabstrips is a perfect way of information hiding
● Separator lines between containers or container-like elements

 Top

Related Controls

Flow Layout, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/layout_hierarchy.html (6 of 6) [17.02.03 10:28:11]

Spacing Between Grouped Controls

Note:
The values you find in here for spacing and layouting can not be used with the grid layout control currently in usage, and are not meant to be used with it. The grid
layout control as the current SAP layouting tool does only support very simple design possibilities. For information how to use the grid layout control see: Grid
Layout / Usage and Types.
A new form layout control is being developed and will be available latest with the 6.0 version of the portal. The pages about spacing you find under the first point
"1. General" have been written to support the development of the form layout tool, and to meet the necessities of future design needs in advance.

Spacing Between Grouped Controls

Spacing in a Tray | What's a Correct Spacing Good for | Spacing between Groups | Spacing
between Group Controls with Header and Border | Spacing of Elements in Groups |
Arranging Groups | Spacing Soft Groups

This page describes the detailed spacing between grouped controls. For the spacing
between single controls, see Spacing Between Single Controls.

The following issues are covered here:

● Spacing in a Tray - the offset between a tray's border and its content
● What's a Correct Spacing Good for - the reasoning behind tray offsets and caesuras
● Spacing between Groups - the spacing between primary and secondary groups, that is,

between nested groups
● Spacing between Group Controls with Header and Border - this comprises more

complex controls and the groups
● Spacing of Elements in Groups - the offset within groups, such as the offset between the

group border and its content and the group header and its content
● Arranging Groups - Alignment of groups and offsets between groups within trays
● Spacing Soft Groups - Spacing rules for groupings that do not use a group control as

container

The spacing rules in short:

● Offset between tray border/header and content: 5 pixels
● Spacing between primary and secondary groups: 10 pixels
● Spacing between group controls with header and border: 10 pixels
● Offset within groups, i.e. between group border and content: 5 pixels
● Spacing within groups: 10 pixels between title and content, 10 pixels between content

and buttons
● Spacing between soft groups: 15 pixels horizontally, 30 pixels vertically

Below you find positive and some negative examples for these cases.

 Top

Spacing in a Tray

file:///F|/resources/htmlb_guidance/spacinggr.html (1 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

This part of
the HTMLB
guidlines has
been
updated. The
former
specifications
for the tray
offset are not
valid any
longer. The
old
specifications
are now
striked
through and
replaced by
new ones.
The reason
for this is that
due to
technical
reasons in
EP50 the tray
did not deliver
the 5 pixel
offset it was
supposed to,
though the
grid layout
control did so.
Thus an
offset of only
five pixels
was possible.
With EP60
the offset for
the tray
content will
be delivered
by the tray
itself. See the
further
specifications.

Figure 1a: Offset around a tray in EP50. The tray offset was only
delivered by the grid
layout control and thus is only 5 pixels and not 10 as assumed.

 Top

By EP6.0 the whole content offset of a tray will be delivered by the
tray itself. With the new design for EP60 new design specifications
have been made. The new tray offset is specified in the picture on
the left.

file:///F|/resources/htmlb_guidance/spacinggr.html (2 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 1b: Offset around a tray in EP60

 Top

Although you do not always need an offset on the right side, you
must always give one to the tray. Whether the offset is needed,
depends to the tray's current size which is dependent to the current
layout of the portal.

Figure 2: Example of an offset around a tray

 Top

file:///F|/resources/htmlb_guidance/spacinggr.html (3 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Avoid this. No offset at all gives the impression of elements falling
out of the tray.

Figure 3: Example of a wrong offset around a tray

 Top

What's a Correct Spacing Good for

We use offsets for both groupings and caesuras. In the above examples a 5 pixel offset around the tray's content area ensures that a tray's content is realized as
being in the tray.
Caesuras separate areas from each other. They stress the individual character of the single area, for instance the group.

 Top

Spacing between Primary and Secondary Groups

The spacing around grouping controls of
the type "primary group" and "secondary
group", i.e., groups without a border and
without a header area, should be 10 pixels.

file:///F|/resources/htmlb_guidance/spacinggr.html (4 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 4: Spacing around secondary groups

 Top

The caesuras clearly stress three areas,
realized as three groups.

file:///F|/resources/htmlb_guidance/spacinggr.html (5 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 5a: Example of spacing around secondary groups

 Top

A smaller offset blurs the contrast between
secondary group control and the tray's
background.

Figure 5c: Example of wrong spacing around secondary groups

 Top

Spacing between Group Controls with Header and Border

Group controls with header and border should also be surrounded by a 10 pixel offset to clearly separate the single groups from each other.

file:///F|/resources/htmlb_guidance/spacinggr.html (6 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 7a: Spacing group controls with header and border

 Top

A smaller offset makes the area around the borders noisy and disquiet. When more then two borders come together in a very small space it is very hard to
figure out which border belongs to which group. It becomes even harder, when the borders have the same color.

file:///F|/resources/htmlb_guidance/spacinggr.html (7 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 7b: Example of noisy interface

 Top

Spacing of Elements in Groups

file:///F|/resources/htmlb_guidance/spacinggr.html (8 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

A group's content should be
surrounded by an offset of five
pixels.

Figure 8a: A group's inner offset - borders

 Top

Leave an offset of 10 pixels
beneath titles and above buttons.

file:///F|/resources/htmlb_guidance/spacinggr.html (9 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 8b: A group's inner offset - inner spacing

 Top

Arranging Groups
Groups must have a vertical alignment which is achieved by giving them a width of 50%. A horizontal alignment is nice to have but not necessary. However, a
scenario like the following must be avoided by any means.

file:///F|/resources/htmlb_guidance/spacinggr.html (10 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 9a: Arranged groups

 Top

file:///F|/resources/htmlb_guidance/spacinggr.html (11 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 9b: Example of unaligned groups

 Top

Spacing Soft Groups
All those groupings which are not hold together by a second or third control that, on the visual side, is rendered as a box, are called soft groups. Soft groups are
formatted text or elements that are both, gathered under a header and separated by caesuras. We separate soft groups from each other by using blank space.
The advantage of doing so is, we need less code as we do not use an additional control. Second, we have a quite interface as we do not use group boxes with
borders or HTML elements like horizontal rulers. The disadvantage of this method is, we have to waste a lot of space to clearly separate single groups from
each other.
Use a caesura of 15 pixels to separate soft groups from each other.

file:///F|/resources/htmlb_guidance/spacinggr.html (12 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 10a: Soft groups

 Top

Title and Text can be assigned clearly.

file:///F|/resources/htmlb_guidance/spacinggr.html (13 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 10b: Example of soft groups

 Top

It is possible to use a two column layout like in this example. If doing so, a caesura of 30 pixels should be used.

file:///F|/resources/htmlb_guidance/spacinggr.html (14 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 10c: Caesura between a two column layout

 Top

Whenever we decide to use a layout of this kind, we do not use more then two columns. When using two columns we can decide between dividing the available
space in proportions of:

1/2 and 1/2
or: 2/3 and 1/3
or: 1/3 and 2/3.

file:///F|/resources/htmlb_guidance/spacinggr.html (15 of 16) [17.02.03 10:27:43]

Spacing Between Grouped Controls

Figure 10d: Multiple column layout

 Top

file:///F|/resources/htmlb_guidance/spacinggr.html (16 of 16) [17.02.03 10:27:43]

Spacing Between Single Controls

Note:
The values you find in here for spacing and layouting can not be used with the grid layout control currently in usage, and are not meant to be
used with it. The grid layout control as the current SAP layouting tool does only support very simple design possibilities. For information how to
use the grid layout control see: Grid Layout / Usage and Types.
A new form layout control is being developed and will be available latest with the 6.0 version of the portal. The pages about spacing you find
under the first point "1. General" have been written to support the development of the form layout tool, and to meet the necessities of future
design needs in advance.

Spacing Between Single Controls

Groups of Entry Fields | Check Box Groups | Radio Button Groups | Mixed Form Elements in Vertical Succession

This page describes the detailed spacing between single controls. For the spacing between grouped controls, see Spacing Between Grouped
Controls.

The following controls are covered here:

● Groups of Entry Fields - this is the most often needed case for form-line applications
● Check Box Groups and Radio Button Groups - these elements are often used in groups for offering choices or options
● Mixed Form Elements in Vertical Succession - this case covers combinations of different input elements, which are arranged in one vertical

column; for several columns refer to the spacing for multi-column checkbox/radio button groups

The spacing rules in short:

● Vertical spacing between single elements: 5 pixels for fields and dropdown list boxes, 8 pixels for checkboxes and radio buttons
● Horizontal spacing between multiple columns: 15 pixels
● Horizontal spacing between label and input element, width of label column: Width of widest label plus an offset of 8 to 22 pixels
● Spacing between selection element and label: 8 pixels for checkboxes and radio buttons

Below you find positive and negative examples for all these cases.

 Top

Groups of Entry Fields

Leave an offset of five
pixels between entry
fields.

file:///F|/resources/htmlb_guidance/spacingsi.html (1 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Figure 1a: Offset between fields

 Top

At SAP it is common
style to have fields that
are left aligned with
ragged edges on the
right side.

Figure 1b: Fields have ragged edges

 Top

file:///F|/resources/htmlb_guidance/spacingsi.html (2 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Justified fields are not
necessarily wrong.
However, it is hard to
figure out why one
needs a birth date field
with more than eight
characters.

Figure 2: Example of justified fields

As one can never predict
the length of a field label
on the one side, and
how many fields will be
necessary in one
scenario in succession
on the other, it is hardly
possible to give a
standard offset between
label and entry field.
As a rule of thumb one
can say: In one row of
entry fields that follow
each other in succession
consider the offset
between the widest label
and its entry field. If
possible, try to avoid an
offset smaller then 8
pixels, which is one
character, and wider
then 22 pixels, which is
three characters.
In the scenario on the
left the offset between
widest label and its
corresponding entry field
is 8 pixels.

Figure 3a: Offset between label and fields

file:///F|/resources/htmlb_guidance/spacingsi.html (3 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

By restricting the space
next to the widest label
to a maximum size we
ensure that the offset
between the smallest
label and its
corresponding entry field
is not too large and the
user can still adjust label
and entry field to each
other.

Figure 3b: Offset between label and fields

Here you can still adjust
the largest label and its
corresponding field but it
becomes almost hard
work adjusting "E-mail"
to its input field.

Figure 3c: Example of too large offset between label and fields

Though all offsets seem
to look correct the
missing offset between
"Reenter Your
Password" and its entry
field makes the whole
interface look ugly.

file:///F|/resources/htmlb_guidance/spacingsi.html (4 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Figure 3d: Example of too small offset between label and fields

 Top

Check Box Groups

Leave an
offset of eight
pixels
between
check boxes
and their
corresponding
label.

Figure 4a: Offset between check boxes and their labels

 Top

file:///F|/resources/htmlb_guidance/spacingsi.html (5 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Leave an
offset of eight
pixels
between rows
of check
boxes.

Figure 4b: Offset between rows of check boxes.

 Top

Leave an
offset of 15
pixels
between
columns of
check boxes.

Figure 4c: Offset between groups of check boxes

 Top

Radio Button Groups

file:///F|/resources/htmlb_guidance/spacingsi.html (6 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Leave an offset of eight pixels between radio
buttons and their corresponding label.

Figure 5a: Offset between radio buttons and their labels

 Top

Leave an offset of eight pixels between rows of
radio buttons.

Figure 5b: Offset between rows of radio buttons

 Top

file:///F|/resources/htmlb_guidance/spacingsi.html (7 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Leave an offset of 15 pixels between columns
of radio buttons.

Figure 5c: Offset between radio button groups

 Top

Mixed Form Elements in Vertical Succession

Between field like form
elements in a vertical
succession is always an
offset of 5 pixels.

Figure 6a: Offset around mixed form elements in vertical succession

 Top

file:///F|/resources/htmlb_guidance/spacingsi.html (8 of 9) [17.02.03 10:27:46]

Spacing Between Single Controls

Above and beneath button
like form elements is
always an offset of 8 pixels
regardless of the following
or previous element.

Figure 6b: Offset around mixed form elements in vertical succession

 Top

Leave an offset of 15 pixels
between columns of form
elements.

Figure 6c: Offset between horizontal groups of mixed form elements in vertical succession

 Top

file:///F|/resources/htmlb_guidance/spacingsi.html (9 of 9) [17.02.03 10:27:46]

Control API for Content (content)

Control API for Content (content)

Creates a scripting variable which provides the rendering context for the following tags. It is a plain HTML tag.

● id
Identification name of the content.

attribute req. values default case
sens.

JSP taglib classlib

id yes String none yes id="myContent"

Example

<hbj:content id="myContent">
 ...
</hbj:content>

file:///F|/resources/htmlb_guidance/basiccontrols_content_dev.html [17.02.03 10:28:29]

Control API for Document (document, documentBody,

Control API for Document (document, documentBody, documentHead)

There are three HTMLB elements for a document, which correspond to HTML elements as follows:

● document: Renders the root tag of the document, e.g. <html> or <wml>
● documentBody: Renders the <body> section of the document
● documentHead: Renders the <head> section of the document

document

Renders the root tag of the document (e.g. <html> or <wml>) depending on the markup language used. It is a plain HTML tag with no attributes.

attribute req. values default case
sens.

JSP taglib classlib

id yes none yes setDocumentId("myContent")
title no String none no setTitle("SAPPortals")

Example

<hbj:content id="myContent">
 <hbj:document>
 ...
 </hbj:document>
</hbj:content>

documentBody

Renders <body> section of the document and attaches the appropriate style class. It is a plain HTML tag with no attributes.

Example

<hbj:content id="myContent">
 <hbj:document>
 <hbj:documentBody>
 ...
 </hbj:documentBody>
 </hbj:document>
</hbj:content>

documentHead

Renders <head> section of the document and includes the necessary style sheets and scripts. It is a plain HTML tag. In the documentHead a nested META element
(standard HTML) can be used. With META element information about the document (name, content, scheme, http-equiv) can be specified.

● title
Set the title that is usually displayed in the title bar of the web client.

file:///F|/resources/htmlb_guidance/basiccontrols_document_dev.html (1 of 2) [17.02.03 10:28:30]

Control API for Document (document, documentBody,

attribute req. values default case
sens.

JSP taglib classlib

title no String none no title="SAPPortals" see 'document'

Example

<hbj:content id="myContent">
 <hbj:document>
 <hbj:documentHead title="SAPPortals">
 <meta name="description" content="Introduction page">
 <meta name="author" content="SAPPortals">
 <meta name="date" content="Jan. 2002">
 ...
 </hbj:documentHead>
 <hbj:documentBody>
 ...
 </hbj:documentBody>
 </hbj:document>
</hbj:content>

file:///F|/resources/htmlb_guidance/basiccontrols_document_dev.html (2 of 2) [17.02.03 10:28:30]

Control API for Page (page)

Control API for Page (page)

Represents a complete HTML page consisting of tags <html>, <head> and <body> and includes the necessary style sheets and scripts. It is a plain HTML tag.

Important Note:
If JavaScripts are used (for 'onClientClick' events) the page tag is necessary for the renderer to place the JavaScripts at the end of the page.

● title
Set the title that is usually displayed in the title bar of the web client.

attribute req. values default case
sens.

JSP taglib classlib

title no String none no title="SAPPortals"

Example

<hbj:content id="myContent">
 <hbj:page title="SAPPortals">
 ...
 </hbj:page>
</hbj:content>

file:///F|/resources/htmlb_guidance/basiccontrols_page_dev.html [17.02.03 10:28:31]

Control API for Form (form)

Control API for Form (form)

Is the outer shell of the document and encapsulates normal content, markup, controls and labels of those controls. Forms are essential for the event handling.

● action
Defines the form processing agent. For example, the value might be a HTTP URI to submit the form to a program or a mailto URI to email the form.

● defaultButton
Defines the default button for this document. This button will fire an event if the user presses the RETURN / ENTER key in the web agent. Usually the button should have
the 'design' "EMPHASIZED" to graphically show that this button is the default button.
If you write an application for different web clients you should be aware of the fact that every web client has its own way to handle keyboard input. To achieve the right
results on all web clients you should use the default button always together with an inputField and the inputField must have the focus (usually the inputField gets the focus
because the user clicked on this field to do some input). In this case the onClick event of the default button will be fired when the user presses RETURN / ENTER in the
inputField.

● encodingType
Defines the content type (MIME type) used to submit the form to the web server. Examples of content types can be found at http://www.w3.org/TR/1998/REC-html40-
19980424/interact/forms.html#h-17.3

Important note:
If you use a fileUpload control in the JSP you must set the encondingType attribute to "multipart/form-data".

Example: <hbj:form encodingType="multipart/form-data" >

● id
Identification name of the form.

● language
Defines the language code for this document. The attribute defines the primary language and can define a series of sub languages. The language code is according to
ISO 639. The language code and the description can be found at http://www.w3.org/TR/1998/REC-HTML40-19980424/references.html#ref-RFC1766

● method
Defines the HTTP method that will be used to submit the form data set. The form data set is a sequence of control name/current value pairs constructed from successful
controls. A successful control is "valid" for submission. Every control has its control name paired with its current value as part of the submitted form data set. A successful
control must be defined within a form and must have a control name.

Important:
The control name is generated by the HTML-Business for Java renderer. So you have no way to address the control via e.g. JavaScript.

❍ GET
The form data set is appended to the URI specified by the action attribute (with a question-mark (?) as separator) and this new URI is sent to the processing web
agent.

❍ POST
The form data set is included in the body of the form and sent to the processing web agent.

The default method is POST and should not be altered (Limits of GET requests can cause problems).

● scrollingToLastPosition
A boolean value that controls the position in a form. By default the position in a form is always reset to "top of form" when the form is submitted (e.g. in case of an event).
If the 'scrollingToLastPosition' attribute is set to true the last position in the form is saved and restored on a submit.

● target
Specifies the name of the frame where the document is to be opened. The following values refer to w3c HTML-standard.

❍ _blank
The web client should load the designated document in a new, unnamed window.

❍ _self
The web client should load the document in the same frame as the element that refers to the target.

❍ _parent
The web client should load the document into the immediate FRAMESET parent of the current frame. This value is equivalent to _self if the current frame has no
parent.

❍ _top
The web client should load the document into the full, original window (thus canceling all other frames). This value is equivalent to _self if the current frame has no
parent.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

action no String none yes action="/servlet/com.test.JspTest" setAction("/servlet/com.test.JspTest")
defaultButton no String none yes setDefaultButton(OKButton)
encodingType no String none no encodingType="multipart/mime" setEncodingType("multipart/mime")

file:///F|/resources/htmlb_guidance/form_dev.html (1 of 3) [17.02.03 10:28:33]

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#h-17.3
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#h-17.3
http://www.w3.org/TR/1998/REC-HTML40-19980424/references.html#ref-RFC1766

Control API for Form (form)

id yes String none yes id="SAPForm"

language no String none no language="de" setLanguage("de")
method no GET

POST
POST no method="POST" setMethod("POST")

scrollingToLastPosition yes FALSE
TRUE

FALSE no setScrollingToLastPosition(true)

target no _blank
_self
_parent
_top

_self no target="_blank" setTarget("_blank")

Example

This example also shows the definition of a default button. We define the OKbutton as default.
The assignment is made by scripting (<% %>) and has to be done where the button is defined.

<hbj:form
 id="myFormId"
 method="post"
 target="_blank"
 encodingType="multipart/form-data"
 action="/htmlb/servlet/com.sapportals.htmlb.test.MyTestJsp1Test"
 >

 This form submits to a new web client window

 because of 'target=_blank'.

 <hbj:inputField
 id="myInputField1"
 type="String"
 invalid="false"
 width="310"
 value="After editing press <Enter> to submit"
 visible="true"
 disabled="false"
 required="true"
 maxlength="30"
 size="50"
 >
 </hbj:inputField>

 <hbj:button id="oKbutton"
 text="OK"
 onClick="onOKClick"
 design="EMPHASIZED"
 width="100"
 >

 <% myFormId.setDefaultButton(oKbutton); %>
 </hbj:button>

 <hbj:button
 id="Infobutton"
 text="Info"
 onClick="onInfoClick"
 width="100"
 />

 <hbj:button
 id="Cancelbutton"
 text="Cancel"
 onClick="onCanClick"
 width="100"
 />

</hbj:form>

file:///F|/resources/htmlb_guidance/form_dev.html (2 of 3) [17.02.03 10:28:33]

Control API for Form (form)

Result

file:///F|/resources/htmlb_guidance/form_dev.html (3 of 3) [17.02.03 10:28:33]

Flow Layout

Flow Layout

Usage | Related Controls

Figure 1: Example of the usage of flow layout

Figure 2: The controls within a flow layout.

Figure 3: The controls will wrap to fit the size of its container (in this case a group).

The flow layout is an invisible control used to combine other controls one after another. It can be inserted into every container control.

 Top

Usage

Use the flow layout if you do not need to align controls with other elements in your interface. Controls that are added to the flow layout are able
to wrap if the available space for displaying all controls in one line does not suffice.

To separate controls within the flow layout you should currently use a text view control containing a simple space character.

Future Development: To simplify and standardize the separation of controls we will introduce a separator control that can be inserted instead of
the text view control.

When use the Flow Layout - When Use the Form Layout

● Use the flow layout if you do not need to align controls with other elements in your interface; this will enhance performance because the flow
layout does not have an overhead of table structures in the rendering

● Use the form layout to align controls with respect to other controls in the user interface

file:///F|/resources/htmlb_guidance/flow.html (1 of 2) [17.02.03 10:27:33]

Flow Layout

 Top

Related Controls

Form Layout, Grid Layout, Text View

 Top

file:///F|/resources/htmlb_guidance/flow.html (2 of 2) [17.02.03 10:27:33]

More Info about Flow Layout

More Info about Flow Layout

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

The flow layout control structures elements in every browser.

Editability in Style Editor

Currently, the flow layout is not changeable by the Style Editor.

Accessibility – 508 Support

The flow layout has no special accessibility enhancements. It can contain several controls that are by themselves in the accessible
hierarchy and might have further descriptions for blind users.

 Top

file:///F|/resources/htmlb_guidance/flow_tec.html [17.02.03 10:28:33]

Control API for Flow Layout (flowLayout)

Control API for Flow Layout (flowLayout)

The flowLayout is a simple container that renders its contents without additions. Itallows to align controls that do not need to be aligned with other elements in an interface. Controls that are
added to the flowLayout are able to wrap if the available space for displaying all controls in one line does not suffice.

flowLayout has no tag. It has one method getUI which returns an identification string for the renderer that is unique for all supported components. The following attributes are inherited from
container.

attribute req. description case
sens.

classlib

addComponent no Adds a component to the container.The
component is added to the end of the already
added text/components.

yes addComponent ((component) compenent)

addRawText no Adds text - without encoding - to the container
e.g. if HTML commands have to be added. The
text is added to the end of the already added
text/components.

- addRawText(java.lang.String text)

addText no Adds text encoded to the container.The text is
added to the end of the already added
text/components.

- addText(java.lang.String text)

removeComponent no Removes a component from the container yes removeComponent ((component) compenent)

 Top

file:///F|/resources/htmlb_guidance/flow_dev.html [17.02.03 10:28:34]

Form Layout

Form Layout

Usage | Design-relevant Attributes | Related Controls

Figure 1: Three form layouts allow to arrange the above form elements and buttons in the manner shown; for
details see the example

The form layout is an invisible control for arranging and aligning controls in an application container, group, or other container in a
tabular manner. Elements can also be around wrapped within a cell.

The form layout replaces the previous grid layout control.

 Top

Usage

Use the form layout to align controls within containers in a tabular fashion. Especially, use it in groups, tabstrips and trays (iViews). The
grid defined by the form layout is composed of rows, which contain cells. Thus, rows and columns of the grid are defined implicitly. Cells
can span multiple columns. In addition, elements in a cell can wrap around. Various controls can be added to the cells.

You can nest form layouts for arranging page elements on different levels.

file:///F|/resources/htmlb_guidance/formlayout.html (1 of 6) [17.02.03 10:27:31]

Form Layout

When Use the Form Layout

● Use the form layout to align controls with respect to other controls in the user interface. The most common usage of the form layout
is: (1) laying out forms inside containers, and (2) arranging different containers or form layouts. See the example below for details
and both uses.

● You can also use the form layout if you do not need to align controls with other elements in your interface. In this case, insert only
one cell into the respective rows and set the cell's width so that it exceeds the width of the form layout.

Note: The form layout is similar to the grid layout but has more features for adjusting the grid cells. You need not specify a fixed number
of rows and columns but simply add rows and cells within rows. The form layout also can wrap around elements in a cell but the flow
layout is more efficient for this purpose.

 Top

Overview of the Elements and Spacing

The form layout consists of three elements, each of which has a spacing of its own:

● Form: marginBottom, marginLeft, marginRight, marginTop define the spacing in pixels between the border of the form layout and
its content area; each margin is set to zero by default.

● Row: paddingBottom, paddingTop define the padding in pixels at the top and bottom of a row; set to zero by default.
● Cell: paddingBottom, paddingLeft, paddingRight, paddingTop define the spacing in pixels between the border of the cell and its

content area; set to zero by default.

Figure 2 provides an overview of the different margins and paddings within a form layout:

file:///F|/resources/htmlb_guidance/formlayout.html (2 of 6) [17.02.03 10:27:31]

Form Layout

Figure 2: Overview of the different margins and paddings within a form layout

When adding elements to a form layout, take care that the margins and the padding at the different levels are set to the correct values.
When nesting form layouts, the margins at the form level have to be left at the default value of zero in order to avoid additional padding.
See the example below for details.

 Top

Example

The following example demonstrates how to use the form layout. First, identify the different areas within your application that need to be
aligned. In the example in figure 3 there are two areas, a form area containing labels and input elements, and a button row. Both areas
are aligned using separate form layouts. The form layout at the top contains the form area, that is, the labels and the input elements.
The second form layout includes the Save and Cancel buttons. Then both form layouts are arranged using a third form layout.

Top Form Layout

First create a form layout for the input elements. Set all margins (marginBottom, marginLeft, marginRight, marginTop) at the form
level to 5 pixels. Note that the rules for Spacing Between Grouped Controls require a spacing of 10 pixels between the tray border and
its content. As 5 pixels are already provided by the tray, the form layout has to provide the remaining 5 pixels at the appropriate
borders.

file:///F|/resources/htmlb_guidance/formlayout.html (3 of 6) [17.02.03 10:27:31]

Form Layout

Then add six rows to the top form layout and add two cells to each row except the fifth one for achieving a two column layout. In the fifth
row, add only one cell and set colspan=2.

The rules in Spacing Between Single Controls require a spaces of 5 pixels between rows of screen elements. As the top and bottom
spacings are already set correctly, set the bottom padding (paddingBottom) to 5 pixels for all but the last row.

Note: There are alternatives for achieving a 5 pixels spacing between rows but this approach seems to be the easiest way to do it.

For achieving the correct horizontal spacing between the labels and their corresponding input elements, do not specify a value for the
width of the left cells. Specify a right padding (paddingRight) between 8 and 22 pixels for the left cells, instead. Leave all other cell
paddings at their default values of zero.

Finally, add the labels and input elements to the respective cells.

Bottom Form Layout

Create a second form layout for the buttons and set all margins at the form level to 5 pixels. As there are 5 pixels at the bottom of the
top form layout and 5 levels at the top of this form layout, you get automatically a spacing of 10 pixels between the bottom input
element and the buttons.

Add only one row and two columns for the two buttons to the second form layout. Then add a button to each cell.

Leave the padding at the row and cell levels at their default values of zero, except for the right cell padding of the left cell. Set this
padding (paddingRight) to 5 pixels. This ensures the correct horizontal spacing between the two buttons.

Figure 3: Two form layouts are used for arranging the controls

Arranging the Form Layouts

As the two form layouts are to be appear below each other, you need a third form layout that includes both. This outer form layout

file:///F|/resources/htmlb_guidance/formlayout.html (4 of 6) [17.02.03 10:27:31]

Form Layout

needs two rows and one cell in each row, resulting in only one column (see figure 4). Simply add the two form layouts to the cells.

Note that this outer form layout must not have additional padding or margins. Therefore, let all four margins at the form level at their
default values of zero. Also, leave all other padding values at their defaults.

Figure 4: A third form layout is used for arranging the two areas vertically

Hint: You can temporarily set the attribute debugMode to TRUE to render the form layout with frames. This makes it easier for you to
achieve a proper layout (see Control API for Form Layout for details).

 Top

Design-relevant Attributes

The form layout has design-relevant attributes on the form level, the row level, and the cell level. There are also some dependencies
between the attribute values on the different levels. See figure 2 for an overview of the form layout, its elements and spacings.

Form Level

● marginBottom, marginLeft, marginRight, marginTop: Define the spacing in pixels between the border of the form layout and its
content area; each is set to zero by default.

● width: The width can be specified in pixels or percent of the including container width. If the width of a cell is also specified in
percent and it exceeds the form layout's width the cell content will be wrapped.

Row Level

● paddingBottom, paddingTop: Define the padding in pixels at the top and bottom of a row; set to zero by default.

Cell Level

● align (LEFT, RIGHT, CENTER, CHAR, JUSTIFY): Defines the horizontal alignment of elements within a cell.

file:///F|/resources/htmlb_guidance/formlayout.html (5 of 6) [17.02.03 10:27:31]

Form Layout

● valign (BASELINE, BOTTOM, MIDDLE, TOP): Defines the vertical alignment of elements within a cell.
● paddingBottom, paddingLeft, paddingRight, paddingTop: Define the spacing in pixels between the border of the cell and its

content area; set to zero by default.
● Width: Defines the width in pixels or percent of the form layout. Note that if different widths are specified for a column the last value

is used in order to avoid conflicts. Also note that a value exceeding the width of the form layout will cause wrapping behavior.
● colSpan: Defines the horizontal expansion of a cell in columns.

You can also use the Boolean attribute debugMode as an aid for achieving a proper layout. If it is set to TRUE the cell borders are
displayed.

For details see page Control API for Form Layout.

 Top

Related Controls

Flow Layout, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/formlayout.html (6 of 6) [17.02.03 10:27:31]

More Info about Form Layout

More Info about Form Layout

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

The form layout control structures elements in every browser.

Editability in Style Editor

Currently, the form layout is not changeable by the Style Editor.

Accessibility – 508 Support

The form layout has no special accessibility enhancements. It can contain several controls that are by themselves in the accessible
hierarchy and might have further descriptions for blind users.

 Top

file:///F|/resources/htmlb_guidance/formlayout_tec.html [17.02.03 10:28:35]

Control API for Form Layout (formLayout)

Control API for Form Layout (formLayout)

A grid is a two dimensional arrangement of data in rows and columns. The control is similar to gridLayout but has more features in adjusting the cells of the grid. If no
formLayoutCells are defined no formLayout is displayed.

Limitation:

Large formLayouts (large amount of rows and columns) can cause problems like:

● Compiler errors that are caused by a 64kB method length limit.
● Slow processing of page because of huge HTML-Code generated by the JSP-Compiler

● debugMode
A Boolean value. If set to "TRUE" the formLayoutCell is rendered with a frame. The frame size is defined by formLayoutCell 'width' and the padding. If a formLayoutCell is
not defined or empty no frame is displayed.
If set to "FALSE" no frame is rendered.

By default the borders of the grid are invisible. To see the borders for layout and debug reasons set the debug attribute.
Note: Setting the debugMode attribute will add pixels to visualize borders. Therefore the sizes of the grid layout will change if you reset the attribute. The debugMode
attribute, as indicated by the name, should only be used for debugging and not for "styling".

● id
Identification name of the formLayout. You have to specify an id if you want to access the control.

● marginBottom
Specifies the distance from the bottom of the control to the next control.

● marginLeft
Specifies the distance from the "actual" position to the left side of the control.

● marginRight
Specifies distance from the right side of the control to the next control.

● marginTop
Specifies distance from the "actual" position to the top of the control.

● width
Defines the width of the formLayout. If the 'width' in formLayoutCell is specified in percent, the percentage will be calculated from the width of the formLayout.
If the formLayoutCell definition exceeds the 'width' of the formLayout the formLayoutCell content will be wrapped.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

debugMode no FALSE
TRUE

FALSE yes debugMode="TRUE" setDebugMode(true)

id no String none yes id="ZIPCode_form" setId("ZIPCode_form")
marginBottom no Unit 0 no marginBottom="5" setMarginBottom("5")
marginLeft no Unit 0 no marginLeft="5" setMarginLeft("5")
marginRight no Unit 0 no marginRight="5" setMarginRight("5")
marginTop no Unit 0 no marginTop="5" setMarginTop("5")
width no Unit 100% no width="500" setWidth("500")

formLayoutRow

Defines the rows in the formLayout. The cells (formLayoutCell) have to be nested in form layout rows.

● id
Identification name of the formLayoutRow. You have to specify an id if you want to access the control.

● paddingBottom
Specifies the bottom padding of each row in the form layout. The value of the paddingBottom attribute represents the distance from the bottom border of the cell to the

file:///F|/resources/htmlb_guidance/formlayout_dev.html (1 of 5) [17.02.03 10:27:49]

Control API for Form Layout (formLayout)

bottom of the content of each row specified in pixels.

● paddingTop
Specifies the top padding of each row in the form layout. The value of the paddingTop attribute represents the distance from the top border of the cell to the top of the
content of each row specified in pixels.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

id no String none yes id="ZIPCode_row01" setId("ZIPCode_row01")
padding no Numeric 0 - setPadding(top, bottom)

e.g. setPadding("5", "3")
paddingBottom no Numeric 0 - paddingBottom="3" setPaddingBottom("3")
paddingTop no Numeric 0 - paddingTop="5" setPaddingTop("5")

formLayoutCell

Defines the cells in the formLayoutRow.

● align
Defines the horizontal alignment of the cell content.

❍ LEFT
Left justifies the content of the cell.

❍ RIGHT
Right justifies the content of the cell.

❍ CENTER
Centers the content of the cell.

❍ CHAR
Aligns text around a specific character. Not supported by all web clients.

❍ JUSTIFY
Sets text in the cell left and right aligned. Not supported by all web clients.

● colSpan
Defines the horizontal expansion the cell in columns.

● content
Specifies the content for the cell.

● id
Identification name of the formLayoutCell.

● paddingBottom
Specifies the bottom padding of each cell in the form layout. The value of the paddingBottom attribute represents the distance from the bottom border of the cell to the
bottom of the content of each cell specified in pixels.

● paddingLeft
Specifies the left padding of each cell in the form layout. The value of the paddingLeft attribute represents the distance from the left border of the cell to the left side of the
content of each cell specified in pixels.

● paddingRight
Specifies the right padding of each cell in the form layout. The value of the paddingRight attribute represents the distance from the right border of the cell to the right side
of the content of each cell specified in pixels.

● paddingTop
Specifies the top padding of each cell in the form layout. The value of the paddingTop attribute represents the distance from the top border of the cell to the top of the
content of each cell specified in pixels.

● valign
Defines the vertical alignment of the cell content.

❍ BASELINE
The content of the cell is aligned on the baseline line of the cell (or bottom when no baseline exits).

file:///F|/resources/htmlb_guidance/formlayout_dev.html (2 of 5) [17.02.03 10:27:49]

Control API for Form Layout (formLayout)

❍ BOTTOM
The content of the cell is aligned to the bottom line of the cell.

❍ MIDDLE
The content of the cell is aligned to the middle of the cell height.

❍ TOP
The content of the cell is aligned to the top line of the cell.

● width
Defines the width of the formLayoutCell. One column can have only one width - when you specify different widths for the same column the width defined last is taken.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

align no LEFT
RIGHT
CENTER
CHAR
JUSTIFY

LEFT yes align="LEFT" setHorizontalAlignment(CellHAlign.LEFT)

colSpan no Numeric 1 - setColSpan(2)

content no String none no Text: setContent("A celltext")
Component:setContent(ListBox)

id no String none yes id="Cell01" setId("Cell01")
paddingBottom no Numeric 0 - paddingBottom="1" setPaddingBottom("1")
paddingLeft no Numeric 0 - paddingLeft="5" setPaddingLeft("5")
paddingRight no Numeric 0 - paddingRight="3" setPaddingRight("3")
paddingTop no Numeric 0 - paddingTop="2" setPaddingTop("2")
valign no BASELINE

BOTTOM
MIDDLE
TOP

MIDDLE yes valign="TOP" setVerticalAlignment(CellVAlign.TOP)

width no Unit - - width="20%" setWidth("20%")

Example using the taglib

<hbj:formLayout id="myForm"
 marginTop="15px"
 marginRight="30px"
 marginBottom="5px"
 marginLeft="15px"
 width="500px" >

 <hbj:formLayoutRow id="Row1"
 paddingTop="10px"
 paddingBottom="5px" >

 <hbj:formLayoutCell id="Cell11"
 align="RIGHT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5"
 width="40%" >

 <hbj:button id="myButtonf11" text="Button" />
 </hbj:formLayoutCell>

 <hbj:formLayoutCell id="Cell12"
 align="LEFT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5" >

 <hbj:textView text="Celltext aligned left" />
 </hbj:formLayoutCell>
 </hbj:formLayoutRow>

file:///F|/resources/htmlb_guidance/formlayout_dev.html (3 of 5) [17.02.03 10:27:49]

Control API for Form Layout (formLayout)

 <hbj:formLayoutRow id="Row2"
 paddingTop="10px"
 paddingBottom="5px" >

 <hbj:formLayoutCell id="Cell21"
 align="LEFT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5" >

 <hbj:button id="myButtonf21" text="Button" />
 </hbj:formLayoutCell>

 <hbj:formLayoutCell id="Cell22"
 align="RIGHT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5" >

 <hbj:textView encode="false" text="Celltext aligned right" />
 </hbj:formLayoutCell>
 </hbj:formLayoutRow>
</hbj:formLayout>

Example using the classlib

Form form = (Form)this.getForm();
FormLayout fl = new FormLayout();
fl.setId("myForm");

fl.setMarginTop("15px");
fl.setMarginRight("30px");
fl.setMarginBottom("5px");
fl.setMarginLeft("15px");
fl.setWidth("500px");
fl.setDebugMode(true);

FormLayoutRow row1 = fl.addRow();
row1.setPaddingTop("10px");
row1.setPaddingBottom("5px");

Button button = new Button("button", "button");
FormLayoutCell cell11 = fl.addComponent(1,1, button);
cell11.setHorizontalAlignment(CellHAlign.RIGHT);
cell11.setPaddingLeft("3");
cell11.setPaddingTop("5");
cell11.setPaddingRight("10");
cell11.setPaddingBottom("5");
cell11.setWidth("40%");

TextView tv1 = new TextView("tv1");
tv1.setText("Celltext aligned left");

FormLayoutCell cell12 = fl.addComponent(1,2, tv1);
cell12.setHorizontalAlignment(CellHAlign.LEFT);
cell12.setPaddingLeft("3");
cell12.setPaddingTop("5");
cell12.setPaddingRight("10");
cell12.setPaddingBottom("5");
cell12.setWidth("40%");

FormLayoutRow row2 = fl.addRow();
row2.setPaddingTop("10px");
row2.setPaddingBottom("5px");

Button button2 = new Button("button2", "button");
FormLayoutCell cell21 = fl.addComponent(2,1, button2);
cell21.setHorizontalAlignment(CellHAlign.LEFT);
cell21.setPaddingLeft("3");
cell21.setPaddingTop("5");
cell21.setPaddingRight("10");
cell21.setPaddingBottom("5");
cell21.setWidth("40%");

file:///F|/resources/htmlb_guidance/formlayout_dev.html (4 of 5) [17.02.03 10:27:49]

Control API for Form Layout (formLayout)

TextView tv2 = new TextView("tv2");
tv2.setText("Celltext aligned right");

FormLayoutCell cell22 = fl.addComponent(2,2, tv2);
cell22.setHorizontalAlignment(CellHAlign.RIGHT);
cell22.setPaddingLeft("3");
cell22.setPaddingTop("5");
cell22.setPaddingRight("10");
cell22.setPaddingBottom("5");
cell22.setWidth("40%");

form.addComponent(fl);

Result

file:///F|/resources/htmlb_guidance/formlayout_dev.html (5 of 5) [17.02.03 10:27:49]

Grid Layout

Grid Layout

Usage | Design-relevant Attributes | Related Controls

Figure 1: Grid layout arrangement of controls

The grid layout is an invisible control that helps you in arranging and aligning controls in an application, group or other container in a
tabular manner.

 Top

Usage

Note: The grid layout is obsolete - use the form layout, instead.

Use the grid layout to align controls within containers in a tabular fashion. The grid consists of cells that are arranged in rows and columns.
Various controls can be added to the cells. You can insert the grid layout into any container control. Especially, use it in groups, tabstrips
and trays (iViews). You can also nest grid layouts for arranging page elements on different levels (see example below).

The most common usage of the grid layout is the layout of forms inside containers and the arrangement of different containers. There are
two attributes for managing the spacing between rows and columns, cellSpacing and cellPadding. For both of the above cases a
cellSpacing of 5 is recommended. There is no need to use cellPadding for these default layouts. See the example below for details.

Note: Currently, it is not possible to achieve the exact paddings and spacings as recommended in the "Layout" section. The suggestions
given here are approximations of the optimal layout. Use these values until new controls are introduced, which can deal with the layout

file:///F|/resources/htmlb_guidance/gridlayout.html (1 of 3) [17.02.03 10:27:29]

Grid Layout

issues of the grid and flow layout controls.

When Use the Grid Layout - When Use the Flow Layout

● Use the grid layout to align controls with respect to other controls in the user interface
Note: Use the form layout instead of the grid layout

● Use the flow layout if you do not need to align controls with other elements in your interface; this will enhance performance because the
flow layout does not have an overhead of table structures in the rendering

 Top

Example

The following example demonstrates how to use the grid layout. First, identify the different areas within your application that need to be
aligned. In the example in figure 2 there are two areas, a form area containing the input elements that have to be aligned, and a button row,
where buttons have to be added.

Both areas consist of separate grid layouts. The grid at the top contains the form area, the labels, and the input elements. The second grid
includes the Save and Cancel buttons. As the spacing between the controls should always be 10px, set the cellSpacing to 5.

Figure 2: Step 1 - grid layout arrangement of inner controls

These two areas should appear below each other. Therefore, you need another grid consisting of one column only and two rows. In the cells
you simply add the form area and the button row (see figure 3). This grid does not need additional padding or spacing because the two
added areas already have the correct spacing.

file:///F|/resources/htmlb_guidance/gridlayout.html (2 of 3) [17.02.03 10:27:29]

Grid Layout

Figure 3: Step 2 - grid layout arrangement of areas

Hint: You can temporarily set the attribute debugMode to TRUE to render the grid layout with frames. This helps you in achieving a proper
layout (see Control API for Grid Layout for details).

 Top

Design-relevant Attributes

You can set the number of columns (columnSize), and the spacing within (cellPadding) and between cells (cellSpacing).

You can also use the Boolean attribute debugMode as an aid for achieving a proper layout. If it is set to TRUE the cell borders are
displayed.

For details see page Control API for Grid Layout.

 Top

Related Controls

Flow Layout, Form Layout

 Top

file:///F|/resources/htmlb_guidance/gridlayout.html (3 of 3) [17.02.03 10:27:29]

More Info about Grid Layout

More Info about Grid Layout

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

The grid layout control structures elements in every browser.

Editability in Style Editor

Currently, the grid layout is not changeable by the Style Editor.

Accessibility – 508 Support

The grid layout has no special accessibility enhancements. It can contain several controls that are by themselves in the accessible
hierarchy and might have further descriptions for blind users.

 Top

file:///F|/resources/htmlb_guidance/gridlayout_tec.html [17.02.03 10:28:36]

Control API for Grid Layout (gridLayout)

Control API for Grid Layout (gridLayout)

A grid is a two dimensional arrangement of data in rows and columns. To avoid unexpected results, the rows and columns should always be defined by gridLayoutCells
instead of using the 'columnSize' and 'rowSize' attribute. With the gridLayoutCell you have control over the width of the gridLayoutCell while using the "columnSize" the
renderer and web client take the control. Especially in combination with 'debugMode' attribute set to "FALSE", the layout of the grid is not displayed as expected.
If no gridLayoutCells are defined no gridLayout is displayed.

Limitation:

Large gridLayouts (large amount of rows and columns) can cause problems like:

● Compiler errors that are caused by a 64kB method length limit.
● Slow processing of page because of huge HTML-Code generated by the JSP-Compiler

To avoid these problems you could use the gridLayout tag and combine it with <tr> & <td> tags.

● cellPadding
Defines the padding of each cell in the grid layout. The value of the cell padding attribute represents the distance from the border of the cell to the content of each cell
specified in pixels.
Note: The cellPadding is applied to the top, left, right and bottom of the cell.

● cellSpacing
Specifies the space between the left side of the gridLayout and the left-hand side of the leftmost gridLayoutCell, the top of the gridLayout and the top side of the topmost
row and so on for the right and bottom of the gridLayout. The attribute also specifies the amount of space to leave between the gridLayoutCells.
Defines the spacing between cells and the outer boundary in the grid layout in pixels.

● columnSize
Defines the number of columns for the gridLayout. The columns are defined with the gridLayoutCell control and 'ColumnSize' is overruled by the gridLayoutCell definition.

● debugMode
A Boolean value. If set to "TRUE" the gridLayoutCell is rendered with a frame. The frame size is defined by gridLayoutCell 'width' and the 'cellpadding'. If a gridLayoutCell
is not defined or empty no frame is displayed.
If set to "FALSE" no frame is rendered. Please check the gridLayout description above for limitations.

By default the borders of the grid are invisible. To see the borders for layout and debug reasons set the debug attribute.
Note: Setting the debugMode attribute will add pixels to visualize borders. Therefore the sizes of the grid layout will change if you reset the attribute. The debugMode
attribute, as indicated by the name, should only be used for debugging and not for "styling".

● id
Identification name of the gridLayout.

● rowSize
Defines the number of rows for the gridLayout. The 'rowSize' is overruled when more rows are defined with the gridLayoutCell control then specified with the 'rowSize'

file:///F|/resources/htmlb_guidance/gridlayout_dev.html (1 of 5) [17.02.03 10:27:51]

Control API for Grid Layout (gridLayout)

attribute. If 'rowSize' is higher than the rows defined by the gridLayoutCell, the frame height of the gridLayout is extended.

● width
Defines the width of the gridLayout. If the 'width' in gridLayoutCell is specified in percent, the percentage will be calculated from the width of the gridLayout and not from
the width of the form.
If the gridLayoutCell definition exceeds the 'width' of the gridLayout the gridLayoutCell content will be wrapped.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

cellPadding no Numeric 0 - cellPadding="5" setCellPadding(5)
cellSpacing no Numeric 0 - cellSpacing="5" setCellSpacing(5)
columnSize no Numeric none - columnSize="3" setColumnSize(3)
debugMode no FALSE

TRUE
FALSE yes debugMode="TRUE" setDebugMode(true)

id yes String none yes id="ZIPCode_grid" setId("ZIPCode_grid")
rowSize no Numeric none - rowSize="5" setRowSize(5)
width no Unit 100% no width="500" setWidth("500")

gridLayoutCell

Defines the cells in the gridLayout.

● columnIndex
Defines the horizontal position of the cell.

● colSpan
Defines the horizontal expansion the cell in percent. If you specify e.g. 100, the cell uses the whole gridLayout width. Cells right of this cell are omitted. A possible
application for this attribute is to display headlines in the gridLayout.

● content
Specifies the content for the cell.

● horizontalAlignment
Defines the horizontal alignment of the cell content.

❍ LEFT
Left justifies the content of the cell.

❍ RIGHT
Right justifies the content of the cell.

❍ CENTER
Centers the content of the cell.

❍ CHAR
Aligns text around a specific character. Not supported by all web clients.

❍ JUSTIFY
Sets text in the cell left and right aligned. Not supported by all web clients.

● id
Identification name of the gridLayoutCell.

● rowIndex
Defines the vertical position of the cell.

● style
Defines the stylesheet to be used to display the cell.

● verticalAlignment
Defines the vertical alignment of the cell content.

❍ BASELINE
The content of the cell is aligned on the baseline line of the cell (or bottom when no baseline exits).

❍ BOTTOM
The content of the cell is aligned to the bottom line of the cell.

❍ MIDDLE
The content of the cell is aligned to the middle of the cell height.

❍ TOP
The content of the cell is aligned to the top line of the cell.

file:///F|/resources/htmlb_guidance/gridlayout_dev.html (2 of 5) [17.02.03 10:27:51]

Control API for Grid Layout (gridLayout)

● width
Defines the width of the gridLayoutCell. One column can have only one width - when you specify different widths for the same column the width defined last is taken.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

columnIndex yes Numeric none - columnIndex="2" setColumnIndex(2)
colSpan no Numeric 0 - setColSpan(100)

content no String none no Text: setContent("A celltext")
Component:setContent(ListBox)

heightPercentage no Numeric 0 - setHeightPercentage(20)

horizontalAlignment no LEFT
RIGHT
CENTER
CHAR
JUSTIFY

LEFT yes horizontalAlignment="LEFT" setHAlignment(CellHAlign.LEFT)

id no String none yes id="Cell01" setId("Cell01")
rowIndex yes Numeric none - rowIndex="1" setRowIndex(1)
style no String none no style="WildStyle" setStyle("WildStyle")
verticalAlignment no BASELINE

BOTTOM
MIDDLE
TOP

MIDDLE yes verticalAlignment="TOP" setVAlignment(CellVAlign.TOP)

width no Unit - - width="20%" setWidth("20%")

Example using the taglib

<hbj:gridLayout
 id="myGridLayout1"
 debugMode="True"
 width="40%"
 cellSpacing="5"
 >

 <hbj:gridLayoutCell
 rowIndex="1"
 columnIndex="1"
 width="10%"
 horizontalAlignment="RIGHT"
 >

 <hbj:button
 id="myButton1"
 text="Button"
 tooltip="Button in the 1st row" />

 </hbj:gridLayoutCell>

 <hbj:gridLayoutCell
 id="myGridLayoutCell2"
 rowIndex="1"
 columnIndex="2"
 width="40%"
 horizontalAlignment="LEFT"
 verticalAlignment="BOTTOM"
 >

 Celltext aligned left

 </hbj:gridLayoutCell>

 <hbj:gridLayoutCell
 rowIndex="2"
 columnIndex="1"

file:///F|/resources/htmlb_guidance/gridlayout_dev.html (3 of 5) [17.02.03 10:27:51]

Control API for Grid Layout (gridLayout)

 width="20%"
 >

 <hbj:button
 id="myButton2"
 text="Button"
 tooltip="Button in the 2nd row" />

 </hbj:gridLayoutCell>

 <hbj:gridLayoutCell
 rowIndex="2"
 columnIndex="2"
 horizontalAlignment="RIGHT"
 >

 Celltext aligned right

 </hbj:gridLayoutCell>

</hbj:gridLayout>

Example using the classlib

Form form = (Form)this.getForm();
GridLayout gl = new GridLayout();
gl.setId("myGrid");

gl.setCellSpacing(5);
gl.setWidth("40%");
gl.setDebugMode(true);

Button button = new Button("button", "button");
GridLayoutCell cell11 = new GridLayoutCell("cell11");
cell11.setHAlignment(CellHAlign.RIGHT);
cell11.setWidth("10%");
cell11.setContent(button);
gl.addCell(1, 1, cell11);

TextView tv1 = new TextView("tv1");
tv1.setText("Celltext aligned left");

GridLayoutCell cell12 = new GridLayoutCell("cell12");
cell12.setHAlignment(CellHAlign.LEFT);
cell12.setWidth("40%");
cell12.setContent(tv1);
gl.addCell(1, 2, cell12);

Button button2 = new Button("button2", "button");
GridLayoutCell cell21 = new GridLayoutCell("cell21");
cell21.setHAlignment(CellHAlign.LEFT);
cell21.setWidth("10%");
cell21.setContent(button2);
gl.addCell(2, 1, cell21);

TextView tv2 = new TextView("tv2");
tv2.setText("Celltext aligned right");

GridLayoutCell cell22 = new GridLayoutCell("cell22");
cell22.setHAlignment(CellHAlign.RIGHT);
cell22.setWidth("40%");
cell22.setContent(tv2);
gl.addCell(2, 2, cell22);

form.addComponent(gl);

Result

file:///F|/resources/htmlb_guidance/gridlayout_dev.html (4 of 5) [17.02.03 10:27:51]

Control API for Grid Layout (gridLayout)

file:///F|/resources/htmlb_guidance/gridlayout_dev.html (5 of 5) [17.02.03 10:27:51]

Breadcrumb

Breadcrumb

Usage | Types | Design-relevant Attributes | Related Controls

Figure 1: Search result using breadcrumbs

Breadcrumbs

● Inform users about their current position within a hierarchy, such as an application, a directory, a Website, or a document
● Allow for easy navigation back to the starting point, or to other levels within a hierarchy

 Top

Usage

Software applications and information in the Web are often organized hierarchically: General information may lead to more specific
information, thus creating an information hierarchy. The breadcrumb control informs the user about the path to a specific content
within such a hierarchy. For example, hit lists typically include a breadcrumb to inform users about the hierarchy level of a search
result and therefore are guides to the list items. If the breadcrumb uses links in the path description, the user can move to a specific
folder or topic.

An item in the breadcrumb chain is called breadcrumb item. Breadcrumb items can be defined by models or manually.

Figure 2: A wrapped breadcrumb

If the breadcrumb line becomes longer than the width of the browser window, the breadcrumb is word-wrapped like a text line
(figure 2). The wrapping is done at word separators, such as blanks. If there is no word separator in the breadcrumb item string, the
breadcrumb will wrap behind the breadcrumb item separator ">".

file:///F|/resources/htmlb_guidance/breadcrumb.html (1 of 3) [17.02.03 10:28:37]

Breadcrumb

 Top

Types

Breadcrumbs can be displayed as simple path information (no link, figure 3 top), as a chain of clickable locations within the
hierarchy (figure 3 center), or as one link that is described by the path information (figure 3 bottom).

Figure 3: Simple path information (top), each breadcrumb item is linked independently (center), whole path is
selectable (bottom)

The breadcrumb type is set through the attribute behavior: value SINGLELINK creates a breadcrumb, where the whole path is
selectable; value DEFAULT creates a breadcrumb, where each item can be linked independently.

Usage - Types

Use the different breadcrumb types for the following purposes:

● Use path information breadcrumbs (figure 3 top) for indicating the location of files inside a hierarchy.
Example: A list of search results not only shows the hits themselves but also their paths.

● Use independently linked breadcrumbs (figure 3 center) if you want to allow users to move up and down within a hierarchy,
or to jump to a certain category.
The last breadcrumb always shows the actual page and is no link.

● Use the whole breadcrumb path as one single link (figure 3 bottom) to inform users about the location of a link target (= the
last breadcrumb item) inside a hierarchy.

 Top

Design-relevant Attributes

size
Breadcrumbs come in three different font sizes: large, medium (= default) and small (figure 4). Set the attribute size to the values
LARGE, MEDIUM, or SMALL.

file:///F|/resources/htmlb_guidance/breadcrumb.html (2 of 3) [17.02.03 10:28:37]

Breadcrumb

Figure 4: Large, medium, and small size breadcrumbs

Use the text size that correspond to the size of the surrounding text. In case space requirements are tight, use smaller text sizes if
available. These sizes may also be used for design and highlighting reasons.

 Top

Related Controls

Links

 Top

file:///F|/resources/htmlb_guidance/breadcrumb.html (3 of 3) [17.02.03 10:28:37]

More Info about Breadcrumb

More Info about Breadcrumb

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

In Netscape 4.x and 6.x the breadcrumb path icons are not bold but have normal font weight.

Figure 1: Netscape path icons have normal font weight

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the tree view control:

Group Style IE 5 and above Netscape 4.7

Breadcrumb Styles Font Color of Breadcrumb Path Icon x x

Font Weight of Breadcrumb Path Icon x x

Text Decoration of Active Entry x x

Breadcrumb Padding x

Table 1: Editable styles for the tree view control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The breadcrumb control is inserted into the accessibility hierarchy by default if it contains links.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.

file:///F|/resources/htmlb_guidance/breadcrumb_tec.html (1 of 2) [17.02.03 10:28:38]

Control API for Breadcrumb (breadCrumb)

Control API for Breadcrumb (breadCrumb)

The breadCrumb represents the sequence of the visited pages (remember the story of Hansel + Gretel). It informs the user about his actual position in your application and
allows easy navigation back to start page. An item in the breadCrumb chain is called breadCrumbItem. BreadCrumbItems can be defined with models or manually.
If the breadCrumb line becomes longer than the web client window it is word wrapped like a text line - if there is no word separator in the breadCrumbItem value string, the
line is not wrapped.

● behavior
The breadCrumb can behave as a

❍ DEFAULT
Each breadCrumbItem can be linked independently.

❍ SINGLELINK
The entire breadCrumb string is a single link.

● id
Identification name of the breadCrumb.

● model
Defines the model or bean which provides the breadCrumb with data.

● nameOfKeyColumn
Specifies the name of the column that contains the key. This is used when you use an underlying table in the model.

● onClick
Defines the event handling method that will be processed when the user clicks on the breadcrumb.

● tooltip
Defines the hint of the button which is displayed as the mouse cursor passes over the button, or as the mouse button is pressed but not released.

● size
Defines the text size of the breadCrumb. Possible values are:

❍ LARGE
Double the standard textsize.

❍ MEDIUM
Standard textsize.

❍ SMALL
Half of the standard textsize.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

behavior no DEFAULT
SINGLELINK

DEFAULT yes behavior="DEFAULT" setBehavior
(BreadCrumbBehavior.DEFAULT)

id yes String none yes id="OrderConfirm" setId("OrderConfirm")
model no String none yes model="bean.model" setModel((IListModel) model)

nameOfKeyColumn no String none no nameOfKeyColumn="col1" setNameOfKeyColumn("col1")
tooltip no String none no tooltip="Confirm order" setTooltip("Confirm order")
size no LARGE

MEDIUM
SMALL

none yes size="MEDIUM" setSize(BreadCrumbSize.MEDIUM)

Events Req. Values Default Case
sens.

JSP Taglib Classlib

onClick no String none yes onClick="ProcessCrumb" setOnClick("ProcessCrumb")

breadCrumbItem

Defines the items in the breadCrumb instead of the model.

file:///F|/resources/htmlb_guidance/breadcrumb_dev.html (1 of 2) [17.02.03 10:28:40]

Control API for Breadcrumb (breadCrumb)

Recommendation:

We strongly recommend models to supply the breadCrumb with data.

● key
A string which is passed on to the event handling routine when the event occurs. A key string has to be defined and must not be empty.
If the attribute 'behavior' is set to "SINGLELINK" the 'key' is set to "null" when passed on to the event handling routine.

● value
Defines the text string displayed in the breadCrumb. A value string has to be defined and must not be empty.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

key yes String none no key="EVK1" addItem("EVK1","1stVisitedPage")
value yes String none no value="1stVisitedPage" see line above

Example using the taglib

<hbj:breadCrumb
 id="myNavigation"
 tooltip="Navigation and orientation in the application"
 onClick="ProcessbreadCrumbClick"
 size="SMALL"
 >

 <hbj:breadCrumbItem key ="EVK1" value="MainLevel" />
 <hbj:breadCrumbItem key ="EVK2" value="1stLevel" />
 <hbj:breadCrumbItem key ="EVK3" value="2ndLevel" />
 <hbj:breadCrumbItem key ="EVK4" value="3rdLevel" />

</hbj:breadCrumb>

Example using the classlib

Form form = (Form)this.getForm();
BreadCrumb bc = new BreadCrumb("myNavigation");
bc.addItem("EVK1", "MainLevel");
bc.addItem("EVK2", "1stLevel");
bc.addItem("EVK3", "2ndLevel");
bc.addItem("EVK4", "3rdLevel");
bc.setSize(BreadCrumbSize.MEDIUM);
bc.setTooltip("Navigation and orientation in the application");
bc.setOnClick("ProcessbreadCrumbClick");
form.addComponent(bc);

Result

file:///F|/resources/htmlb_guidance/breadcrumb_dev.html (2 of 2) [17.02.03 10:28:40]

Button

Button

Usage | Types | Design-relevant Attributes | Related Controls

Buttons are used for
explicit functions that
refer to a given object or
serve for navigational
purposes

Figure 1: Example of an iView containing groups with buttons and two buttons belonging to the iView
itself

 Top

Usage

Use buttons only for few and very important functions. A lot of buttons make a screen look heavy and complex. Therefore, when in
doubt about whether to use a link or a button, go with a link. Because of their optical weight and their visual dominance, buttons
qualify for this purpose.

Note: For a detailed discussion of when to use buttons and when to use links, see Link.

file:///F|/resources/htmlb_guidance/button.html (1 of 3) [17.02.03 10:27:14]

Button

Pressing the Enter key activates the default function (mostly, but not necessarily, identical to the emphasized button's function).

Usage guidelines for the different button types and sizes are presented below.

Labeling

Use title case for button labels. Use the ellipsis character ("...") on button labels to indicate that the command needs further
information to execute. Typically, the user is presented a dialog to fill in missing information.

Note: Title case means that the first letter of each word is capitalized, except for certain small words, such as articles and short
prepositions.

Choose the button's function description carefully; try to be as explicit as possible. For complex interactions, use verb-noun
combinations, e.g. "Search Database". If the context is clear, i.e. if the action can only be applied to one object, it is sufficient to use
a single verb as the button's label ("Search"). For shufflers and comparable elements, you can also use a simple "Go".

Positioning and Design Alternatives

For detailed button positioning rules see Button Positioning.

Buttons are similar in function to links. For a discussion of when to use buttons and when to use links, see Link.

 Top

Types

HTMLB offers three different button types (attribute design, values STANDARD, SMALL, EMPHASIZED):

●

●

●

Figure 2: Standard, small, and emphasized button

In the following, we list usage guidelines for these types.

Usage - Emphasized Buttons vs. Standard Button

For functions that complete a task, always use an emphasized button. In all other cases use a standard button, or a small button
(see below).
Rationale: Users need to realize that a certain function completes a task and know about - possibly negative - consequences.

file:///F|/resources/htmlb_guidance/button.html (2 of 3) [17.02.03 10:27:14]

Button

The emphasized button is always the leftmost button if it is a member of a button group.

Usage - Standard Button vs. Small Button

● Use standard size buttons for frequently-used functions
● Use small size buttons for seldom-used functions
● Use small buttons in (exceptional) cases where space is scarce
● Do not mix both sizes within groups of elements

 Top

Design-relevant Attributes

All buttons are available in an enabled and disabled state (Boolean attribute disabled).

●

●

●

Figure 3: Disabled buttons

Usage - Disabled Buttons vs. Hidden Buttons

Disabled buttons indicate that a function is not available. Therefore, use disabled buttons for functions that are temporarily
disabled. For example, a certain system state, such as an error, may prevent that the user can execute a function.

Hide buttons that are permanently not available for a user. For example, a user may not have the permission to perform certain
actions.

 Top

Related Controls

Link, Input Field, Group, Table View

 Top

file:///F|/resources/htmlb_guidance/button.html (3 of 3) [17.02.03 10:27:14]

More Info about Button

More Info about Button

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

In Netscape 4.X buttons will be displayed as standard HTML buttons

Figure 1: Netscape button

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the button control in Internet Explorer 5 and above (Netscape
4.7 uses standard HTML buttons):

Group Style IE 5 and above

Button Styles Text Padding x

Text Decoration x

Font Weight x

Border Width and Style x

Standard Buttons Standard Background Color x

Standard Border Color x

Standard Font Color x

Standard Hover Color x

Disabled Standard Background Color x

Font Color of Disabled Standard x

Emphasized Buttons Emphasized Background Color x

Emphasized Border Color x

Emphasized Font Color x

file:///F|/resources/htmlb_guidance/button_tec.html (1 of 2) [17.02.03 10:28:41]

More Info about Button

Emphasized Hover Color x

Disabled Emphasized Background Color x

Disabled Emphasized Font Color x

Standard-Sized Buttons Height x

Small-Sized Buttons Small Height x

Text Wrap White Space x

Table 1: Editable styles for the button control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The button inserted into the accessibility hierarchy by default - including the button state (e.g. disabled) and type

(e.g. emphasized).
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.

An additional description is needed if users need more specific information or instructions. In general, the description has to be
extended if a button introduces an interaction that cannot be recognized by a blind user. For example, the descriptions needs to
be extended if the button opens a new window.

 Top

file:///F|/resources/htmlb_guidance/button_tec.html (2 of 2) [17.02.03 10:28:41]

Control API for Button (button)

Control API for Button (button)

Provides any type of functionality in your application at the touch of the button. Hints can be displayed as the mouse cursor passes over the button, or as the mouse button is
pressed but not released.

● design
Defines the size and highlighting of the button.

❍ STANDARD
Displays the button with the standard background and text color.

❍ SMALL
Displays the button with the standard background and text color and half of the STANDARD size.

❍ EMPHASIZED
Displays the button with the highlighted background and text color. You can also refer to the emphasized button as default button. Therefore only one emphasized
button per form can be defined. If you use more then one "EMPHASIZED" button, the last button defined becomes "EMPHASIZED".

● disabled
A boolean value that defines if the button is clickable. If the button is disabled it sends no event when you press a mouse button on the button. A disabled button has a
different text color to show the user that it is disabled.

● encode
A Boolean value that defines how the text in the button is interpreted. HTML text formatting commands (e.g. <h1>, <i> etc.) can be used to change the display of the text.
If there are no formatting commands in the text string, the encode attribute has no effect.

Example

text="<h1><i>Important</i></h>

encode = "false"
the text string is rendered by interpreting the formatting commands.

Encode = "true"
the formatting commands are displayed and not interpreted.

● id
Identification name of the button.

● onClick
Defines the event handling method that will be processed when the user clicks on the enabled button. If you do not define a 'onClick' event the button can be clicked but
no event is generated.

● onClientClick
Defines the JavaScript fragment that is executed when the user clicks on the button. If both events ('onClick' and 'onClientClick') are specified, the 'onClientClick' event
handling method is activated first. By default the 'onClick' event handling method is activated afterwards. In the JavaScript fragment you can cancel the activation of the
'onClick' event handling method with the command

htmlbevent.cancelSubmit=true;

The 'onClientClick' event is useful to preprocess the form and only send the form to client if the preprocessing was successful (e.g. date validation, valid number format
etc.) to save client/server interaction.

Example
A button click usually activates the client/server interaction. If an input field has to be filled out for further processing, the JavaScript fragment can check the necessary
input on the client side and display a message if the necessary input is missing, without server interaction.

Note
to use JavaScript the JSP has to use the pagetag (set pagetag).

● text
Defines the string of text placed centered on the button. If no text should be displayed in the button an empty string (null) can be used. The width of the button is
automatically adjusted to the length of the text.

● width
Defines the width of the button. The width of the button is automatically adjusted to the length of the 'text'. To see an effect of the 'width' attribute, 'width' has to be set
higher as the width defined through the length of the 'text' string. The text string of the button is always placed centered on the button. If an empty (null) 'text' string is set
no 'text' attribute is defined the width of the button is set according to the 'width' attribute.

file:///F|/resources/htmlb_guidance/button_dev.html (1 of 2) [17.02.03 10:28:43]

file:///F|/resources/htmlb_guidance/basiccontrols_dev.html#page

Control API for Button (button)

● tooltip
Defines the hint of the button which is displayed as the mouse cursor passes over the button, or as the mouse button is pressed but not released.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

design no STANDARD
SMALL
EMPHASIZED

STANDARD yes design="STANDARD" setDesign(ButtonDesign.STANDARD)

disabled no TRUE
FALSE

FALSE yes disabled="FALSE" setDisabled(true)

encode no TRUE
FALSE

TRUE yes setEncode(false)

id yes String none yes id="OrderConfirm" setId("OrderConfirm")
text no String none no text="Confirm" setText("Confirm")
width no Unit 10 - width="125px" setWidth("125px")
tooltip no String none no tooltip="Confirm order" setTooltip("Confirm order")

Events Req. Values Default Case
sens.

JSP Taglib Classlib

onClick no String none yes onClick="ProcessConfirm" setOnClick("ProcessConfirm")
onClientClick no String none yes onClientClick="JavaScript" setOnClientClick("JavaScript")

Example using the taglib

<hbj:button
 id="OrderConfirm"
 text="Confirm"
 width="125px"
 tooltip="Click here to confirm order"
 onClick="ProcessConfirm"
 disabled="false"
 design="STANDARD"

/>

Example using the classlib

Form form = (Form)this.getForm();
Button button = new Button("button", "button");
button.setText("Confirm");
button.setWidth("125px");
button.setTooltip("Click here to confirm order");
button.setOnClick("ProcessConfirm");
button.setDisabled(false);
button.setDesign(ButtonDesign.STANDARD);
form.addComponent(button);

Result

file:///F|/resources/htmlb_guidance/button_dev.html (2 of 2) [17.02.03 10:28:43]

Chart

Chart

Usage | Types | Design-relevant Attributes | Related Controls

The chart control displays a chart; it offers a variety of different chart types.

Figure 1: A stacked bar chart as an example of a chart control

 Top

Usage

A chart displays data that are relevant for the user in a graphical representation so that the characteristics of the data and their
relations are easy to capture for the user.

In cases where it is important for users to know the exact values behind the data, an alternate view may present the data in a table
as numbers or texts. A button should allow users to toggle between the diagram and the table view.

Note: For thorough information on charts and their uses see Recommendations for Charts and Graphics in the SAP Design Guild.

Positioning

A chart can be presented in an iView; in this case, it should comprise the main part of the iView. A chart can be combined with
other screen elements to allow for interaction with the chart.

Legend

A legend explains the colors used in a chart. For the chart control the legend is generated automatically. It can be placed to the
right (preferable) or below the graph; other positions are also possible, but should not be used. The position of the legend is set by
the attribute legendPosition using the values EAST, NORTH, SOUTH, WEST, or NONE for no legend.

Order of Screen Elements

If there are further interaction elements, obey the following order:

● A filter of shuffler can be placed above the chart, if data can be selected from several sets or if the amount of data has to be
reduced.

● Then follows the chart.
● Place legends or other text right to the image or below it, depending on the format of the chart (see above)

file:///F|/resources/htmlb_guidance/chart.html (1 of 5) [17.02.03 10:28:46]

Chart

● Place pushbuttons for chart-related functionality and status information (e.g. zoom factor) below the chart and left align them.
● If there exists an alternative table view, a button below the table allows to toggle between diagram and table view.

Functionality

Typical functionality, which charts may offer, are:

● Switch between chart view and table view
● Zooming and panning (nor available for the chart control)
● Drill-down

 Top

Types

Charts are available in a number of types. These are selected using the attribute chartType. Below you find an overview of the
available chart types and the respective values for attribute chartType.

Area chart (chartType = AREA) 3D Area chart (chartType = AREA_3D)

Stacked area chart (chartType = AREA_STACKED) Stacked 3D area chart (chartType =
AREA_STACKED_3D)

Bar chart (chartType = BARS) 3D bar chart (chartType = BARS_3D)

file:///F|/resources/htmlb_guidance/chart.html (2 of 5) [17.02.03 10:28:46]

Chart

Stacked bar chart (chartType = BARS_STACKED) Stacked 3D bar chart (chartType =
BARS_STACKED_3D)

Column chart (chartType = COLUMNS) 3D column chart (chartType = COLUMNS_3D)

Stacked column chart (chartType =
COLUMNS_STACKED)

Stacked 3D column chart (chartType =
COLUMNS_STACKED_3D)

Line chart (chartType = LINES) 3D line chart (chartType = LINES_3D)

Pie chart (chartType = PIE)
3D pie chart (chartType = PIE_3D)

file:///F|/resources/htmlb_guidance/chart.html (3 of 5) [17.02.03 10:28:46]

Chart

Extruded pie chart (chartType = PIE_EX)

Extruded 3D pie chart (chartType = PIE_EX_3D)

Split pie chart (chartType = PIE_SPLIT)
Bitmap chart (chartType = BITMAP) - arbitrary bitmap

Pyramid chart (chartType = PYRAMID)
Trend chart (chartType = TREND)

Figure 2: Overview of the available chart types

Using Chart Types - Overview

The following table overview presents usage hints for the available chart types.

Chart Type Typical Applications Variants, Remarks

Area Cumulated totals (numbers or
percentages) over time

Percentage, Cumulative

Column/Bar Observations over time or under
different conditions; data sets must be
small

Vertical (columns), horizontal (bars);
multiple columns/bars, columns/bars
centered at zero

Segmented Column/Bar Proportional relationships over time May be scaled to 100%

file:///F|/resources/htmlb_guidance/chart.html (4 of 5) [17.02.03 10:28:46]

Chart

Line, Curve Trends, functional relations Data point connected by lines or higher
order curves

Pie Proportional relationships at a point in
time

Segments may be pulled out of the the
pie for emphasis (exploded pie chart)

Table 1: Chart types and their applications and variants

Note that there are chart types that may better fit the intended purpose than the available ones. For more information, consult
Recommendations for Charts and Graphics in the SAP Design Guild.

 Top

Design-relevant Attributes

Look and behavior of the chart control can be controlled by a number of attributes:

● Position and Visibility of Legend: Attribute legendPosition allows to hide or show and position the legend (values NONE,
EAST, NORTH, SOUTH, WEST).

● Color Order: Use attribute colorOrder to control the sequence of colors (values are DEFAULT, STRAIGHT, REVERSE, and
SNAKE).

● Height and Width: Attributes height and width allow to set the size of the chart.
● Display of Values and Titles: A number of attributes is at your disposal to control the look and position of labels for values and

categories. For more information see page Control API for Chart.

For detailed information on attributes see page Control API for Chart.

 Top

Related Controls

Image, Table View

 Top

file:///F|/resources/htmlb_guidance/chart.html (5 of 5) [17.02.03 10:28:46]

More Info about Chart

More Info about Chart

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

No known issues - charts are like images

 Top

Editability in Style Editor

Customers cannot customize charts via the Style Editor. The tool offers no editable styles related to charts placed as portal content.

 Top

Accessibility – 508 Support

Charts are like images; therefore, the same measures apply.

● Keyboard: Charts are not inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine
● Application-specific Description: Set an additional description using the setTooltip method if needed. Do not use the setAlt

method that sets the alternate text (alt attribute).

 Top

file:///F|/resources/htmlb_guidance/chart_tec.html [17.02.03 10:28:54]

Control API for Chart (chart)

Control API for Chart (chart)

A control to visualize data in annotated diagrams.

● axisMaxVal
Used to calculate the annotation and scaling of the chart. 'axisMaxVal' specifies the maximum value the axis is annotated with. If 'axisMaxVal' is not specified or a value is
specified that is less than the maximum value provided by he model, 'axisMaxVal' is set to the maximum value of the model.

● axisMinVal
Used to calculate the annotation and scaling of the chart. 'axisMinVal' specifies the minimum value of the axis. If 'axisMinVal' is not specified or a value is specified that is
greater than the minimum value provided by he model, 'axisMinVal' is set to 0.

● chartType
Controls the style in which the data is displayed.

❍ AREA

❍ AREA_3D

❍ AREA_STACKED

❍ AREA_STACKED_3D

❍ BARS

file:///F|/resources/htmlb_guidance/chart_dev.html (1 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ BARS_3D

❍ BARS_STACKED

❍ BARS_STACKED_3D

❍ BITMAP

❍ COLUMNS

❍ COLUMNS_3D

❍ COLUMNS_STACKED

file:///F|/resources/htmlb_guidance/chart_dev.html (2 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ COLUMNS_STACKED_3D

❍ LINES

❍ LINES_3D

❍ PIE

❍ PIE_3D

❍ PIE_EX

file:///F|/resources/htmlb_guidance/chart_dev.html (3 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ PIE_EX_3D

❍ PIE_SPLIT

❍ PYRAMID

❍ TREND

● colorOrder
The various types of the chart control all use the same set of colors to visualize the values of a data set, but explore the space of possible colors on different paths. The
following pictures show the three predefined color schemes and the chart types using them.

❍ STRAIGHT
This color scheme is used by the various area, column and bar chart graphs.

file:///F|/resources/htmlb_guidance/chart_dev.html (4 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ SNAKE
This color scheme is used by the pie chart graphs.

file:///F|/resources/htmlb_guidance/chart_dev.html (5 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ REVERSE
This color scheme is used by the line chart graphs.

● displayObjectValues
A boolean value that controls if the values is displayed with the object .

displayObjectValues = "false"

displayObjectValues = "true"

Note: Not all 'ChartType' settings support the display of values. The example pictures in the 'chartType' attribute description show which types support the
display of values.

● height
Defines the overall height of the chart. The height includes the 'title', 'titleValues' and 'legendPosition'.

● id
Identification name of the chart.

● legendPosition
Controls the position of the legend.

❍ EAST
Places the legend on the right side of the chart.

❍ NONE
The legend will be suppressed.

❍ NORTH
Places the legend on top of the chart.

file:///F|/resources/htmlb_guidance/chart_dev.html (6 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

❍ SOUTH
Places the legend under the chart.

❍ WEST
Places the legend left of the chart.

● model
Defines the model which provides the chart with data.

● title
Specifies the headline of the chart.

● titleCategories
Specifies the axis title for the categories.

● titleValues
Specifies the axis title for the values.

● visible
A boolean value that defines if the chart is visible.

● width
Defines the width of the chart. The width include 'titleCategories' and the 'legendPosition'.

Attribute Req. Values Default case
sens

JSP Taglib Classlib

axisMaxVal no Numeric defined by
model

- axisMaxVal="2000" setAxisMaxVal(2000)

axisMinVal no Numeric defined by
model

- axisMinVal="100" setAxisMinVal(100)

chartType no AREA
AREA_3D
AREA_STACKED
AREA_STACKED_3D
BARS
BARS_3D
BARS_STACKED
BARS_STACKED_3D
BITMAP
COLUMNS
COLUMNS_3D
COLUMNS_STACKED
COLUMNS_STACKED_3D
LINES
LINES_3D
PIE
PIE_3D
PIE_EX
PIE_EX_3D
PIE_SPLIT
PYRAMID
TREND

BARS_3D yes chartType="PIE" setChartType(ChartType.PIE)

colorOrder no DEFAULT
STRAIGHT
REVERSE
SNAKE

DEFAULT yes colorOrder="SNAKE" setColorOrder
(ChartColorOrder.SNAKE)

displayObjectValues no FALSE
TRUE

FALSE yes displayObjectValues=
"TRUE"

setDisplayObjectValues(true)

height no Unit 200 - height="300" setHeight("300")

id yes String none yes id="VacationPlanner" setId("VacationPlanner")

file:///F|/resources/htmlb_guidance/chart_dev.html (7 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

legendPosition no EAST
NONE
NORTH
SOUTH
WEST

EAST yes legendPosition="SOUTH" setLegendPosition
(ChartLegendPosition.SOUTH)

model yes String none yes model="myBean.model" setModel
((IChartModel) model)

title no String none no title="Bill board chart" setTitle("Bill board chart")
titleCategories no String none no titleCategories="Brand" setTitleCategories("Brand")
titleValues no String none no titleValues("Overview") setTitleValues("Overview")
visible no FALSE

TRUE
TRUE yes visible="FALSE" setVisible(false)

width no Unit 500 - width="400" setWidth("400")

Example using the taglib

<hbj:chart
 id="myChart1"
 model="myChartBean.model"
 visible="true"
 displayObjectValues="true"
 titleCategories="Company"
 titleValues="Turnover"
 title="Washers by Companies!"
 chartType="BARS_3D"
 legendPosition="EAST"
 colorOrder="STRAIGHT"
/>

Example using the classlib.

Form form = (Form)this.getForm();
Chart myChart = new Chart();
myChart.setVisible(true);
myChart.setDisplayObjectValues(true);
myChart.setTitleCategories("Company");
myChart.setTitleValues("Turnover");
myChart.setTitle("Washers by Companies!");
myChart.setChartType(ChartType.BARS_3D);
myChart.setLegendPosition(ChartLegendPosition.EAST);
myChart.setColorOrder(ChartColorOrder.STRAIGHT);

MyVecBean myVecBean = new MyVecBean();
IChartModel chartModel = myVecBean.getModel();
myChart.setModel(chartModel);
form.addComponent(myChart);

Result

file:///F|/resources/htmlb_guidance/chart_dev.html (8 of 9) [17.02.03 10:28:50]

Control API for Chart (chart)

file:///F|/resources/htmlb_guidance/chart_dev.html (9 of 9) [17.02.03 10:28:50]

Checkbox

Checkbox

Usage | Design-relevant Attributes | Related Controls

Checkboxes offer one or multiple choices to
the user. The user can select none, one, or
as many options as desired in a group of
checkboxes.

Figure 1: A checkbox group

 Top

Usage

Checkboxes are the appropriate elements when users can choose between multiple options. They can appear as a single
checkbox or grouped.

In a checkbox group the choices are not exclusive, that is, a user can check several options in a group. If you need single-selection
use radio buttons or a dropdown list box, instead.

Checkbox Group

For groups of checkboxes use the checkbox group control if applicable. This control allows to arrange checkboxes in one column,
one row, or in a matrix-like fashion.

Note: It is not possible to determine the horizontal spacing within a checkbox group. If you need a different spacing than that
supplied by the checkbox group control, use single checkboxes and a grid layout control if applicable.

Arrangement and Design Alternatives

For details on the arrangement of checkboxes as well as for design alternatives see Forms - Using Checkboxes.

 Top

Design-relevant Attributes

Checkboxes have the disabled and checked attributes. Set disabled to TRUE if a checkbox cannot be checked or unchecked by
a user temporarily. Set checked to TRUE to preset a checkbox to the checked state. Use attribute text to set the descriptive label
text for a checkbox.

file:///F|/resources/htmlb_guidance/checkbox.html (1 of 2) [17.02.03 10:27:28]

Checkbox

You can also set the column count for checkbox groups (attribute columnCount).

 Top

Related Controls
Radio Button, Dropdown List Box, List Box, Label, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/checkbox.html (2 of 2) [17.02.03 10:27:28]

More Info about Checkbox

More Info about Checkbox

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

The checkbox renders in every supported browser.

 Top

Editability in Style Editor

The checkbox itself renders as the standard browser control. Style Editor changes can be made to the corresponding label.

Checkbox Groups

There is no editibility for checkbox groups in the style editor.

 Top

Accessibility – 508 Support

Checkboxes have to be used in combination with the label control, which points to the assigned checkbox if they are used with a
label to the left of the checkbox. This ensures, that screenreaders are aware of the relationship between the both elements and can
read the correct label to the according checkbox.

● Keyboard: Checkboxes are inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control for left-hand labels (use method setLabelFor for identifying the corresponding

checkbox or checkbox group).

 Top

file:///F|/resources/htmlb_guidance/checkbox_tec.html [17.02.03 10:28:55]

Control API for Checkbox (checkBox)

Control API for Checkbox (checkBox)

A control, consisting of a graphic and associated text, that a user clicks to select or deselect an option. A check mark in the checkBox graphic indicates that the option is
selected.

● checked
A boolean value that that indicates if a checkBox is selected. "True" shows a check mark in a checkBox and indicates that the checkBox is selected, "false" leaves the
checkBox empty and indicates that the checkBox is not selected.

● disabled
A boolean value that defines if the checkBox is clickable. If the checkBox is disabled it is not selectable. A disabled checkBox has a different background color for the
checkBox graphic and if the checkBox is checked the a different color for the check mark.

● encode
A boolean value that defines how the checkBox text is interpreted. HTML text formatting commands (e.g. <h1>, <i> etc.) can be used to change the display of the
checkBox text. If there are no formatting commands in the checkBox text string, the encode attribute has no effect.

Example

text="<h1><i>Important</i></h>"

encode = "false"
the text string is rendered by interpreting the formatting commands.

Encode = "true"
the formatting commands are displayed and not interpreted

● id
Identification name of the checkBox.

● key
A string which is assigned to the checkbox when the form is sent to the server. A key string has be defined and must not be empty.

● onClick
Defines the action that will be processed when the user clicks on the enabled checkBox. If you do not define a 'onClick' Event the checkBox can be clicked but no event is
generated.

● text
Defines the string of text placed right of the check box graphic. If no text should be displayed an empty string (null) can be used. See 'encode' for a formatting example
with embedded HTML commands.

● tooltip
Defines the hint of the checkBox which is displayed as the mouse cursor passes over the checkBox, or as the mouse button is pressed but not released.

attribute req. values default case
sens.

JSP taglib classlib

checked no TRUE
FALSE

FALSE yes checked="TRUE" setChecked(true)

disabled no TRUE
FALSE

FALSE yes disabled="TRUE" setDisabled(true)

encode no TRUE
FALSE

TRUE yes encode="FALSE" setEncode(false)

id yes String none yes id="CheckCPU"
key yes String none no key="chk_k1" setKey("chk_k1")
text no String none no text="CPU status" setText("CPU status")
tooltip no String none no tooltip="Check CPU status" setTooltip("Check CPU status")

events req. values default case
sens.

JSP taglib classlib

onClick no String none yes onClick="process_checkbox" setOnClick("process_checkbox")

file:///F|/resources/htmlb_guidance/checkbox_dev.html (1 of 2) [17.02.03 10:28:57]

Control API for Checkbox (checkBox)

Example

<hbj:checkbox
 id="CheckCPU"
 text="CPU status"
 key="chk_k1"
 tooltip="Check CPU status"
 disabled="false"
 checked="true"

 />

Result

file:///F|/resources/htmlb_guidance/checkbox_dev.html (2 of 2) [17.02.03 10:28:57]

Control API for Checkbox Group (checkboxGroup)

Control API for Checkbox Group (checkboxGroup)

Places several checkboxes in tabular form. The setting of an individual checkbox is independent of other checkboxes - that is, more than one checkbox in a set can be
checked at any given time.

● columnCount
Defines the amount of columns in which the checkbox items are devided.

Example
If the columnCount is set to 2 and you define 7 checkbox items the result is

● id
Identification name of the checkboxGroup.

attribute req. values default case
sens.

JSP taglib classlib

columnCount no String 1 - columnCount="2" setColumnCount(2)

id yes String none yes id="CPUCheckGroup"

Example

<hbj:checkboxGroup
 id="CPUCheckGroup"
 columnCount="2"
 >

 <hbj:checkbox
 id="CheckCPUStat"
 text="CPU status"
 key="chk_Stat"
 tooltip="Check CPU status"
 disabled="false"
 checked="true"
 />

 <hbj:checkbox
 id="CheckCPUUsuage"
 text="CPU usuage"
 key="chk_Use"
 tooltip="Actual CPU usuage"
 disabled="false"
 checked="false"
 />

 <hbj:checkbox
 id="CheckProc"
 text="Processes"
 key="chk_Process"
 tooltip="Show active processes"
 disabled="false"
 checked="false"
 />

 <hbj:checkbox
 id="CheckProc"
 text="Resources"
 key="chk_Res"
 tooltip="Available resources"
 disabled="false"

file:///F|/resources/htmlb_guidance/checkboxgroup_dev.html (1 of 2) [17.02.03 10:28:59]

Control API for Checkbox Group (checkboxGroup)

 checked="true"
 />

</hbj:checkboxGroup>

Result

file:///F|/resources/htmlb_guidance/checkboxgroup_dev.html (2 of 2) [17.02.03 10:28:59]

Date Navigator

Date Navigator

Usage | Design-relevant Attributes | Related Controls

Figure 1: Example of the date navigator displaying one month

Figure 2: Example of the date navigator displaying 12 months

 Top

Usage

The date navigator is a control for advanced handling of all actions, which require a date input and to visualize a date. Thus, the main purpose
of the date navigator control is to aid users in inputing a date. It also ensures that the date is entered in an appropriate format. In such cases,

file:///F|/resources/htmlb_guidance/datenavigator.html (1 of 2) [17.02.03 10:29:00]

Date Navigator

it is highly recommended that users also be allowed the option to manually input the date as well.

Note: If the date must be entered in a particular format, an example should be given next to the entry field.

The date navigator can also be used to visualize the Western calendar.

 Top

Design-relevant Attributes

The date navigator allows to set the number of months per row (monthsPerRow) and per column (monthsPerColumn).

 Top

Related Controls

There are currently no related controls.

 Top

file:///F|/resources/htmlb_guidance/datenavigator.html (2 of 2) [17.02.03 10:29:00]

More Info about Date Navigator

More Info about Date Navigator

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Netscape Navigator 4 cannot display certain visual aspects of the standard date navigator control.

Figure 1: Example of the date
navigator in Netscape
Navigator 4

Figure 2: Example of the
standard date navigator

 Top

Editability in Style Editor

In the Style Editor for release 5.0 the date navigator is called "calendar." In the Style Editor, one can change the background colors,
text attributes, padding and the type of cursor that appears over clickable elements. Here is a list of the styles that can be changed:

Group Style IE 5 and above Netscape 4.7

Day Names Background Color for Days of the Week x x

Day Numbers Entry Width x

Alignment of Entry Text x

Decoration of Entry Text x

Selection Background Color 1 x x

Selection Background Color 2 x x

file:///F|/resources/htmlb_guidance/datenavigator_tec.html (1 of 2) [17.02.03 10:29:01]

More Info about Date Navigator

Selection Background Color 3 x x

Selection Background Color 4 x x

Selection Background Color 5 x x

Present Day Background Color x x

Border x

Other Days of this Month Background Color x x

Days of Previous or Next Month Inactive Font Color x

Container Background Color of Container Body x x

Container Border x

Padding of Container Content x

Table 1: Editable styles for the date navigator control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support

Currently the date navigator has not been adapted to support screen readers. For more information about accessibility, see the
SAP Portals Accessibility Guidelines.

 Top

file:///F|/resources/htmlb_guidance/datenavigator_tec.html (2 of 2) [17.02.03 10:29:01]

Control API for Date Navigator (dateNavigator)

Control API for Date Navigator (dateNavigator)

A control for advanced handling of all actions which require a date input and to visualize a date.

● id
Identification name of the dateNavigator.

● model
Defines the model which provides the dateNavigator with data.

● monthPerColumn
The dateNavigator can display several month. The months are arranged in matrix form. This attribute defines the number of columns of the matrix.

● monthPerRow
The dateNavigator can display several month. The months are arranged in matrix form. This attribute defines the number of rows of the matrix.

● onNavigate
The navigation fields are located left and right of the displayed month . The << and >> fields can be used to select the previous and next
month. If a dateNavigator has more columns the previous month navigator is located at the first column and the next month navigator at the last column.
The 'onNavigate' attribute defines the action that will be processed when the user clicks on the navigation fields.

● onDayClick
Defines the action that will be processed when the user clicks on a day.

● onWeekClick
Defines the action that will be processed when the user clicks on a week. The week is the first column of the dateNavigator grid.

● onMonthClick
Defines the action that will be processed when the user clicks on the header text string representing the month displayed.

attribute req. values default case
sens.

JSP taglib classlib

id yes String none yes id="VacationPlanner"
model yes String none yes model="myBean.model" setModel

((DateNavigatorModel) model)
monthPerColumn no Numeric 1 - monthPerColumn="3" setMonthPerColumn(3)

monthPerRow no Numeric 1 - monthPerRow="4" setMonthPerRow(4)

events req. values default case
sens.

JSP taglib classlib

onNavigate no String none yes onNavigate="ProcNav" setOnNavigate("ProcNav")

onDayClick no String none yes onDayClick="DaySel" setOnDayClick("DaySel")

onWeekClick no String none yes onWeekClick="WeekSel" setOnWeekClick("WeekSel")

onMonthClick no String none yes onMonthClick="MonSel" setOnMonthClick("MonSel")

file:///F|/resources/htmlb_guidance/datenavigator_dev.html (1 of 2) [17.02.03 10:29:03]

Control API for Date Navigator (dateNavigator)

Example

<hbj:dateNavigator
 id="myDateNavigator1"
 model="myBean.model"
 monthsPerColumn="2"
 monthsPerRow="3"
 onNavigate="myOnNavigate"
 onDayClick="myOnDayClick"
 onWeekClick="myOnWeekClick"
 onMonthClick="myOnMonthClick"
/>

Result

file:///F|/resources/htmlb_guidance/datenavigator_dev.html (2 of 2) [17.02.03 10:29:03]

Dropdown List Box

Dropdown List Box

Usage | Design-relevant Attributes | Related Controls

The dropdown list box is a field with an arrow icon on the right side. Clicking on this
icon drops down a list immediately below the field and shows the user which values
can be chosen. An entry in the list is called list box item. The dropdown list box is
read-only.

Figure 1: A dropdown list box with six language items

 Top

Usage

Use dropdown list boxes:

● To support the selection of a value from a limited quantity. The number of items should not exceed 20.

● To switch between views on large amounts of data. Especially in iViews, this is a good method to save space. With dropdown
list boxes, more views are possible than, for example, in a tabstrip, because the number of views is not limited by space.
However, the list should not be longer than about 12 items.

● In a shuffler for filtering a larger data set, in order to get simplified and reduced views of the data. The shuffler mimics natural
language statements for formulating the query, but can also be used with query statements consisting of words only. The query
statement is typically assembled by combining static texts with dynamic elements like dropdown lists, edit fields and selection
elements.

Note: The dropdown list box control does not render a descriptive label automatically. Use the label control to add a description.

The following table shows examples for the usage described above:

file:///F|/resources/htmlb_guidance/dropdown.html (1 of 4) [17.02.03 10:27:25]

Dropdown List Box

Selection of a
value

View selection

Dropdown list
box used in a
shuffler

Table 1: Usage examples for the dropdown list box

Choosing the Appropriate Selection Control

A dropdown list box is similar in function to a list box - both offer a list of items where users can select one item from, that is, both
are single-selection lists.

See Forms - Using Different List Types for guidelines on choosing the appropriate selection control.

Note: For very small item numbers (2-6) and if the users should immediately see all alternatives, use radio buttons for single-

file:///F|/resources/htmlb_guidance/dropdown.html (2 of 4) [17.02.03 10:27:25]

Dropdown List Box

selection choices.

 Top

Design-relevant Attributes

The dropdown list box can be set to an enabled or disabled state. Set attribute disabled to FALSE to enable a checkbox, set
disabled to TRUE to disable it. To see an example of an enabled dropdown list box, click here.

A disabled dropdown list box is not clickable, no item is selectable.

Figure 2: Disabled dropdown list box

The dropdown list box does not have a width attribute. Note, that this control takes the width from the widest list box item.

Figure 3: Dropdown list box with a very wide item

Usage - Disabled State

Set the disabled state if the user is not allowed to change the value of a dropdown list box or if a larger group of input elements
including a dropdown list box is disabled.

Example: A set of fields including a dropdown list box is disabled because the user unchecked an option (see figure 4).

file:///F|/resources/htmlb_guidance/dropdown.html (3 of 4) [17.02.03 10:27:25]

Dropdown List Box

Figure 4: Disabled dropdown list box - the fields are disabled because the user checked the Invoice
option

 Top

Related Controls

Input Field, Item List, Label, List Box, Radio Button, Tree View

 Top

file:///F|/resources/htmlb_guidance/dropdown.html (4 of 4) [17.02.03 10:27:25]

More Info about Dropdown List Box

More Info about Dropdown List Box

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Netscape 4.7

The disabled version of the dropdown list box is not available for Netscape 4.7.

Netscape 6.1 and 6.2

In Netscape Version 6.1 and 6.2, the dropdown list box looks slightly different than the standard control.

To see examples of standard dropdown list boxes click here.

Figure 1: Netscape 6.1/6.2 example of an enabled dropdown list
box

Figure 2: Netscape 6.1/6.2 example of a
disabled dropdown list box

 Top

Editability in Style Editor

In the Style Editor, the dropdown list box does not appear in the list of customizable elements directly. No control-specific styles
exist for this element, only common styles are used.

 Top

Accessibility – 508 Support

Dropdown list boxes have to be used in combination with the label element which points to the assigned listbox. This ensures, that

file:///F|/resources/htmlb_guidance/dropdown_tec.html (1 of 2) [17.02.03 10:29:04]

More Info about Dropdown List Box

screenreaders are aware of the relationship between the both elements and can read the correct label to the according dropdown
list box.

● Keyboard: The dropdown list box inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control (use method setLabelFor for identifying the corresponding dropdown list box).

 Top

file:///F|/resources/htmlb_guidance/dropdown_tec.html (2 of 2) [17.02.03 10:29:04]

Control API for Dropdown List Box (dropdownListBox)

Control API for Dropdown List Box (dropdownListBox)

A control with a dropdown arrow that the user clicks to display a list of options. An item in the dropdownListBox is called listBoxItem.

● disabled
A boolean value that defines if the dropdownListBox is clickable. If the dropdownListBox is disabled it is not selectable. A disabled dropdownListBox has a different color
for the displayed listBoxItem.

● id
Identification name of the dropdownListBox.

● model
Defines the model which provides the dropdownListBox with data.

● nameOfKeyColumn
Specifies the name of the column that contains the key. This is used when you use an underlying table in the model.

● nameOfValueColumn
Specifies the name of the column that contains the visible text. This is used when you use an underlying table in the model.

● onSelect
Defines the action that will be processed when the user clicks on the enabled dropdownListbox. If you do not define a onClick event the dropdownListbox can be clicked
but no event is generated.

● onClientSelect
Defines the JavaScript fragment that is executed when the user clicks on the dropdownListbox. If both events ('onClick' and 'onClientSelect') are specified, the
'onClientSelect' event is activated first. By default the 'onClick' event is activated afterwards. In the JavaScript fragment you can cancel the activation of the 'onClick' event
with the command

htmlbevent.cancelSubmit=true;

The 'onClientSelect' event is very useful to save client/server interaction.

Example
A dropdownListbox click usually activates the client/server interaction. If an input field has to be filled out for further processing, the JavaScript fragment can check the
necessary input on the client side and display a message if the necessary input is missing, without server interaction.

Note
To use JavaScript the JSP has to use the page tag (see page tag).

● selection
Specifies the key of the listBoxItem which is displayed in the dropdownListBox.

● tooltip
Defines the hint of the dropdownListBox which is displayed as the mouse cursor passes over the dropdownListBox, or as the mouse button is pressed but not released.

● width
Defines the width of the dropdownListBox in pixel or percent.

attribute req. values default case
sens.

JSP taglib classlib

disabled no TRUE
FALSE

FALSE yes disabled="True" setDisabled(true)

id yes String none yes id="listbox_te"
model no String none yes model="myBean.model" setModel((IlistModel) model)
nameOfKeyColumn no String none no nameOfKeyColumn("k1") setNameOfKeyColumn("k1")
nameOfValueColumn no String none no nameOfValueColumn("v1") setNameOfValueColumn("v1")
selection no String none yes selection("HD") setSelection("HD")
tooltip no String none no tooltip="select a item" setTooltip("select a item")
width no Unit 150 - width="200" setWidth("200")

file:///F|/resources/htmlb_guidance/dropdown_dev.html (1 of 3) [17.02.03 10:28:18]

file:///F|/resources/htmlb_guidance/basiccontrols_dev.html#page

Control API for Dropdown List Box (dropdownListBox)

events req. values default case
sens.

JSP taglib classlib

onClientSelect no String none yes onClientSelect="JavaScript" setOnClientSelect("JavaScript")
onSelect no String none yes onSelect="proc_listbox" setOnSelect("proc_listbox")

listBoxItem

Defines the items in a dropdownListBox or listBox instead of the model.

● key
A string which is passed on to the event handling routine when the event occurs. A key string has be defined and must not be empty. Each listBoxItem must have an
unique key.

● selected
A boolean value.
selected="false": no effect

selected:="true"

dropdownListBox:
The item is displayed in the dropdownListBox. It overrules the "selection" attribute of the dropdownListBox. If several listBoxItems are selected the last defined listBoxItem
is displayed in the dropdownListBox.

listBox:
selected="true": The item is displayed as selected in the listBox.

● value
Defines the text string displayed in the dropdownListBox or listBox. A 'value' string has be defined and must not be empty.

attribute req. values default case
sens.

JSP taglib classlib

key yes string none yes key="WD" addItem("WD","Walldorf")

selected no FALSE
TRUE

FALSE no selected="true" addItem("WD","Walldorf")
addSelection("WD")

value yes String none no value="Walldorf" see "key"

Example

<hbj:dropdownListBox
 id="DDCitiesNearby"
 tooltip="Cities surounding SAP"
 selection="WD"
 disabled="false"
 nameOfKeyColumn="KeyCol"
 nameOfValueColumn="KeyVal"
 onSelect="ProcessCity"
 onClientSelect="PreprocessCity"
 >

 <hbj:listBoxItem key="HD" value="Heidelberg" />
 <hbj:listBoxItem key="HK" value="Hockenheim" />
 <hbj:listBoxItem key="WD" value="Walldorf" />
 <hbj:listBoxItem key="WL" value="Wiesloch" />

</hbj:dropdownListBox>

Result

file:///F|/resources/htmlb_guidance/dropdown_dev.html (2 of 3) [17.02.03 10:28:18]

Control API for Dropdown List Box (dropdownListBox)

file:///F|/resources/htmlb_guidance/dropdown_dev.html (3 of 3) [17.02.03 10:28:18]

File Upload

File Upload

Usage | Related Controls

File upload is a control that allows to
access files on the client for uploading
them to the server

Figure 1: Example of a file upload control in a dialog window

 Top

Usage

Use the file upload control in case you want to provide the capability to pass files to the server.

 Top

Related Controls

Breadcrumb, Button

 Top

file:///F|/resources/htmlb_guidance/fileupload.html [17.02.03 10:29:05]

More Info for File Upload

More Info for File Upload

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

File upload is a very security sensitive control, since it allows to access the client's harddisk. For this reason, the original browser
control with no design modification is used. The Browse button appears as a platform-specific standard button.

 Top

Editability in Style Editor

No editability

 Top

Accessibility – 508 Support

To be provided

 Top

file:///F|/resources/htmlb_guidance/fileupload_tec.html [17.02.03 10:29:06]

Control API for File Upload (fileUpload)

Control API for File Upload (fileUpload)

A control to select a file for upload. The control generates a input field and a "Browse" button. The "Browse" button activates the file browser and allows to select the file
interactively. To use the selected file in the fileUpload control you need another control, e.g. a button named "Start upload", to finally start the upload.

Important note:
If you use a fileUpload control in the JSP you must set the encondingType attribute of the form control to "multipart/form-data".

Example: <hbj:form encodingType="multipart/form-data" >

● id
Identification name of the fileUpload.

● accept
Defines the accepted MIME type.

● maxLength
Defines the maximum file size in byte allowed for the upload. By default there is no limit.

● size
Defines the width of the fileUpload inputField in characters. The frame of the inputField is adjusted accordingly considering the actual text font and the design attribute.

attribute req. values default case
sens.

JSP taglib classlib

id yes String none yes id="chooseInputFile"
accept no String none - accept="text/rtf" setAccept("text/rtf")

maxLength no Numeric -1 - maxlength="125000" setMaxlength(125000)

size no Numeric 20 - size="30" setSize(30)

Example

<hbj:form encodingType="multipart/form-data" >
 <hbj:fileUpload id="myfileupload"
 maxLength="125000"
 size="50"
 />

</hbj:form>

Result

file:///F|/resources/htmlb_guidance/fileupload_dev.html (1 of 2) [17.02.03 10:29:07]

Control API for File Upload (fileUpload)

Programming Tip

In an application you usually have an additional control, usually abutton, to start
the upload once the file has been selected with the "Browse..." button.

Here we show what the server programm has to do when the user starts the upload.
In our example we define a button with an "onClick" event and specified as "onClick"
event handling method "onLoadFile". The "onLoadFile" method does the upload handling.

Example

 public void onLoadFile(Event event) {
 FileUpload fu = (FileUpload) this.getComponentByName("myfileupload");

// this is the temporary file
 if (fu != null) {
// Output to the console to see size and UI.
 System.out.println(fu.getSize());
 System.out.println(fu.getUI());
// Get file parameters and write it to the console
 IFileParam fileParam = fu.getFile();
 System.out.println(fileParam);
// Get the temporary file name
 File f = fileParam.getFile();
 String fileName = fileParam.getFileName();

// Get the selected file name and write ti to the console
 ivSelectedFileName = fu.getFile().getSelectedFileName();
 System.out.println("selected filename: "+ivSelectedFileName);
 }
 }

file:///F|/resources/htmlb_guidance/fileupload_dev.html (2 of 2) [17.02.03 10:29:07]

Group

Group

Usage | Types | Design-relevant Attributes | Related Controls

A group control clusters a set of
controls or information: it
demonstrates which parts belong
together, and separates them
from other parts of content.
Figure 1 (to the left)

The primary and secondary
group types, consisting only of a
background color, can be used to
highlight a part of the content.
Figure 2 (below)

In full-page applications, the
primary and secondary group
types may be used to create an
area into which other controls
can be placed.
Figure 3 (bottom)

Figure 1: Example of a group used in an iView

file:///F|/resources/htmlb_guidance/group.html (1 of 5) [17.02.03 10:28:08]

Group

Figure 2: Example of a group used to highlight a part of the content

Figure 3: Example of groups used in a full-page application

 Top

file:///F|/resources/htmlb_guidance/group.html (2 of 5) [17.02.03 10:28:08]

Group

Usage

In full-page applications, use the group control to

● Group each coherent set of fields or information and separate one set from another
● Define an area where text or controls can be placed
● Highlight a certain part of the application or information

Within an iView, there should normally be no need to highlight or separate different groups, since an iView is per definition small and simple. However, there are
certain cases where it makes sense to use a group control to

● Highlight or separate a certain part of an iView to better demonstrate it's structure.
For example, to show whether a certain button relates to the whole application or only to a part of it

● Highlight a certain portion of textual information within a large body of text.

General Usage Tips

Use groups only if other ways of separating information or field groups do not suffice. Group boxes look similar to the tray container of iViews and may clutter the
interface visually. Preferably, use white space or vertical dividing lines to group elements, relying on the Gestalt laws.

Tip: Sometimes you don't really need groups in your iView, but simply want to create a better visual structure. Instead of misusing the group control, use the text
view control to give users a better overview of your content: Create a text label for each part and add a blank line between parts to separate them.

Try not to nest groups; separate subgroups within groups by lines or white space. If you need to nest groups, consider nesting different group types (see below).

Positioning

Tabstrips, table views and tree views are only allowed to be included in a group control if they appear together with other elements (see Layout Hierarchy for
details). Placed as a single element, these controls do not need any further separation from their surroundings, as they already have distinct borders and a
dominant shape.

 Top

Types

Depending on the items the group will contain, you can choose one of the offered styles. Currently, there are five group designs available, which are set using the
attribute design.

Primary and Secondary Groups

The primary (design = PRIMARYCOLOR) and secondary groups (design = SECONDARYCOLOR) allow to visualize groups through a simple, flat background
color. Both are suitable for textual content. Controls with a white background color, such as input fields and checkboxes, stand out well on both group designs.

Figure 1: Primary (left) and secondary (right) groups

Use primary and secondary groups (figure 1) to

● Define an area in a full-page application

file:///F|/resources/htmlb_guidance/group.html (3 of 5) [17.02.03 10:28:08]

Group

Note: It is recommended to use the secondary (darker) group as an area background. You may then place the primary group on top of it to highlight or group
parts of the area's content.

● Highlight a part of the content
● Group a set of coherent elements

Group Box

The group box design (design = SAPCOLOR) has a transparent body background. Because of its border and header bar, it has a quite dominant appearance.

Figure 2: Group box

Use the group box (figure 2) to group a set of coherent elements.

Do not nest any further groups inside a group box.

Avoid putting more than one or two of this group type adjacent to one another. They create a grid-like visual effect, which makes it hard for users to determine,
which border belongs to which group.

Header Group 1

Header group 1 (figure 3, left - design = SECONDARYBOXCOLOR) is best suited for forms; its light body background color lets white input fields stand out well.

Figure 3: Header group 1 (left) and header group 2 (right)

Header Group 2

Header group 2 (figure 3, right - design = SECONDARYBOX) has a white body background color, which makes it unsuitable for forms. Textual content and lists
work best with this group style.

 Top

Design-Relevant Attributes

The look of groups can be determined by three attributes: design selects the group type (values PRIMARYCOLOR, SAPCOLOR, SECONDARYBOX,
SECONDARYBOXCOLOR, SECONDARYCOLOR), width sets the width of the group, and title sets the title text.

For details refer to page Control API for Group.

file:///F|/resources/htmlb_guidance/group.html (4 of 5) [17.02.03 10:28:08]

Group

 Top

Related Controls

Tabstrip, Table View, Tree View, Text View (for headers of subgroups)

 Top

file:///F|/resources/htmlb_guidance/group.html (5 of 5) [17.02.03 10:28:08]

More Info about Group

More Info about Group

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Netscape 4.7 doesn't render the padding correctly. Title and body text begin immediately at the left edge of a group.
Exception: Body text padding in the group box with header is correct.

Figure 1: Examples of how groups look in some Netscape versions.

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the group control:

Group Style IE 5 and above Netscape 4.7

Fonts Font Weight of Title x x

Background Colors First Background Color x x

Second Background Color x x

Third Background Color x x

Borders Border Width, Style and Color x x

Layout Title Padding for Groups with Header Strip x

Body Padding x

Title Padding for Groups without Header Strip x

file:///F|/resources/htmlb_guidance/group_tec.html (1 of 3) [17.02.03 10:29:09]

More Info about Group

Padding of Body Content x

Background Height of Container Title x

Background Color of Container Title x x

Background Color of Container Body x x

Table 1: Editable styles for the group control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The group is not inserted into the accessibility hierarchy by default.

Elements inside a group have to be handled separately, depending on the respective controls included in the group.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.

Elements inside a group have to be handled separately, depending on the controls used.

Users with low vision can use the portal personalization link to select the portal's high contrast design, which was developed to offer
maximum contrast. It renders the screen without using many colors or shades, which leaves us with little more than black and white.
Though the results may look highly unaesthetic to people with normal vision, sharp contrast is what users with low vision need, in order
to be able to read text at all.
As a developer, you needn't do anything to enable the high contrast scheme, but you should have a feeling for what happens to your
application when it is viewed in high contrast.

This is how groups look in high contrast. (Figre 2, left side). On the right hand side you can see some possible variations of group
designs, which can be achieved using the Style Editor.

file:///F|/resources/htmlb_guidance/group_tec.html (2 of 3) [17.02.03 10:29:09]

More Info about Group

Figure 2: Examples of groups in high contrast (left) and possible Style Editor variations (right).

 Top

file:///F|/resources/htmlb_guidance/group_tec.html (3 of 3) [17.02.03 10:29:09]

Control API for Group (group)

Control API for Group (group)

A framed panel to visually group controls. See also 'tray'.

● design
The design of the group that refers to CSS. You can select

❍ PRIMARYCOLOR
The panel of the group is filled with the same background as the title bar (primary color).

❍ SAPCOLOR
The title bar and the frame around the panel is in SAP blue and the panel has a white background.

❍ SECONDARYBOX
No frame around the panel. Title bar with background color (primary color), panel has a white background.

❍ SECONDARYBOXCOLOR
The panel is filled with a background color that is different from the title background color (primary color). No frame around the panel.

❍ SECONDARYCOLOR
The panel is filled with a background color that is same as the title background color (secondary color).

● id
Identification name of the group.

● title
Defines the string of text placed left aligned in the title bar. If no title should be displayed an empty string (null) can be used. The width of the group is automatically
adjusted to the length of the text when the 'width' attribute is set smaller than the title text width.

● tooltip
Defines the hint of the group which is displayed as the mouse cursor passes over the group, or as the mouse button is pressed but not released.

● width
Defines the width of the group. The width of the group is automatically adjusted to the length of the 'title'. To see an effect of the 'width' attribute 'width' has to be set higher
as the width defined through the length of the 'title' string. If an empty (null) 'title' string is set no 'title' attribute is defined the width of the group is set according to the
'width' attribute.

attribute req. values default case
sens.

JSP taglib classlib

design yes PRIMARYCOLOR
SAPCOLOR
SECONDARYBOX
SECONDARYBOXCOLOR
SECONDARYCOLOR

none yes design="SAPCOLOR" setDesign(GroupDesign.SAPCOLOR)

id yes String none yes id="Intro_Text"
title no String none no title="Headlines" setTitle("Headlines")
tooltip no String none no tooltip="latest news" setTooltip("latest news")
width no Unit 50% - width="300" setWidth("300")

groupBody

Defines the items in the group. A group can be filled with any control (checkbox, image, textView etc.).

file:///F|/resources/htmlb_guidance/group_dev.html (1 of 2) [17.02.03 10:28:12]

Control API for Group (group)

Example

<hbj:group
 id="HeadlineNewsGroup"
 design="PRIMARYCOLOR"
 title="latest headlines"
 tooltip="all the news you need"
 width="50%"
 >

 <hbj:groupBody>
 <hbj:textView
 encode="false"
 text="The NASDAQ on an upswing
Good news for homeowners"
 />
 </hbj:groupBody>

</hbj:group>

Result

file:///F|/resources/htmlb_guidance/group_dev.html (2 of 2) [17.02.03 10:28:12]

Image

Image

Usage | Types | Design-relevant Attributes | Related Controls

The image control displays a bitmap
GIF or JPEG format. The width and
height of the image can be specified.

Figure 1: Example of an image in an iView. The image appears only after
the user makes a selection via the shuffler placed above the image.

file:///F|/resources/htmlb_guidance/image.html (1 of 5) [17.02.03 10:28:52]

Image

Figure 2: Example of an image with a row of image-related function buttons

 Top

Usage

The image control displays a bitmap in GIF or JPEG format. The width and height of the image can be specified.

Photographs, graphics, charts and diagrams, maps, sketches, animated graphics and video (movies) may be used in the portal. If
used properly, they carry great amounts of information, which would take up much more time and screen-space, if they were
explained in words.

Note: Although icons are also images, they are not allowed in iViews, except for displaying status information. That is, there are no
function icons on buttons or tabs. For more information on status icons in the portal, see the SAP Reference Lists in the SAP
Design Guild.

Interacting with Images

● If graphics and data can be selected from several sets, or if the amount of data has to be reduced, place a filter or shuffler
above the image. (See figure 1, above)

● Place buttons for image-related functionality and status information (e.g. zoom factor) below the image and left align them. (See
figure 2, above)

● Place buttons related to the whole iView in the lower left corner; these buttons may reside in the same row as the table-related
buttons.

● If there is an emphasized button, it is the leftmost button of the respective button group (image-related or iView-related). There
must not be more than one emphasized button in an iView.

Legend

Always provide an appropriate legend. Place legends or other text below the image or to its right, depending on the format of the
image and the iView or page layout.

Tips for Using Images

● Align graphics so that their main contents points towards the text, not away from it.
● Crop graphics to the relevant section; make them as small as possible and avoid irrelevant and distracting elements.

Example: Do not show a US map if you want to illustrate data in Michigan - use a Michigan map instead.
● Use high quality graphics.

Example: Do not draw graphics by yourself, involve graphic designers.
● Care for the correct format of images:

JPEG for photos and images with many colors and gradations.
GIF for images with flat-colored areas and bold lines, like diagrams or cartoon, and images with (less than) 256 colors.
Typically, screen dumps work better in GIF format.
Sharp-edged graphics work well as transparent GIF, on any background. Using transparent GIF format for round, smooth forms
and large-sized text, as used in many logos, may cause problems if you don't know what color their background will be.

 Top

Types

file:///F|/resources/htmlb_guidance/image.html (2 of 5) [17.02.03 10:28:52]

Image

Charts

Figure 3: A horizontal bar chart table; for exact comparisons, the values have been added to the chart.

See Chart for details and Recommendations for Charts and Graphics in the SAP Design Guild for thorough information on the
usage of charts.

Animated Graphics, Video, or Movie

Figure 4: Animation can explain procedures or be just fun to watch...

Note: The image control currently supports only animated GIFs.

Sketches

file:///F|/resources/htmlb_guidance/image.html (3 of 5) [17.02.03 10:28:52]

Image

Figure 5: A sketch may be effective for fast communication or serve as a preliminary version of a diagram

 Top

Design-relevant Attributes

You can set the height (height) and width (width) of an image, also the tooltip text (tooltip), which is displayed as the mouse
cursor passes over the image, or as the mouse button is pressed but not released.

For details see page Control API for Image.

Usage - Height and Width

Note: Do not scale images in the browser by changing the values for height and width. This results in poor image quality.

 Top

Related Controls

Table View

 Top

file:///F|/resources/htmlb_guidance/image.html (4 of 5) [17.02.03 10:28:52]

More Info about Image

More Info about Image

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

No known issues

 Top

Editability in Style Editor

Customers can customize portal images used within the portal's outer frame and control-rendering (iView function images, table
buttons, etc.) quite easily via Style Editor. The tool offers no editable styles related to images placed as portal content.

 Top

Accessibility – 508 Support
● Keyboard: Images are not inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine
● Application-specific Description: Set an additional description using the setTooltip method if needed. Do not use the setAlt

method that sets the alternate text (alt attribute).

 Top

file:///F|/resources/htmlb_guidance/image_tec.html [17.02.03 10:29:10]

Control API for Image (image)

Control API for Image (image)

Displays a bitmap in GIF or JPEG format. The width and height of the image can be specified.

● alt
Defines an alternative text for the 'src' attribute. If the 'src' bitmap cannot be found or opened (e.g. unrecognized graphic format) the 'alt' text is displayed with an red X in
front of it and surrounded by a frame indicating the bitmap size.

● height
Defines the height of the bitmap. If 'height' is omitted the height of the image is determined by the bitmap itself.

● id
Identification name of the image.

● src
Name of bitmap (=source). The name of the bitmap is case sensitive. The images are usually stored in the public resource path of the component in the subfolder
/images. The public resource path can be determined with the JSP command:

<% String PublicURL = componentRequest.getPublicResourcePath(); %>
You can also get the complete path to image include the subfolder /image with the command:
<% String ImageURL = componentRequest.getPublicResourcePath() + "/images/"; %>

Hint: We use the string variable ImageURL in following table to demonstrate the setting of the src attribute.

Another possibility is to get the complete URL of the image and set the src attribute in a scriptlet.

<%
IResource rs = componentRequest.getResource(IResource.IMAGE, "images/mypicture.gif");
image.setSrc(rs.getResourceInformation().getURL(componentRequest));
%>

● tooltip
Defines the hint of the image which is displayed as the mouse cursor passes over the image, or as the mouse button is pressed but not released.

● width
Defines the width of the bitmap. If 'width' is omitted the width of the image is determined by the bitmap itself.

attribute req. values default case
sens.

JSP taglib classlib

alt yes String none no alt="picture not found" setAlt("picture not found")
height no Unit bitmap height no height="150" setHeight("150")
id yes String none yes id="Hometown"
src yes String none yes src="<%= ImageURL +\"walldorf.jpg\"

%>"
setSrc(ImageUrl + "walldorf.jpg")

tooltip no String none no tooltip="center of ebiz" setTooltip("center of ebiz")
width no Unit bitmap width - width="300" setWidth("300")

file:///F|/resources/htmlb_guidance/image_dev.html (1 of 2) [17.02.03 10:28:53]

Control API for Image (image)

Example

<hbj:image
 id="Logo"
 tooltip="center of ebiz"
 width="70"
 height="35"
 src="<%= ImageURL +\"saplogo.gif\" %>"
 alt="picture saplogo.gif not found"

/>

Result

file:///F|/resources/htmlb_guidance/image_dev.html (2 of 2) [17.02.03 10:28:53]

Input Field

Input Field

Usage | Types | Design-related Attributes | Related Controls

Input fields are used for entering and
displaying data in forms. The data can be of
various types, such as Date, Integer, or
String.

Input fields can have different behaviors,
such as password, read-only, or required,
and different states, such as normal and
error.

Figure 1: Example of grouped input fields with and without required inputs

 Top

Usage

In most cases, input fields appear in combination with the label control and sometimes with additional elements, such as descriptions or buttons.

Figure 2: Input field with label (left) and additional elements

Typically, the label is placed left to the input field, while the description follows the field. There is one exception to this rule: You may use small
labels if you place the labels above input fields to achieve a more compact design (figure 3).

Figure 3: Use small labels for labels that are placed above their associated input fields

In addition, help texts can be placed right to the field below it.

Help Texts

Help texts are special descriptions that are placed behind the input field or - if space is limited - below the input field and left-aligned with it (figure

file:///F|/resources/htmlb_guidance/inputfield.html (1 of 4) [17.02.03 10:27:22]

Input Field

4). Do not use the label control for help texts. Use the text view control, instead. Set the help text size to small (style Legend).

Figure 4: A small label used in conjunction with a small help text below the associated input fields - do not use the label
control for the help text (below the input field)

Width and Alignment

Often input fields are grouped to form a semantic block of input data, such as address data, or bank data. In that case, input fields should indicate
how many characters the user has to enter. Therefore, it is not appropriate to set all fields within a group to the same size. That is important
because input fields are often used in combination with other input types, such as checkboxes and radio buttons.

Figure 5: Example of grouped input fields with the width attribute set to appropriate values

Use the grid layout control for aligning fields and labels. Both fields and labels are left-aligned within the grid. The number of characters of the
longest label determines the offset between the labels and the input fields.

For the usage of the different input field types and sizes, see below.

 Top

Types

Input fields come in two sizes: standard size and small size. They are set using the attribute size to STANDARD (default) or SMALL.

Usage - Sizes

Usually, only the standard size is used. If the screen real estate is limited, the small size might be appropriate. Do not mix small and standard
input fields within one field group.

file:///F|/resources/htmlb_guidance/inputfield.html (2 of 4) [17.02.03 10:27:22]

Input Field

Figure 6: Standard input field (left) and small input field (right)

 Top

Design-relevant Attributes

A number of attributes allow to display several different states and behaviors of an input field, such as read-only, error, password field and
required field.

Read-only Input Field

Invalid Input Field

Password Input Field

Required Input Field *

Figure 7: Different states of input fields

These states and behaviors are set by assigning the value TRUE to the Boolean attributes disabled, invalid, password, and required.

The data type of input fields, such as Integer, String, etc., is set using the attribute type. For possible values and further attributes, see page
Control API for Input Field.

In addition, there are specialized input fields, which may also be accompanied by a value help. Below, we present the date field as example (this
is currently the only type of value help that is supported - see page Control API for Input Field for details).

Figure 8: Date input field with date picker

file:///F|/resources/htmlb_guidance/inputfield.html (3 of 4) [17.02.03 10:27:22]

Input Field

Usage - Required Fields

Some fields require that users enter a value before they can continue, for example, before they can save data. Set required = TRUE for making
an input field a required field; its corresponding label has also to be set to required.

Usage - Read-only Fields

Read-only fields (disabled = TRUE) are input fields that do not allow users to enter data.

Use read-only fields for data that have previously been entered by the user, for example, on a preceding page or during a previous session, or by
the system, and that currently cannot be changed by the user. Often, the data that the user is allowed to enter depend on the protected data that
are displayed in a read-only field.

Usage - Password Fields

Use password fields (password = TRUE) when users have to enter a password, for example, in a login dialog.

Usage - Invalid Fields (Error State)

Set the error state for an input field (invalid = TRUE), whenever the system detects an input error that the user committed. Depending on the
system behavior, an additional error message should appear immediately, or after a certain "stable" system state has been reached, when the
system performs a more thorough error check.

For details on error fields see Error Handling.

 Top

Related Controls

Label, Checkbox, Radio Button, Grid Layout, Flow Layout, Group

 Top

file:///F|/resources/htmlb_guidance/inputfield.html (4 of 4) [17.02.03 10:27:22]

More Info about Input Field

More Info about Input Field

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Renders in every supported browser.

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the input field control:

Group Style IE 5 and above Netscape 4.7

Field Styles Border Width, Style and Color x

Padding x

Standard-Sized Field Font Size x

Height x x

Small-Sized Field Small Font Size x

Small Height x x

Invalid Field Border for Invalid Input x

Required Field Font Color of "Required" Indicator x x

Background Background Color of Editable Fields x

Background Color of Non-Editable Fields x

Table 1: Editable styles for the input field control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

file:///F|/resources/htmlb_guidance/inputfield_tec.html (1 of 2) [17.02.03 10:29:11]

More Info about Input Field

Accessibility – 508 Support

Input fields have to be used in combination with the label element which points to the assigned input field. This ensures, that
screenreaders are aware of the relationship between the both elements and can read the correct label to the according field.

● Keyboard: The input field is inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control (use method setLabelFor for identifying the corresponding input field)

 Top

file:///F|/resources/htmlb_guidance/inputfield_tec.html (2 of 2) [17.02.03 10:29:11]

Control API for Input Field (inputField)

Control API for Input Field (inputField)

An framed area that allows user input. The inputField can be displayed with default input. A user can type new text or edit the existing text.

● design
Defines the size of the input field. The value for this attribute can be "STANDARD" or "SMALL".

● disabled
A boolean value that defines if the inputField allows input. A disabled inputField has a different background color.

● firstDayOfWeek
Controls the date navigator. The value for the firstDayOfWeek has to be between 1 (=Monday) and 7 (=Sunday). If the value is set e.g. to 3 the datenavigator starts with
Wednesday when activated.
To work with the firstDayofWeek attribute the attribute showHelp must be set to true and the attribute type must be set to date.

● id
Identification name of the inputField.

● invalid
A boolean value that controls the frame of the inputField.

invalid="true": InputField is displayed with a red frame.
invalid="false": InputField is displayed with the regular frame color

● maxlength
Defines the maximum amount of characters allowed for the inputField. If the type attribute is set e.g. to date or time the 'maxlength' has to take care of the characters
delivered by this format and local settings.

● password
A boolean value that controls the echo of the inputField. If set to "true" the typed in characters are echoed - displayed as asterisks (*). A common use for this attribute is to
inquire passwords.

● required
This attribute sets a different style sheet class for a required inputField (that is a inputField that has to be filled out by the user). That gives you the opportunity do create a
complete different look for a required inputfield (e.g. light blue background). Use the 'label' control to indicate with a acharacter that the inputField is required (e.g. an
asterisk).

● showHelp
A boolean value that activates a help button when set to "true". 'showHelp' shows effect only when 'type' is set to "date". The help button pops up the date navigator
allowing selection of the date by clicking on to the required day.
If you define a textView before the inputfield (to explain the meaning of the inputField) and than an inputField with enabled showHelp it is recommended to place the
textView and the inputField in a grid or a tableView for better formatting.
If textView is not placed in a grid or tableView a line wrap between textView and inputField will occur.

● size
Defines the width of the inputField in characters. The frame of the inputField is adjusted accordingly considering the actual text font and the design attribute.
The inputField width can also be set by the attribute 'width'. If 'size' and 'width' are set the 'width' attribute has priority and overwrites the 'size' setting.

● type
If 'type' is set to date a help button to call the dateNavigator can be generated (see 'showHelp'). Other than that this attribute has no further effect on the client side. It can
be used later on when the form gets processed.
Note: The type INTEGER is not null save and will therefor cause an exception when the field is empty. We recommend to use type STRING instead.

● value
Default string that is displayed in the inputField frame. The 'maxlength' attribute has no effect on the 'value' attribute. The 'value' string is not truncated to 'maxlength'.

● visible
A boolean value that defines if the inputField is visible or invisible.

● width
Defines the width of the inputField in pixel or percent. This attribute allows better adjustment of the inputField in a form.
The inputField width can also be set by the attribute 'width'. If 'size' and 'width' are set the 'width' attribute has priority and overwrites the 'size' setting.

attribute req. values default case
sens.

JSP taglib classlib

file:///F|/resources/htmlb_guidance/inputfield_dev.html (1 of 2) [17.02.03 10:28:23]

Control API for Input Field (inputField)

design no STANDARD
SMALL

STANDARD yes design="SMALL" setDesign(InputFieldDesign.SMALL)

disabled no FALSE
TRUE

FALSE yes disabled="TRUE" setDisabled(true)

firstDayOfWeek no range 1 to 7 1 - firstDayOfWeek="3" setFirstDayOfWeek(3)
id yes String none yes id="GetInput"
invalid no FALSE

TRUE
FALSE no invalid="TRUE" setInvalid(true)

maxlength no Numeric 25 no maxlength="25" setMaxlength(25)

password no FALSE
TRUE

FALSE no password="TRUE" setPassword(true)

required no FALSE
TRUE

FALSE yes required="FALSE" setRequired(false)

showHelp no FALSE
TRUE

FALSE yes showHelp="TRUE"
only effective if type is set to "date"

setShowHelp(true)
only effective if type is set to "date"

size no Numeric 30 - size="30" setSize(30)
type no BCD

BOOLEAN
DATE
INTEGER
STRING
TIME

STRING yes type="INTEGER" setType(DataType.INTEGER)

value no String none no value="Your name here" setValue("Your name here")
visible no FALSE

TRUE
TRUE yes visible="FALSE" setVisible(false)

width no Unit 150 - width="200" setWidth("200")

Example

<hbj:inputField
 id="InputName"
 type="string"
 maxlength="100"
 value="Your name here"

/>

Result

file:///F|/resources/htmlb_guidance/inputfield_dev.html (2 of 2) [17.02.03 10:28:23]

Item List

Item List

Usage | Types | Related Controls

Figure 1a-b: Ordered item list (left) and unordered item list (right)

Use an ordered item list if you want to represent items in a certain predefined sequence, e.g. a ranking. Use an unordered list if
there is no predefined item order.

 Top

Usage

Use item lists whenever you want to present a list of items in an unobtrusive way, where reading is the primary usage and where
there is - apart from links - no interaction on the list elements.

Lists have the following characteristics:

● List items are read-only.
● List items may contain links.
● Item lists do not scroll. Therefore make sure that all list items fit the iView!
● Item lists consist of one column only; for multiple columns include the lists in an HTML table with one row and several columns

(2-3) or use a table view.
● Lists may be ordered (numbers) or unordered (bullets).
● Lists may be nested; do not use more than 2-3 levels!

file:///F|/resources/htmlb_guidance/itemlist.html (1 of 3) [17.02.03 10:28:19]

Item List

Description - Label or Heading

Item lists may have a label or heading. A descriptive label may be placed above or to the left of the item list, a heading should
typically be placed above the item list.

Use the label control for both labels and headings. Note that the label control allows to set font attributes in order to emphasize
headings.

Figure 2: Item list with a heading

 Top

Types

There are two types of item lists, an unordered or bullet list, and an ordered or numbered list. Both types are set using the Boolean
attribute ordered: ordered = TRUE renders a numbered list, ordered = FALSE a bullet list.

Usage - Types

Use an ordered item list if you want to present items in a certain predefined sequence, e.g. a ranking. Use an unordered list if there
is no predefined item order.

 Top

Related Controls

Table View, Text View, Link, Listbox, Label

file:///F|/resources/htmlb_guidance/itemlist.html (2 of 3) [17.02.03 10:28:19]

More Info about Item List

More Info about Item List

Editability in Style Editor | Accessibility – 508 Support

Editability in Style Editor

The following characteristics are editable in the Style Editor:

● List Style Image (List Bullet)
● List Margin

In the Style Editor, it is possible to modify the following attributes of the item list control:

Style IE 5 and above Netscape 4.7

URL to List Style Image x x

List Margin x

Table 1: Editable styles for the item list control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The item list is not inserted into the accessibility hierarchy by default.
● Default Description: Not needed.
● Application-specific Description: Not needed.

 Top

file:///F|/resources/htmlb_guidance/itemlist_tec.html [17.02.03 10:29:12]

Control API for Item List (itemList)

Control API for Item List (itemList)

A static list that appears in the interface. The list can be displayed as bulleted or numbered (ordered) list. An element in an itemList is called listItem.

● id
Identification name of the itemList.

● ordered
A boolean value that defines if the list is displayed as bulleted (ordered="false") or numbered list (ordered="true").

attribute req. values default case
sens.

JSP taglib classlib

id yes String none yes id="ImportantItems"
ordered no FALSE

TRUE
FALSE yes ordered="TRUE" setOrdered(true)

listItem

Defines the items in the itemList. A listItem can be built with any control (checkbox, image, textView etc.) and one listItem can contain more then one control.

Example

<hbj:itemList
 id="ImportantItems"
 ordered="true"
 >

 <hbj:listItem>
 <hbj:textView text="Introduction" />
 </hbj:listItem>

 <hbj:listItem>
 <hbj:textView text="Definitions" />
 </hbj:listItem>

 <hbj:listItem>
 <hbj:textView text="Main Part" />
 </hbj:listItem>

 <hbj:listItem>
 <hbj:textView text="Conclusion" />
 </hbj:listItem>

</hbj:itemList>

Result

file:///F|/resources/htmlb_guidance/itemlist_dev.html [17.02.03 10:29:13]

Label

Label

Usage | Design-relevant Attributes | Related Controls

Figure 1: Example of a label with its corresponding input element

Labels are texts that describe associated input elements. The label control creates a firm connection between the descriptive
text and the respective element.

 Top

Usage

Labels are simple text elements that can be used for descriptive texts. Labels can wrap and spread over multiple lines. Use labels
to describe input elements, such as, dropdown list boxes, input fields, list boxes, and item lists.

Note: Checkbox and radio button controls already include their own labels.

Required Fields

Set the label to required if the input field is required.

Positioning

Typically, labels are placed in front of the input element they describe (figure 1). In some cases, labels may be placed above the
corresponding input element (figure 2). See also the special case for input fields below (figure 3).

file:///F|/resources/htmlb_guidance/label.html (1 of 3) [17.02.03 10:27:23]

Label

Figure 2: Label above a text edit control

Size

The label control can be set to two sizes, standard and small. Use the sizes depending on the context of the label, that is, use the
standard size if the surrounding fields are standard size, use small if the surrounding fields are small.

There is one exception to this rule: You may use small labels if you place the labels above input fields to achieve a more compact
design (figure 3).

Figure 3: Use small labels for labels that are placed above their associated input fields

Relation to Text View

Do not use the text view control as a label because only the label establishes a connection between the description and the
corresponding input element. This connection is mandatory for achieving accessibility.

Help Texts

Help texts are special descriptions that are placed behind or, if space is limited, below and left-aligned with input fields (figure 4). Do
not use the label control for help texts. Use the text view control, instead. Set the help text size to small (style Legend).

Figure 4: A small label used in conjunction with a small help text below the associated input fields - do not
use the label control for the help text (below the input field)

 Top

Design-relevant Attributes

The appearance of the label control can be determined through several attributes. The attribute design allows to set the size of the
label: design = LABEL sets the standard size, design = LABELSMALL sets the small size. The attribute labelFor established the
connection to the associated input control. Further attributes set the width, wrapping behavior (Boolean attribute wrapping), text,
and tooltip text of the label. The Boolean attribute required must be set to TRUE for labels that describe required fields

For details see page Control API for Label.

file:///F|/resources/htmlb_guidance/label.html (2 of 3) [17.02.03 10:27:23]

Label

 Top

Related Controls

Dropdown List Box, List Box, Input Field, Text Edit, Text View, Item List

 Top

file:///F|/resources/htmlb_guidance/label.html (3 of 3) [17.02.03 10:27:23]

More Info about Label

More Info about Label

Editability in Style Editor | Accessibility – 508 Support

Editability in Style Editor

The label control is editable in the Style Editor via "Text". Common styles used for labels (changes affect other elements) are:

● Font Size
● Font Color
● Font Family
● Font Weight
● Font Style

For an overview of all common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The label is not inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Typically, an additional description is not needed. Set a description using the setTooltip

method only if the label text is not sufficient for explaining the meaning, function, or purpose of the corresponding control.
● Corresponding Input Elements: Checkbox, dropdown list box, input field, radio button, and text edit control

 Top

file:///F|/resources/htmlb_guidance/label_tec.html [17.02.03 10:29:14]

Control API for Label (label)

Control API for Label (label)

A multiline region for displaying text. Text in the component is restricted to a single font, size and style unless set with HTML commands.
label works similar to textView. In addition a label has an associated component like an inputField or listBox.

● design
Defines the appearance of the label. The CSS controls how the different options are rendered. The following description is based on the standard CSS delivered.

❍ LABEL
Text size and attributes STANDARD

❍ LABELSMALL
Text size -2 in comparison to STANDARD

● encode
A boolean value that defines how the label text is interpreted. HTML text formatting commands (e.g. <h1>, <i> etc.) can be used to change the display of the text. If there
are no formatting commands in the text string, the encode attribute has no effect.

Example

text="<h1><i>Important</i></h>

encode = "false"
the text string is rendered by interpreting the formatting commands.

Encode = "true"
the formatting commands are displayed and not interpreted

● id
Identification name of the label.

● labelFor
Identification name of the next component, which is associated with the label.

● required
A boolean value. If set to "true" a character (e.g. an asterisk (*) in red color) defined by the style sheet is placed at the end of the text string. This is a common method to
indicate that input is required. See also inputField.

● text
Defines the string of text displayed. See 'encode' for a formatting example with embedded HTML commands.

● tooltip
Defines the hint of the textView which is displayed as the mouse cursor passes over the textView, or as the mouse button is pressed but not released.

● width
Defines the width of the textView. The width shows only effect when the 'wrapping' attribute is set to "true". Otherwise the width and layout follows the HTML commands in
the text string.

● wrapping
A boolean value. If set to "true" the text is word wrapped at the set 'width' or - if no 'width' is set - at the form width.

attribute req. values default case
sens.

JSP taglib classlib

design no LABEL
LABELSMALL

LABEL yes design="LABEL" setDesign(TextViewDesign.LABEL)

encode no TRUE
FALSE

TRUE yes encode="FALSE" setEncode(false)

id yes String none yes id="Intro_Text"
labelFor yes String none yes labelFor="id_inputField" setLabelFor(id_inputField_component)
required no TRUE

FALSE
FALSE yes required="TRUE" setRequired(true)

text no String none no text="Your name please" setText("Your name please")
tooltip no String none no tooltip="Name required" setTooltip("Name required")
width no Unit 100% no width="300" setWidth("300")

file:///F|/resources/htmlb_guidance/label_dev.html (1 of 2) [17.02.03 10:28:21]

Control API for Label (label)

wrapping no TRUE
FALSE

FALSE yes wrapping="TRUE" setWrapping(true)

Example

<hbj:label
 id="label_InputName"
 required="TRUE"
 text="ZIP Code"
 design="LABEL"
 labelFor="InputName"

/>

<hbj:inputField
 id="InputName"
 type="string"
 maxlength="100"
/>

Result

file:///F|/resources/htmlb_guidance/label_dev.html (2 of 2) [17.02.03 10:28:21]

Link

Link

Usage | Types | Links vs. Buttons | States | Design-relevant Attributes | Related Controls

Figure 1: Example of links in the content area

 Top

Usage

The link control is not the simple topic it may seem to be. Not all links should be handled equally. There are hypertext links in the navigation area,
header area, and content area as well as on buttons and in tables and applications. All of these links can have different appearances and behaviors.

For aesthetic and usability reasons, the links in the navigation area (not to be confused with content area navigation links!) have a different appearance
from those in the content area. It's important that the user recognizes these links as pertaining to the overall navigational structure and not just a way to
drill-down to detail information or jump to a page in a different context.

The HTMLB control called "link," which is described here, refers to hypertext links (referred to here as "links") in the content area.

Positioning

Links may either appear

● as part of a larger text, (for example, an article about customer service might contain a context link to the mySAP CRM homepage) or
● standalone (for example, a list of links to articles about CRM, a "More" link placed at the end of a abstract to navigate to additional information, etc.)

Standalone links should be grouped together separately from buttons and vice versa. When possible, functions and links should be grouped together
and displayed in the same way (either all as links or all as buttons), as in figure 1. A mixture of links and buttons in the same grouping context should

file:///F|/resources/htmlb_guidance/link.html (1 of 7) [17.02.03 10:27:16]

Link

be avoided.

View switching links are most often displayed above the content to which they refer, as in figure 2.

Capitalization

It is not necessary to make any special capitalization considerations for links that are part of a larger context or that are automatically generated (such
as contact names, document titles, etc.). In the same way that buttons require title case capitalization (i.e. the first word always capitalized, all
significant words are capitalized, prepositions and articles are not capitalized), so do function, navigation, toggle and view switching links.

Figure 2: Example of an iView where links have both title and sentence case depending on the usage

 Top

Types

Although there is only one link type from a technical point of view, we must make a distinction between the various kinds of links in the content area.
This helps to establish usage rules for links and to make a distinction between buttons and links.

Note:

Based on what purpose the links serve, we can establish five different types of content area links: view switch, toggle, drill-down, function, and
navigation.

file:///F|/resources/htmlb_guidance/link.html (2 of 7) [17.02.03 10:27:16]

Link

Figure 3: Example of an iView with view switch links.

View Switch Links

View switch links are similar in function to toggle links, but are different in that they are always visible. The view switch links are an alternative to
the tabstrip control. The advantage that view switch links have over the tabstrip is that they take up less space and can be used vertically, if this
makes more sense in the application (for example in mobile applications where the format of the device allows more vertical than horizontal
space). This type of link is similar to the navigation link. As opposed to navigation links, view switch links all refer to the same context and must be
persistent in all the views. The currently selected view should not be presented as a link, but as bold text (see figure 3 above). View switch links
should be separated from one another by a vertical line, like this one |.

Use title case (see Capitalization) for view switch links.

file:///F|/resources/htmlb_guidance/link.html (3 of 7) [17.02.03 10:27:16]

Link

Figure 4: Example of an iView with toggle, drill-down, function and navigation links.

Toggle Links

Toggle links are used when there are two alternative views of the current data. Toggle links are always pairs of links, but only one is visible at a time. In
figure 4 the toggle link reads, "Show Entire Feedback Text." If the user were to click on that link, the alternative view would show the feedback in its
entirety and the text of the link would change to "Show Only Feedback Preview."

Some common examples of toggle links are:

● Expand All / Collapse All
● Show Chart View / Show Table View
● Hide Help / Show Help
● etc.

Use title case (see Capitalization below) for toggle links.

Drill-Down Links

A drill-down link allows a user to see more detailed or specific information. For example, in the overview of an address book, the contact names are drill-
down links that allow the user to access details on that person. In a mail inbox, the title of each message would automatically be a link to the contents
of the message.

Some common drill-down links are:

● Contact name
● Customer name
● Document title
● Message title
● Report title
● Revenue

file:///F|/resources/htmlb_guidance/link.html (4 of 7) [17.02.03 10:27:16]

Link

● etc.

These links are most often automatically generated and the developer should make no attempt to influence the capitalization. (See figure 2.)

Function Links

A function link allows the user to carry out an action.

Although in general buttons should be reserved for functions (see Links vs. Buttons for more information), there may be cases where a link would be
preferable or where the distinction between a function and a link to another view might be very blurry.

For example, when the user wants to subscribe to an object (e.g. a folder), the link may just be a link to a new screen where the user
has to fill in some more information and then can submit the information to the server. This whole act of subscribing, however, could
be thought of as carrying out a function and in some cases might make more sense as a button than as a link, or vice versa
depending on the context.

Sometimes you may have a collection of items, for example a list of documents. There are some actions that you can perform all at once on a number
of documents whereas there are other actions which make more sense when they are performed on each item one at a time. If the action requires a
new screen or additional information (details, feedback, edit, reply, etc.), chances are that you can only perform the action on each item one at a time.
In such cases, a link is generally preferable to a button.

Taking the iView in figure 1 as an example, we can see that the user can select a number of documents and approve or reject them
all at once by using the checkboxes and buttons. However, if the user were to want to see the details of a number of documents, it
makes more sense to have him choose a link next to each document. Otherwise, the user would have a number of detail screens and
would likely be confused about which details belong to which document.

If your application has a list of items, and each one requires it's own function (see figures 1 and 4 for examples), it is preferable to use
links as opposed to buttons for functions in this case. This is mainly due to aesthetics, but it is also a usability factor. An application
with a wall of buttons makes the application look heavy and complicated.

Some common function links are:

● Details
● Feedback
● Add
● Subscribe
● Reply
● Edit
● etc.

Use title case (see Capitalization) for function links.

Navigation Links

Many times, there will be navigation within an iView or application which is independent of the main navigation of the Portal. End users might not even
perceive these links as "navigation" per se. Navigation links allow users to move backwards or forwards though a data set or process. Sometimes the
difference between a drill-down link and a navigation link might be difficult to assess, for example with a "more..." link.

Some common navigation links are:

● More...
● Next or Next >
● Back or < Back
● Backward "<" and forward ">>" as well as back to the beginning "<<" and forward to the end ">>"arrows in text form (as in figure 4 above)
● Numbers to navigate to a set of entries (as in figure 4 above)

Use title case (see Capitalization) for navigation links.

file:///F|/resources/htmlb_guidance/link.html (5 of 7) [17.02.03 10:27:16]

Link

 Top

Links vs. Buttons

In general, use links to indicate navigation to another HTML page or to a different view of the current information as well as to link to further or more
detailed information. Links commonly appear within the context of the application (within trees, tables or text).

In general, use buttons to indicate that a function can be carried out (save, print, close, delete, etc.) or that a process can be started (subscribe, etc.).
Buttons generally appear at the bottom left of a grouped area to indicate a function that can either be performed on selected items (if checkboxes
appear as well) or that apply to the whole screen. (See the section of these guidelines called Buttons for further information.)

For more information about cases where links may be used to indicate a function, see function links above.

Figure 5: Example of an iView where links and buttons are both used.

 Top

States

The link control has four states: link (i.e. unvisited, normal state), hover, visited and active.

Example of a link in its normal state
Example of a link in the hover state
Example of a link in the visited state
Example of a link in the active state

Table 1: Examples of the different states the link control can have

 Top

file:///F|/resources/htmlb_guidance/link.html (6 of 7) [17.02.03 10:27:16]

Link

Design-relevant Attributes

Attribute reference allows to assign an URL to the link, whereas attribute target allows to set a link target. The latter follows the HTML conventions for
specifying link targets. Attribute text sets the link text, and attribute tooltip the tooltip text for the link.

For details see page Control API for Link.

 Top

Related Controls

Button

 Top

file:///F|/resources/htmlb_guidance/link.html (7 of 7) [17.02.03 10:27:16]

More Info about Link

More Info about Link

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Netscape does not recognize the hover state.

 Top

Editability in Style Editor

In the Style Editor it is possible to edit the following styles:

● Font Color for Unvisited ("link"), Active ("active"), Visited ("visited") and Mouseover ("hover")
● Text Decoration for Unvisited ("link"), Active ("active"), Visited ("visited") and Mouseover ("hover")

For an overview of all common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: The link is inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.

An additional description is needed if users need more specific information or instructions. In general, the description has to be
extended if a link introduces an interaction that cannot be recognized by a blind user. For example, the descriptions needs to
be extended if the link opens a new window.

 Top

file:///F|/resources/htmlb_guidance/link_tec.html [17.02.03 10:29:14]

Control API for Link (link)

Control API for Link (link)

Defines a link to another page. The text of the link becomes an underline and is displayed in a different color. An image can be defined as link as well - see the example for
details.

● id
Identification name of the link.

● onClick
Defines the action that will be processed when the user clicks on the link. If 'onClick' is specified, the event handling routine is called.

● reference
Specifies the address of the page/document to be opened. If the 'onClick' attribute is defined the event handling routine is started and the 'reference' string is handed to
the event handling routine. The referenced document is not opened - the event handling routine has to do that.
If the 'onClick' attribute is not defined, the link is opening the referenced document.

● target
Specifies the name of the frame where the document is to be opened. The following values refer to w3c HTML-standard.

❍ _blank
The web client should load the designated document in a new, unnamed window.

❍ _self
The web client should load the document in the same frame as the element that refers to the target.

❍ _parent
The web client should load the document into the immediate FRAMESET parent of the current frame. This value is equivalent to _self if the current frame has no
parent.

❍ _top
The web client should load the document into the full, original window (thus canceling all other frames). This value is equivalent to _self if the current frame has no
parent.

● text
A text string that is displayed underlined and in different color. If no 'text' attribute is provided or a the 'text' attribute is set to an empty string, the link is not displayed.

● tooltip
Defines the hint of the link which is displayed as the mouse cursor passes over the link, or as the mouse button is pressed but not released.

attribute req. values default case
sens.

JSP taglib classlib

id yes String none yes id="ImportantItems"
reference no String none no reference="http://www.sap.com" setReference("http://www.sap.com")
target no _blank

_self
_parent
_top

_self no target="_TOP" setTarget("_TOP")

text no String none no text="To the beach" addText("To the beach")
tooltip no String none no tooltip="Enjoy and relax" setTooltip("Enjoy and relax")

events req. values default case
sens.

JSP taglib classlib

onClick no String none yes onClick("ProcessLink") setOnClick("ProcessLink")

file:///F|/resources/htmlb_guidance/link_dev.html (1 of 3) [17.02.03 10:27:18]

Control API for Link (link)

Example - Text as link

<hbj:link
 id="link1"
 text="Link to google"
 reference="http://www.google.com"
 target="_TOP"
 tooltip="this takes you to: http://www.google.com"
 onClick="LinkClick"
/>

Result

Link to google

Example - Image as link (and getting the resource path once - at the beginning of the JSP. This is useful when the JSP uses several
images)

<%-- Get resource url of component --%>
<% String ImageURL = componentRequest.getPublicResourcePath() + "/images/"; %>

<hbj:link
 id="link1"
 text=""
 reference="http://www.sap.com"
 target="_TOP"
 tooltip="this takes you to: http://www.sap.com"
 onClick="LinkClick"
 <hbj:image
 src="<%= ImageURL+\"sap.gif\" %>"
 alt="Image not available" />
</hbj:link>

Result

Example - Text and Image as link (and getting the resource path at the control)

<%@ page import="com.sapportals.portal.prt.resource.IResource" %>
.
.

<hbj:link
 id="link1"
 text="Link to SAP"
 reference="http://www.sap.com"
 target="_TOP"
 tooltip="this takes you to: http://www.sap.com"
 onClick="LinkClick" >
 <hbj:image id="image_logo"
 alt="Image not available"
 src="" >
 <%
 IResource rs = componentRequest.getResource(IResource.IMAGE, "images/sap.gif");
 image_logo.setSrc(rs.getResourceInformation().getURL(componentRequest));
 %>
 </hbj:image>
</hbj:link>

Result

file:///F|/resources/htmlb_guidance/link_dev.html (2 of 3) [17.02.03 10:27:18]

http://www.google.com/

Control API for Link (link)

Link to SAP

file:///F|/resources/htmlb_guidance/link_dev.html (3 of 3) [17.02.03 10:27:18]

http://www.sap.com/

List Box

List Box

Usage | Design-relevant Attributes | Related Controls

The list box is a box that displays a list of items where users can select one
item from. If the number of items exceeds the box size, a vertical scrollbar is
activated. The list box is read-only.

Figure 1: Example of the list box control.

 Top

Usage

A list box offers a set of choices from which a user can select one item. If the number of items exceeds the control size, a vertical
scrollbar is activated. An item in the list box is called list box item. The list box is read-only.

Note: The list box control does not render a descriptive label automatically. Use the label control to add a description. See there,
how you can change text attributes if you need to highlight the label, for example, make it bold (see figure 1).

Choosing the Appropriate Selection Control

A list box is similar in function to a dropdown list box - both offer a list of items where users can select one item from, that is, both
are single-selection lists.

See Forms - Using Different List Types for guidelines on choosing the appropriate selection control.

Note: For very small item numbers (2-6) and if the users should see all alternatives, use radio buttons.

 Top

file:///F|/resources/htmlb_guidance/listbox.html (1 of 2) [17.02.03 10:28:13]

List Box

Design-Relevant Attributes

You can set the number of displayed lines of a list box (size), its width (width), and whether it is enabled or disabled (Boolean
attribute disabled).

See page Control API for List Box for details.

 Top

Related Controls

Dropdown List Box, Item List, Radio Button, Table View, Tree View

 Top

file:///F|/resources/htmlb_guidance/listbox.html (2 of 2) [17.02.03 10:28:13]

More Info about List Box

More Info about List Box

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

To be provided

 Top

Editability in Style Editor

The list box itself renders as the standard browser control. Style Editor changes can be made to the corresponding label.

 Top

Accessibility – 508 Support

List boxes have to be used in combination with the label element which points to the assigned list box. This ensures, that
screenreaders are aware of the relationship between the both elements and can read the correct label to the according list box.

● Keyboard: The listbox inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control (use method setLabelFor for identifying the corresponding list box).

 Top

file:///F|/resources/htmlb_guidance/listbox_tec.html [17.02.03 10:29:15]

Control API for List Box (listBox)

Control API for List Box (listBox)

A set of choices from which a user can select one items. If the number of text lines exceeds the control size, a vertical scrollbar is activated. An item in the listBox is called
listBoxItem. ListBoxItems are explained above - after the dropdownListBox description.

● disabled
A boolean value that defines if the listBox is clickable. If the listBox is disabled it is not selectable. A disabled listBox has a different color for the displayed listBoxItem.

● id
Identification name of the listBox.

● model
Defines the model which provides the listBox with data.

● nameOfKeyColumn
Specifies the name of the column that contains the key. This is used when you use an underlying table in the model.

● nameOfValueColumn
Specifies the name of the column that contains the visible text. This is used when you use an underlying table in the model.

● onSelect
Defines the action that will be processed when the user clicks on the enabled listBox. If you do not define a 'onSelect' event the listBox can be clicked but no event is
generated.

● onClientSelect
Defines the JavaScript fragment that is executed when the user clicks on the listBox. If both events ('onClick' and 'onClientSelect') are specified, the 'onClientSelect' event
is activated first. By default the 'onClick' event is activated afterwards. In the JavaScript fragment you can cancel the activation of the 'onClick' event with the command

htmlbevent.cancelSubmit=true;

The 'onClientSelect' event is very useful to save client/server interaction.

Example
A listbox click usually activates the client/server interaction. If an input field has to be filled out for further processing, the JavaScript fragment can check the necessary
input on the client side and display a message if the necessary input is missing, without server interaction.
Note
To use JavaScript the JSP has to use the page tag (see page tag).

● selection
Specifies the key of the listBoxItem which is displayed in the listBox.

● Size
Sets the number of lines displayed for the listBox. If the number of text lines for listBox is higher then the size attribute a vertical scrollbar is activated - the width of the
listBox is not changed, the text display window becomes smaller.

● tooltip
Defines the hint of the listBox which is displayed as the mouse cursor passes over the listBox, or as the mouse button is pressed but not released.

● width
Defines the width of the listBox. Text lines are truncated if the length of the string extends the width.

attribute req. values default case
sens.

JSP taglib classlib

disabled no TRUE
FALSE

FALSE yes disabled="TRUE" setDisabled(true)

id yes String none yes id="listbox_te"
model no String none yes model="myBean.model" setModel((IlistModel) model)
nameOfKeyColumn no String none no nameOfKeyColumn("k1") setNameOfKeyColumn("k1")
nameOfValueColumn no String none no nameOfValueColumn("v1") setNameOfValueColumn("v1")
selection no String none yes selection("HD") setSelection("HD")
size no Numeric 4 - size="10" setSize(10)
tooltip no String none no tooltip="select a item" setTooltip("select a item")
width no Unit max. item length - width="100" setWidth("100")

file:///F|/resources/htmlb_guidance/listbox_dev.html (1 of 2) [17.02.03 10:28:15]

file:///F|/resources/htmlb_guidance/basiccontrols_dev.html#page

Control API for List Box (listBox)

events req. values default case
sens.

JSP taglib classlib

onClientSelect no String none yes onClientSelect="JavaScript" setOnClientSelect("JavaScript")
onSelect no String none yes onSelect="proc_listbox" setOnSelect("proc_listbox")

listBoxItem

Defines the items in a dropdownListBox or listBox instead of the model. See dropdownListBox.

Example

<hbj:listBox
 id="LB_CitiesNearby"
 tooltip="Cities surounding SAP"
 selection="WD"
 disabled="false"
 nameOfKeyColumn="KeyCol"
 nameOfValueColumn="KeyVal"
 onSelect="ProcessCity"
 onClientSelect="PreprocessCity"
 >

 <hbj:listBoxItem
 key="HD"
 value="Heidelberg"
 selected="true"
 />

 <hbj:listBoxItem
 key="HK"
 value="Hockenheim"
 />

 <hbj:listBoxItem
 key="WD"
 value="Walldorf"
 selected="true"
 />

 <hbj:listBoxItem
 key="WL"
 value="Wiesloch"
 />

</hbj:listBox>

Result

file:///F|/resources/htmlb_guidance/listbox_dev.html (2 of 2) [17.02.03 10:28:15]

Radio Button

Radio Button

Usage | Design-relevant Attributes | Related Controls

Radio buttons provide users with a single
choice from a set of alternative options

Figure 1: A radio button group

 Top

Usage

Radio buttons provide users with a single choice from a set of alternative options. They always appear in a group of at least two
radio buttons. Therefore, you should define radio buttons only within the radio button group control, not as single elements.

A click on one choice selects the current choice and deselect the previous choice. Usually, always one radio button is checked. The
Internet introduced one exception to this rule. In some cases, a radio button group can initially show up with no radio button
checked.

Note: It is not possible to determine the horizontal spacing within a radio button group. If you need a different spacing than that
supplied by the radio button group control, use single radio buttons and a grid layout control if applicable.

Arrangement and Design Alternatives

For details on the arrangement of radio buttons as well as design alternatives see Forms - Using Radio Buttons.

 Top

Design-relevant Attributes

Radio buttons have the disabled attribute. Set disabled to TRUE if users are not allowed to change their state temporarily.
Attribute text sets the descriptive label text for a radio button.

For radio button groups there are two relevant attributes: You can determine which radio button is "on" in a group; set attribute

file:///F|/resources/htmlb_guidance/radiobutton.html (1 of 2) [17.02.03 10:28:04]

Radio Button

selection to the id of the respective radio button. You can also set the column count for radio button groups (attribute
columnCount).

 Top

Related Controls

Dropdown List Box, Checkbox, List Box, Label, Grid Layout

 Top

file:///F|/resources/htmlb_guidance/radiobutton.html (2 of 2) [17.02.03 10:28:04]

More Info about Radio Button

More Info about Radio Button

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

The radio button renders in every supported browser.

 Top

Editability in Style Editor

The radio button itself renders as the standard browser control. Style Editor changes can be made to the corresponding label.

Radio Button Groups

There is no editibility for radio button groups in the style editor.

 Top

Accessibility – 508 Support

If radio buttons are used with a label to the left, they have to be used in combination with the label control which points to the
assigned radio button. This ensures, that screenreaders are aware of the relationship between the both elements and can read the
correct label to the according radio button.

● Keyboard: Radio buttons are inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control for left-hand labels (use method setLabelFor for identifying the corresponding

radio button or radio button group).

 Top

file:///F|/resources/htmlb_guidance/radiobutton_tec.html [17.02.03 10:29:16]

Control API for Radio Button (radioButton)

Control API for Radio Button (radioButton)

A button that a user clicks to set an option. Unlike checkboxes, radio buttons are mutually exclusive - selecting one radio button menu item deselects all others in that group.
That is also the reason why you cannot define a radioButton by itself - it always has to be defined within a radioButtonGroup.

● disabled
A boolean value that defines if the radioButton is clickable. If the radioButton is disabled it is not selectable. A disabled radioButton has a different background color for
the radioButton graphic and if the radioButton is checked the a different color for the button mark.

● encode
A boolean value that defines how the radioButton text is interpreted. HTML text formatting commands (e.g. <h1>, <i> etc.) can be used to change the display of the
radioButton text. If there are no formatting commands in the radioButton text string, the encode attribute has no effect.

Example

text="<h1><i>Important</i></h>

encode = "false"
the text string is rendered by interpreting the formatting commands.

Encode = "true"
the formatting commands are displayed and not interpreted

● id
Identification name of the radioButton.

● key
A string which is assigned to the radioButton when the form is sent to the server. A key string has be defined and must not be empty.

● text
Defines the string of text placed right of the radiobutton graphic. If no text should be displayed an empty string (null) can be used. See 'encode' for a formatting example
with embedded HTML commands.

● tooltip
Defines the hint of the radioButton which is displayed as the mouse cursor passes over the radioButton, or as the mouse button is pressed but not released.

attribute req. values default case
sens.

JSP taglib classlib

disabled no TRUE
FALSE

FALSE yes disabled="TRUE" setDisabled(true)

encode no TRUE
FALSE

TRUE yes encode="FALSE" setEncode(false)

id yes String none yes id="GenderInfo"
key yes String none yes key="rb_k1" setKey("rb_k1")
text no String none no text="female" setText("female")
tooltip no String none no tooltip="I am female" setTooltip("I am female")

Example

A radioButton has to be defined in a radioButtonGroup.

file:///F|/resources/htmlb_guidance/radiobutton_dev.html [17.02.03 10:29:17]

Control API for Radio Button Group (radioButtonGroup)

Control API for Radio Button Group (radioButtonGroup)

Places several radiobuttons in tabular form. Only one radiobutton can be on at any given time.

● columnCount
Defines the amount of columns in which the radiobuttons are devided.

Example
If the columnCount is set to 3 and you define 7 radiobuttons the result is

● id
Identification name of the radioButtonGroup.

● selection
Specifies the key of the radioButton that is on in the radioButtonGroup.

attribute req. values default case
sens.

JSP taglib classlib

columncount no Numeric 1 - columnCount="3" setColumnCount(3)
id yes String none yes id="Genderselect"
selection no String none yes selection="rb_k1" setSelection("rb_k1")

Example

<hbj:radioButtonGroup
 id="Genderselect"
 columnCount="2"
 selection="rb_fem"

 <hbj:radioButton
 id="RBGenderFemale"
 text="female"
 key="rb_fem"
 tooltip="I am female"
 disabled="false"
 />

 <hbj:radioButton
 id="RBGenderMale"
 text="male"
 key="rb_male"
 tooltip="I am male"
 disabled="false"
 />

</hbj:radioButtonGroup>

Result

file:///F|/resources/htmlb_guidance/radiobuttongroup_dev.html [17.02.03 10:29:18]

Table View

Table View

Usage | Types | Design-relevant Attributes | Related Controls

Figure 1: Example of a table view with different column types and an erroneous input field

The table view allows to arrange data - text, images, links, other tables etc. - into rows and columns, that is, in a tabular fashion.
Table view rows may be grouped into a header, body and footer section. The table view supplies navigation buttons for scrolling the
table. In addition, the table view offers mechanisms for single and multiple selection of rows.

 Top

Usage

Table views are primarily used as data tables for displaying numeric or non-numeric tabular data. Table views can be read-only or
used for data entry. Depending on the usage of the table view, different looks and behaviors can be chosen.

General Usage Tips

Tables are relatively complex screen elements that lead developers to squeezing in lots of information. Keep tables small with
respect to the number of columns and rows.

For long tables consider effective filtering methods like the shuffler: These tools effect that only a few rows are displayed and that
users need not scroll, or need to scroll only a little bit.

Also, consider alternative presentations, such as charts or graphs - they may reveal relevant information faster.

file:///F|/resources/htmlb_guidance/table.html (1 of 6) [17.02.03 10:27:55]

Table View

Look

The table view can be presented in three alternative looks:

● Grid and background - either with alternating row colors or with a uniformly colored background
● Transparent, that is, without grid and background

Selection rules for the different table view presentations:

● Grid and uniform background: Use this look preferably for entry tables and for numeric display tables. Use the uniformly
colored background also for narrow to medium wide display tables.

● Stripe pattern background: Use the alternative stripe pattern preferably for data entry tables and for wide display tables.
● Transparent background: Use this look preferably for non-numeric display tables, that is, for tables, which display text and/or

images.

Table Title and Table Parts

A table view consists of three main parts: a header row, the table view body, and a footer row.

● The table view header contains the table view's title. A table view should have a title if the table is not described elsewhere
(e.g. by a group or tray title).

● The table view body contains the actual data.
● The table view footer is located in the bottom row; it contains the scroll buttons to the left and an optional text. The footer text

may, for example, offer paging information.

The header row as well as the footer row can be hidden. Note that hiding the footer also hides the scroll buttons.

Row and Column Headers

Row and column headers describe data columns and rows. Typically, a table view has only column headers; these describe the
different attributes of items that are listed in rows. Row headers can be used, for example, in matrix-like tables, which have both
row and column titles.

Cell Content

Table view cells can contain text, images or icons, links, buttons, input fields and dropdown list boxes.

Like stand-alone input fields, input fields in tables can have different attributes, such as required, read-only, or error state.

Row Selection

The table view can be used in two selection modes, if needed:

● single-selection (radio buttons in the first table column)
● multiple-selection (checkboxes in the first table column)

These mode are set by assigning the values SINGLESELECT or MULTISELECT to the attribute selectionMode.

In the default mode of the table view (selectionMode = NONE) users cannot select any rows. Use this mode if there is no need for
users to select rows/items. Use single-selection if users shall only select one row, that is, one item, at a time. Use multiple-selection

file:///F|/resources/htmlb_guidance/table.html (2 of 6) [17.02.03 10:27:55]

Table View

if users can select several options or items in parallel.

Scrolling

The table view offers up to six buttons for scroll functions: First page, Page up, Line up, Line down, Page down, and Last page. The
scroll buttons are invisible if the footer is hidden.

Note: Scrollbars are currently not supported in table views.

Technical Info: The Line up/down buttons appear only if the selectionMode attribute has been set to NONE or SINGLESELECT.

Table View Size

Recommendations for the table view size:

Vertical Size

Table views should vertically fit the window or iView they are placed into. As table views can be scrolled through buttons, there
should not be no need to use the window's scrollbars.

Make the height of the table view as large as possible with respect to the surrounding container. The larger the table view, the less
scrolling is needed (scrolling through buttons is extremely cumbersome..).

Table views should have at least three visible lines - five lines are even better.

Horizontal Size

Table Views should also horizontally fit the window or iView they are placed into. Avoid horizontal scrolling at any price.

Matrix Tables

Matrix tables should have at least 2x2 data cells.

Initial Size and Appearance

Empty tables are not displayed in iViews. In addition, no space is reserved for the table or for a sentence, such as "No entries
found".

Exception: There is one exception to this rule: Tables where users can immediately enter data should appear in the intended size
and with empty lines.

Note: Do not use the transparent design (see below) in this case.

 Top

Types

file:///F|/resources/htmlb_guidance/table.html (3 of 6) [17.02.03 10:27:55]

Table View

Global Table View Look

The attribute design defines the global look of the table. It can have one of the following values:

● ALTERNATING: The rows of the table entries are colored alternating.
● STANDARD: The background of Table View is uniformly colored.
● TRANSPARENT: The Table View has no background (grid).

Figure 2: Table View with grid and patterned background (left) vs. transparent table

Cell Style

Individual cells can be given different styles as shown in figure 3; most of them are used for numeric values.

file:///F|/resources/htmlb_guidance/table.html (4 of 6) [17.02.03 10:27:55]

Table View

Figure 3: Example table showing different cell styles - click image for larger view

Note: The "GROUP_HIGHLIGHTED" colors should not be used in conjunction with the "CRITICALVALUE" colors.

Cell Content Types

Typically, table cells contain numeric or alphanumeric text. However, there are more cell types available:

● Text: Text cell - the text cannot be edited
● Image: Cell displays an icon or image
● Link: Cell contains a link (reference)
● Button: Cell contains a button
● Input: The cell can be edited
● User: The cell contains a dropdown list box

Figure 4: Example table showing different cell types

 Top

Design-relevant Attributes

The appearance and behavior of tables can be affected by various attributes.

● Header and Footer: The header text can be defined (headerText) and the header as well as the footer be hidden (Boolean
attributes headerVisible, footerVisible).
Note: The footer must be visible if the table has to be scrolled, that is, if the table contains more lines than are visible.

● Size, Number of Lines, Initial Appearance: Another set of attributes determines the width of the table view (width), the
number of visible rows (visibleRowCount), the first visible row (firstVisibleRow), and the initial appearance of empty rows
(Boolean attribute fillUpEmptyRows).

● Selection Mode: Further attributes define how the table entries can be selected: single, multiple, or none (attribute
selectionMode, values SINGLESELECT, MULTISELECT, or NONE).
Note: The selection mode also influences the display of scroll buttons, provided the footer is set to visible.

For details see page Control API for Table View.

 Top

file:///F|/resources/htmlb_guidance/table.html (5 of 6) [17.02.03 10:27:55]

Table View

Related Controls

Tree View, Item List, List Box

 Top

file:///F|/resources/htmlb_guidance/table.html (6 of 6) [17.02.03 10:27:55]

file:///F|/resources/htmlb_guidance/images/table/table_colors.gif

file:///F|/resources/htmlb_guidance/images/table/table_colors.gif [17.02.03 10:27:56]

More Info about Table View

More Info about Table View

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

To be provided

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the table view control:

Group Style IE 5 and above Netscape 4.7

Table Styles Background Color of Standard Table Cell x x

Background Color of Alternating Table Cell x x

Grid Color x

Cell Height x

Cell Padding x

Background Color of Selected Cell x x

Background Color 1 of Grouping Cell x x

Background Color 2 of Grouping Cell x x

Background Color 3 of Grouping Cell x x

Table Icons Background Position x

Height x

Width x

Padding x

URL to "Top" Icon x x

URL to Inactive "Top" Icon x x

URL to "Page Up" Icon x x

file:///F|/resources/htmlb_guidance/table_tec.html (1 of 2) [17.02.03 10:29:20]

More Info about Table View

URL to Inactive "Page Up" Icon x x

URL to "Up" Icon x x

URL to Inactive "Up" Icon x x

URL to "Down" Icon x x

URL to Inactive "Down" Icon x x

URL to "Page Down" Icon x x

URL to Inactive "Page Down" Icon x x

URL to "Bottom" Icon x x

URL to Inactive "Bottom" Icon x x

Container Font Color of Container Title x x

Background Color of Container Body x x

Table 1: Editable styles for the table view control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: Table views are not inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine for the title, the navigation buttons, and certain elements

inside the table.
● Application-specific Description: Set the table title using the SetHeaderText method. Set the summary text using the

setSummary method (should display a tooltip). Note that there is no setTooltip method for table views, use setSummary,
instead.

 Top

file:///F|/resources/htmlb_guidance/table_tec.html (2 of 2) [17.02.03 10:29:20]

Control API for Table View (tableView)

Control API for Table View (tableView)

Arrangement of data - text, images, links, other tables etc. - into rows and columns of cells. TableView rows may be grouped into a head, foot and body section. The
tableView supplies also navigation buttons which allow browsing thru the table.

● design
Defines the look of the table

❍ ALTERNATING
The rows of the table entries are colored alternating.

❍ STANDARD
The background of tableView is uniformly colored.

❍ TRANSPARENT
The tableView has no background.

● fillUpEmptyRows
A boolean value. If set to "TRUE" the tableView has always the height set by the 'visibleRowCount' attribute, regardless of the available table entries. The not available
table entries will be filled up with empty lines and according the 'design' attribute.
If set to "FALSE" the tableView height is adjusted to the available table entries.

● footerVisible
A boolean value that controls the footer row. If set to "FALSE" the footer row including the navigation buttons is invisible.

● headerText
Defines the headline of the tableView.

● headerVisible
A boolean value that controls the header line. If set to "FALSE" the header row is invisible.

● id
Identification name of the tableView.

● model
Defines the model which provides the tableView with data.

● navigationMode
Controls the navigation buttons in the footer row.

❍ BYPAGE
Four navigation buttons are displayed that allow browsing page up, page down, first and last table entry

❍ BYLINE
Two additional buttons are displayed allowing single row up and down.

● onCellClick
Defines the action that will be processed when the user clicks on one cell of a column.

● onHeaderClick
Defines the action that will be processed when the user clicks on the header of the table.

● onNavigate
Defines the action that will be processed when the user clicks on the navigation buttons.

file:///F|/resources/htmlb_guidance/table_dev.html (1 of 3) [17.02.03 10:27:58]

Control API for Table View (tableView)

● onRowSelection
Defines the action that will be processed when the user clicks on the radiobutton button in the first column. The radiobutton is visible when the 'selectionMode' is set to
"SINGLESELECT". The method com.sapportals.htmlb.event.TableSelectionEvent.getRowIndex() can be used to retrieve the index of the row that initiated the event.

● rowCount
Defines the maximum record that is displayed together with the actual position (e.g. 3/16 - meaning: actual position 3, maximum records 16) on the right side of the footer.
If 'rowCount' is not specified the number of records in the model define the value.

● selectionMode
Defines how the table entries can be selected

❍ MULTISELECT
A checkbox is displayed on every row at the first column of the table. According to the nature of the checkbox multiple columns can be selected at a time.

❍ NONE
No selection possible (no checkbox and no radiobutton).

❍ SINGLESELECT
A radiobutton is displayed on every row at the first column of the table. According to the nature of the radiobutton one column can be selected at a time. Together with
this attribute 'onRowSelection' attribute can be set so that an event is fired, when the user clicks on the radiobutton.

● visibleFirstRow
Defines the number of the table entry that is displayed in the first row of the tableView. All subsequent entry are displayed accordingly.

● visibleRowCount
Defines the visible rows of the tableView. If 'fillUpEmptyRows' is set to "TRUE", all rows specified with 'visibleRowCount' are displayed. The default for 'visibleRowCount'
is the number of table entries supplied by the model.

● width
Defines the width of tableView

attribute req. values default case
sens.

JSP taglib classlib

design no STANDARD
ALTERNATING
TRANSPARENT

STANDARD yes design="ALTERNATING" setDesign
(TableViewDesign.ALTERNATING)

fillUpEmptyRows no FALSE
TRUE

TRUE yes fillUpEmptyRows="FALSE" setFillUpEmptyRows(false)

footerVisible no FALSE
TRUE

TRUE yes footerVisible="FALSE" setFooterVisible(false)

headerText no String TRUE no headerText="SAP training" setHeaderText("SAP training")
headerVisible no FALSE

TRUE
TRUE yes headerVisible("FALSE") setHeaderVisible(false)

id yes String none yes id="Trainingscenter"

model no String none no model="myBean.model" setModel((TableViewModel) model)
navigationMode no BYPAGE

BYLINE
BYPAGE yes navigationMode="BYLINE" setNavigationMode

(TableNavigationMode.BYLINE)
rowCount no Numeric defined by model - rowCount="5" setRowCount(5)
selectionMode no MULTISELECT

NONE
SINGLESELECT

MULTISELECT yes selectionMode="NONE" setSelectionMode
(TableSelectionMode.NONE)

visibleFirstRow no Numeric 1 - visibleFirstRow="5" setVisibleFirstRow(5)
visibleRowCount no String defined by model - visibleRowCount="20" setVisibleRowCount(20)
width no Unit none - width="500" setWidth("500")

events req. values default case
sens.

JSP taglib classlib

onCellClick no String none yes setOnCellClick("Pr_Cell")
onHeaderClick no String none yes setOnHeaderClick("Pr_Header")
onNavigate no String none yes onNavigate="Pr_NavClick" setOnNavigate("Pr_NavClick")
onRowSelection no String none yes setOnRowSelection("Pr_Row")

file:///F|/resources/htmlb_guidance/table_dev.html (2 of 3) [17.02.03 10:27:58]

Control API for Table View (tableView)

Example

<hbj:tableView
 id="myTableView1"
 model="myTableViewBean.model"
 design="ALTERNATING"
 headerVisible="true"
 footerVisible="true"
 fillUpEmptyRows="true"
 navigationMode="BYLINE"
 selectionMode="MULTISELECT"
 headerText="TableView example 1"
 onNavigate="myOnNavigate"
 visibleFirstRow="1"
 visibleRowCount="5"
 rowCount="16"
 width="500 px"
/>

Result

file:///F|/resources/htmlb_guidance/table_dev.html (3 of 3) [17.02.03 10:27:58]

Tabstrip

Tabstrip

Usage | Design-relevant Attributes | Related Controls

Figure 1: Example of a tabstrip control with an individual tab and the tab card indicated

The tabstrip is a container that allows the user to switch between several views by clicking the tabs. The views appear to share
the same space on the screen. The user can access a particular view by clicking its tab.

 Top

Usage

Advantages

● The tabstrip has the advantage that users can see all the alternative views at once. Thus users have a stable context and can
navigate easily between the views.

● Tabstrips are also the ideal choice for presenting multiple views of information when the views look very different from one
another and a different form of presentation would cause an unstable environment.

Disadvantages

● The disadvantage of tabstrips is that they consume a lot of space compared to other view switching alternatives (e.g. radio
buttons or dropdown list box shufflers). For views and alternatives to tabstrips that consume less space, see Related Controls.

● Another disadvantage of tabstrips is that the number of views is limited by the space for the tabs.

file:///F|/resources/htmlb_guidance/tabstrip.html (1 of 3) [17.02.03 10:28:00]

Tabstrip

Do's

● Tabstrips may contain dynamic information so that users get a quick overview of important data, events or changes within the
views.

● The tab card may contain tables and group boxes.

Don'ts

● Avoid using long names in the tab labels and using too many tabs, as this will cause the control to be very wide and may cause
problems such as scrolling or excessively wide iViews.

● Tabs may not contain icons.
● Tabstrips indicate to the user that views can be accessed in any order; if this is not the case, then avoid using tabstrips.
● Although space is limited in the tab card, it should not be scrolled.
● Tabstrips may not be nested inside one another!

General Usage Tips

Use tabstrips for selecting views only if other alternatives lead to an unstable interface that might confuse users: Tabstrips appear
rather massive, and they take a lot of screen real estate. Furthermore tabstrips should only be used for tasks without a prescribed
order of steps as they communicate freedom of choice of interaction sequence.

 Top

Design-relevant Attributes

The appearance and behavior of tabstrips can be affected by various attributes.

● Height and Width: Attribute bodyHeight sets the vertical size of the tabstrip panel, attribute width the overall width of the
tabstrip.

● Horizontal and Vertical Alignment of Tabs: Use attributes horizontalAlignment (values CENTER, CHAR, JUSTIFY, LEFT,
RIGHT) and verticalAlignment (values BASELINE, BOTTOM, MIDDLE, TOP) to align the tabs.

● Selected Tab: Attribute selection selects a tab.
● Tooltip Text: Use attribute tooltip to set the tooltip text for a tabstrip as a whole.

In addition for each view (or tabstrip item) several attributes can be set individually:

● Height and Width: Attribute height sets the vertical size of the tabstrip view, attribute width its width.
● Tab Text: Attribute title sets the label for the tab.
● Tooltip Text: Use attribute tooltip to set the tooltip text for a tabstrip view.

For details see page Control API for Tabstrip.

 Top

Related Controls

Radio Button, Dropdown List Box (shufflers)

file:///F|/resources/htmlb_guidance/tabstrip.html (2 of 3) [17.02.03 10:28:00]

More Info about Tabstrip

More Info about Tabstrip

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Some versions of Netscape Navigator cannot display certain visual nuances of the standard tabstrip control.

Figure 1: Example of the standard tabstrip Figure 2: Example of the tabstrip in Netscape Navigator 4

This tabstrip is much less sophisticated visually than the standard
tabstrip (figure 1) — the tabs and the tab card have no border,
there is a space between the tabs, and the height of the active tab
is the same as the height of the inactive tabs.

Figure 3: Example of the tabstrip in Netscape Navigator 6.1

This tabstrip is different from the standard tabstrip (figure 1) in that
there is a space between the tabs. Additionally, the active tab is the
same height as the inactive tabs.

Figure 4: Example of the tabstrip in Netscape Navigator 6.2

This tabstrip is different from the standard tabstrip (figure 1) in that
the tabs are all the same height.

Tabstrip Items

Tabstrip items cannot be stored on the Web client. The application has to manage tabstrip items. Therefore, changing the tabs always
generates the event tabSelectionChange. It is recommended to at least declare the method so that no exception will be thrown if the application
is opened in a Netscape Navigator 4 Web client.

 Top

file:///F|/resources/htmlb_guidance/tabstrip_tec.html (1 of 2) [17.02.03 10:29:21]

More Info about Tabstrip

Editability in Style Editor

In the Style Editor, it is possible to change all the background and border colors, as well as the padding and all the text attributes. Here is a list
of the styles you can influence:

Group Style IE 5 and above Netscape 4.7

Tabstrip Styles Background Color of Selected Tab x x

Background Color of Inactive Tab x

Left Border of Inactive Tabs x

Right Border of Inactive Tabs x

Top Border of Inactive Tabs x

Tab Padding x

Tabstrip Border Color x

Tab Height x

Container Container Border x

Top Border of Container x

Right Border of Container x

Left Border of Container x

Table 1: Editable styles for the tabstrip control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support
● Keyboard: Each tab of a tabstrip is inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine for each tab.
● Application-specific Description: Set an additional description using the setTooltip method for each tab if needed.

 Top

file:///F|/resources/htmlb_guidance/tabstrip_tec.html (2 of 2) [17.02.03 10:29:21]

Control API for Tabstrip (tabStrip)

Control API for Tabstrip (tabStrip)

A container that enables the user to switch between several panels -by clicking on the tab - that appear to share the same space on the screen. The user can view a particular
panel by clicking its tab. Use tabStripItem to define the panel size and title. Use tabStripItemBody to define the layout of the tabStripItem. Use tabStripItemHeader to change
the settings of the title (specified through tabStripItem).

● bodyHeight
Defines the height of panel. The tabs are added on top of panel. The height of the tabs is defined by used text font.

● horizontalAlignment
Defines the horizontal alignment of the tapStripItems.

❍ LEFT
Left justifies the content of the cell.

❍ RIGHT
Right justifies the content of the cell.

❍ CENTER
Centers the content of the cell.

❍ CHAR
Aligns text around a specific character. Not supported by all web clients.

❍ JUSTIFY
Sets text in the cell left and right aligned. Not supported by all web clients.

● id
Identification name of the tabStrip.

● selection
Defines which tab is the active/displayed panel.

● tooltip
Defines the hint of the tab which is displayed as the mouse cursor passes over the panel of the tabStrip, or as the mouse button is pressed but not released.

● verticalAlignment
Defines the vertical alignment of the tapStripItems.

❍ BASELINE
The content of the cell is aligned on the baseline line of the cell (or bottom when no baseline exits).

❍ BOTTOM
The content of the cell is aligned to the bottom line of the cell.

❍ MIDDLE
The content of the cell is aligned to the middle of the cell height.

❍ TOP
The content of the cell is aligned to the top line of the cell.

● width
Defines the overall width of the tabStrip control.

attribute req. values default case
sens.

JSP taglib classlib

bodyHeight no Unit 100 - bodyHeight="100" setBodyHeight("100")
horizontalAlignment no CENTER

CHAR
JUSTIFY
LEFT
RIGHT

CENTER yes horizontalAlignment="LEFT" setHAlign(CellHAlign.LEFT)

id yes String none yes id="TabbedNotebook"
selection no Numeric 1 - selection="3" setSelection(3)
tooltip no String none no tooltip="select a tab" setTooltip("select a tab")
verticalAlignment no BASELINE

BOTTOM
MIDDLE
TOP

TOP yes verticalAlignment="MIDDLE" setVAlign(CellHAlign.MIDDLE)

width no Unit 400 - width="200" setWidth("200")

tabStripItem

file:///F|/resources/htmlb_guidance/tabstrip_dev.html (1 of 4) [17.02.03 10:28:02]

Control API for Tabstrip (tabStrip)

Specifies the panel size and the tab of a tabStrip. Use tabStripItemBody to define the layout of the tabStripItem. Use tabStripItemHeader to change the settings of the title
later on. A tabStripItem must have a unique 'id' and 'index' attribute and can call a specific event handler that is activated when this tab is clicked.

● header
The tab can have text (set by the 'title' attribute) or any other control. 'header' specifies the component. Common use would be to display icons in the tabs (instead of
text).

● height
Defines the height of the tabStripItem.

● id
Identification name of the tabStripItem.

● index
Defines the index of the tabStripItem. The 'selection' attribute of the tabStrip refers to the 'index'. The 'index' is mandatory and can be alphanumeric.

● onSelect
Defines the action that will be processed when the user clicks on the tab. The string for the event name is not case sensitive - the reference however has to be spelled
exactly the same way as the definition of the 'onSelect' event.
If you do not define a 'onSelect' event the tab can be clicked but no event is generated.

● title
Defines the text that is displayed in the tab itself.

● tooltip
Defines the hint of the tab which is displayed as the mouse cursor passes over the panel of the tabStrip, or as the mouse button is pressed but not released.

● width
Defines the overall width of the tabStripItem.

attribute req. values default case
sens.

JSP taglib classlib

header no Component none no setHeader(htmlb.Image("Icon.gif", "Texttitle"))

height no Unit 100 - height="80" setHeight("80")
id yes String none yes id="TabbedNotebook"
index yes String none - index="I3" setIndex("I3")
title no String none no title="Settings" setTitle("Settings")
tooltip no String none no tooltip="Desktop settings" setTooltip("Desktop settings")

width no Unit 400 - width="200" setWidth("200")

events req. values default case
sens.

JSP taglib classlib

onSelect no String none yes onSelect="proc_tab3" setOnSelect("proc_tab3")

tabStripItemBody

Specifies the layout of the tabStripItem.

tabStripItemHeader

The tabStripItem attributes 'title' and 'header' can be altered or set by tabStripItemHeader (see following example definition of "tab 4").

file:///F|/resources/htmlb_guidance/tabstrip_dev.html (2 of 4) [17.02.03 10:28:02]

Control API for Tabstrip (tabStrip)

Example

<hbj:tabStrip
 id="myTabStrip1"
 bodyHeight="100"
 width="200"
 horizontalAlignment="CENTER"
 verticalAlignment="TOP"
 selection="3"
 tooltip="Tooltip for myTabStrip1"
 >

 <hbj:tabStripItem
 id="myTabStripItem1"
 index="1"
 height="80"
 width="160"
 onSelect="myTabStripItem1OnSelect"
 title="Tab 1"
 tooltip="My Tooltip for Tab 1"
 >

 <hbj:tabStripItemBody>
 <hbj:textView text="TextView on Tab 1" />
 </hbj:tabStripItemBody>

 </hbj:tabStripItem>

 <hbj:tabStripItem
 id="myTabStripItem2"
 index="2"
 height="80"
 width="160"
 onSelect="myTabStripItem2OnSelect"
 title="Tab 2"
 tooltip="My Tooltip for Tab 2"
 >

 <hbj:tabStripItemBody>
 <hbj:textView text="TextView on Tab 2" />
 </hbj:tabStripItemBody>

 </hbj:tabStripItem>

 <hbj:tabStripItem
 id="myTabStripItem3"
 index="4"
 height="80"
 width="160"
 onSelect="myTabStripItem3OnSelect"
 tooltip="My Tooltip for Tab 3"
 >

 <hbj:tabStripItemBody>
 <%
 myTabStripItem3.setHeader(new com.sapportals.htmlb.Image
 ("/icons/bottom.gif",
 "Image not available"));
 %>
 <hbj:textView text="TextView on Tab 3" />
 </hbj:tabStripItemBody>

 </hbj:tabStripItem>

 <hbj:tabStripItem
 id="myTabStripItem4"
 index="3"
 height="80"
 width="160"
 onSelect="myTabStripItem4OnSelect"
 tooltip="My Tooltip for Tab 4"
 >

file:///F|/resources/htmlb_guidance/tabstrip_dev.html (3 of 4) [17.02.03 10:28:02]

Control API for Tabstrip (tabStrip)

 <hbj:tabStripItemHeader>
 <hbj:textView text="Tab 4" />
 </hbj:tabStripItemHeader>

 <hbj:tabStripItemBody>
 <hbj:textView text="Body of Tab 4" />
 </hbj:tabStripItemBody>

</hbj:tabStripItem>

</hbj:tabStrip>

Result

file:///F|/resources/htmlb_guidance/tabstrip_dev.html (4 of 4) [17.02.03 10:28:02]

Text Edit

Text Edit

Usage | Design-relevant Attributes | Related Controls

Figure 1: Example of text edit control in an iView

file:///F|/resources/htmlb_guidance/textedit.html (1 of 3) [17.02.03 10:27:37]

Text Edit

Figure 2: Example of text edit control in an iView

The text edit control provides an area for multiple-row text editing.

 Top

Usage

Use the text edit control to allow users to edit multiple line of text.

The text is restricted to a single font, size and style unless set with HTML commands. The text edit control has a frame. The size of
the frame is defined by the rows and cols attributes. A vertical scrollbar is displayed permanently. The scrollbar is enabled when
the number of text lines exceeds the number of visible lines.

Alignment

There are two possible ways to align the text edit control:

● Below a group of fields with a descriptive label above the text edit control (figure 1)
● In line with other fields within a field group with a label to the left (figure 2)

Place the text edit below the field group if it is used as the main information, whereas the fields above it provide only the context for
the information in the text edit control.

Example: A problem description when sending an problem message to a service center

Place the text edit field within the field group if the information is just one piece of information among other information, and the text
edit control is used as a freeform multiple-line input field.

Example: A customer enters his or her preferences when registering for an online shop

 Top

Design-relevant Attributes

The text edit control can be influenced through a number of attributes:

● The text and a tooltip text can bet set (attributes text and tooltip)
● The number of rows and columns can be set (attributes rows and cols)
● The wrapping behavior can be determined (attribute wrapping, values HARD, SOFT and OFF)

For details see the Control API page for the text edit control.

file:///F|/resources/htmlb_guidance/textedit.html (2 of 3) [17.02.03 10:27:37]

Text Edit

 Top

Related Controls

Text View

 Top

file:///F|/resources/htmlb_guidance/textedit.html (3 of 3) [17.02.03 10:27:37]

More Info about Text Edit

More Info about Text Edit

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

In Netscape 4.7 the border will be displayed in 3D; the background color is always white; disabled looks like enabled.

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the text edit control:

Group Style IE 5 and above Netscape 4.7

Text Edit Styles Padding x

Container Container Border x

Table 1: Editable styles for the text edit control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support

Text edit controls have to be used in combination with the label element which points to the assigned text edit control. This ensures,
that screenreaders are aware of the relationship between the both elements and can read the correct label to the according text edit
control.

● Keyboard: Text edit controls are inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine.
● Application-specific Description: Set an additional description using the setTooltip method if needed.
● Label: Has to be connected to a label control (use method setLabelFor for identifying the corresponding text edit control).

 Top

file:///F|/resources/htmlb_guidance/textedit_tec.html (1 of 2) [17.02.03 10:29:22]

Control API for Text Edit (textEdit)

Control API for Text Edit (textEdit)

A multiline region for displaying and editing text. Text in the control is restricted to a single font, size and style unless set with HTML commands.
The textEdit control has a frame. The size of the frame is defined by the 'rows' and 'cols' attribute. A vertical scrollbar is displayed permanently. The scroll bar is enabled when
the number of lines exceed the 'rows' attribute.
If the 'wrapping' attribute is not "OFF" the text is wrapped according to the 'cols' attribute - no horizontal scrollbar. If 'wrapping' is set to "OFF" a horizontal scrollbar is activated
if the text line length exceeds the width set by the 'cols' attribute.

● cols
Defines width of the textEdit control in characters. If the text line exceeds the width defined with the 'cols' attribute and the 'wrapping' attribute if "OFF" a horizontal
scrollbar is activated. The scrollbar is appended to the textEdit frame, so that the 'rows' attribute stays unchanged.
If 'wrapping' is set to "HARD" or "SOFT" the text line is wrapped and no horizontal scrollbar is activated.
Be aware that the definition of 'cols' by characters is only an approach and varies by the used character font. A character font with unequal spacing shows different
results. A i character fits more often into the textEdit field than a m character.

● id
Identification name of the textEdit.

● text
Defines the string of text displayed. This text can be edited and/or new text can be added.

● tooltip
Defines the hint of the textEdit which is displayed as the mouse cursor passes over the textEdit, or as the mouse button is pressed but not released.

● rows
Defines the height of the textEdit control in lines. If the text lines exceed the 'rows' attribute the vertical scrollbar becomes active.

● wrapping
Controls the text flow. "HARD" and "SOFT" are passed on to the HTML-Output and control how the carriage return is handled. Web clients handle text wrapping
differently. Therefor the following description cannot be guaranteed on all web clients.

❍ HARD
Wraps the text at the width set by the 'cols' attribute. A carriage control is transmitted at every line break.
No horizontal scrollbar is displayed.

❍ SOFT
Wraps the text at the width set by the 'cols' attribute. No carriage control is transmitted.
No horizontal scrollbar is displayed.

❍ OFF
The text line is not wrapped. If the text line length exceeds the width set by the 'cols' attribute a horizontal scrollbar is displayed.

attribute req. values default case
sens.

JSP taglib classlib

cols no Numeric 35 - cols="20" setCols(20)

id yes String none yes id="Edit_Text"
text no String none no text="editable Text" setText("editable Text")
tooltip no String none no tooltip="PDK Document" setTooltip("PDK Document")
rows no Numeric 5 - rows="10" setRows(10)
wrapping no HARD

SOFT
OFF

HARD yes wrapping="SOFT" setWrapping(TextWrapping.SOFT)

file:///F|/resources/htmlb_guidance/textedit_dev.html (1 of 2) [17.02.03 10:27:38]

Control API for Text Edit (textEdit)

Example

<hbj:textEdit
 id="Edit_Text
 text="Text to change - or just add text"
 wrapping="SOFT"
 tooltip="Edit and/or add text"
 rows="10"
 cols="30"

/>

Result

file:///F|/resources/htmlb_guidance/textedit_dev.html (2 of 2) [17.02.03 10:27:38]

Text View

Text View

Usage | Types | Design-relevant Attributes | Related Controls

Figure 1: Example of a text view control in an iView.

The text view control offers a multiline region for displaying text; several text attributes can be defined.

 Top

Usage

The text view control is used to display plain text. The text in the control is restricted to a single font, size and style unless set with
HTML commands. The text size can be set using different styles (see "Types of Text Views")

Note: The text View control must not be used to create a label for input fields; use the label control instead.

Also note that if you occupy a certain area on the screen for a text view control you should reserve enough space for the translation
to other languages. Text in other languages may use up to 30% more space than needed in English.

file:///F|/resources/htmlb_guidance/textview.html (1 of 3) [17.02.03 10:27:34]

Text View

 Top

Types

The text view control is available in several text styles, which are set by the attribute design (values STANDARD, EMPHASIZED,
REFERENCE, LEGEND, HEADER1, HEADER2, HEADER3). The following description is based on the standard CSS delivered:

Text Style Use

used to display body text

used to display emphasized text e.g. phrases, single terms; not to be used for complete text areas;
text size "Standard"

Style for Text Used as a Reference; text size "Standard"

 used to display a legend or small-size help text; text size -2 in comparison to "Standard"

used to display a headline or page title; text size +4 in comparison to "Standard"

used to display a page subtitle; text size +2

used to display a subtitle; text size "Standard"

Table 1: Text styles and their use

 Top

Design-relevant Attributes

While the different text types are set using the attribute design (values STANDARD, EMPHASIZED, REFERENCE, LEGEND,
HEADER1, HEADER2, HEADER3), the appearance of the different text types can be determined by a style sheet (CSS).

The text itself is set by the attribute text, an accompanying tooltip text by the attribute tooltip.

In addition, alignment (attribute layout, values BLOCK, NATIVE, PARAGRAPH), wrapping behavior (Boolean attribute wrapping),
and width (attribute width) can be defined for the text view control.

For details see page Control API for Text View.

file:///F|/resources/htmlb_guidance/textview.html (2 of 3) [17.02.03 10:27:34]

Text View

 Top

Related Controls

Text Edit, Label

 Top

file:///F|/resources/htmlb_guidance/textview.html (3 of 3) [17.02.03 10:27:34]

More Info about Text View

More Info about Text View

Editability in Style Editor | Accessibility – 508 Support

Editability in Style Editor

For the text view control, only common styles can be changed. As these styles are important for the text view control, we list them
here, too.

Style Group Style IE 5 and above Netscape 4.7

Text Styles Standard Font Family x x

Standard Text Standard Font Size x x

Standard Font Color x x

Standard Font Style x x

Standard Font Weight x x

Non-Standard Text Font Size for Small Text x x

Font Size for Large Text x x

Font Size for Extra Large Text x x

Font Style for Text Used as a Reference x x

Font Color for Headlines x x

Font Weight for Headlines x x

Font Weight for Emphasized Text x x

Table 1: Common styles for the text view control

For an overview of all common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support

● Keyboard: Text view controls are not inserted into the accessibility hierarchy by default.
● Default Description: Not needed
● Application-specific Description: Not needed

file:///F|/resources/htmlb_guidance/textview_tec.html (1 of 2) [17.02.03 10:29:23]

Control API for Text View (textView)

Control API for Text View (textView)

A multiline region for displaying text. Text in the control is restricted to a single font, size and style unless set with HTML commands.

● design
Defines the appearance of the text. Design can be set to "HEADER1", "EMPHASIZED", "LABEL" etc. . The CSS controls how the different options get rendered. The
following description is based on the standard CSS delivered.

❍

Bold text, text size STANDARD

❍

Bold text, text size +4 in comparison to STANDARD

❍

Bold text, text size +2 in comparison to STANDARD

❍

Bold text, text size STANDARD

❍

Text size and attributes STANDARD

❍

Text size -2 in comparison to STANDARD

❍

Text size -2 in comparison to STANDARD

❍

Italic text, text size STANDARD

❍

No text attributes and standard text size

● encode
A boolean value that defines how the text is interpreted. HTML text formatting commands (e.g. <h1>, <i> etc.) can be used to change the display of the text. If there are
no formatting commands in the text string, the encode attribute has no effect.

Example

text="<h1><i>Important</i></h>

encode = "false"
the text string is rendered by interpreting the formatting commands.

Encode = "true"
the formatting commands are displayed and not interpreted

● id
Identification name of the text.

● layout
Defines the alignment of the text.

❍ BLOCK
Renders the textView with a <div> HTML tag.

❍ NATIVE
Renders the textView with a HTML tag.

❍ PARAGRAPH
Renders the textView with a <p> HTML tag

file:///F|/resources/htmlb_guidance/textview_dev.html (1 of 2) [17.02.03 10:27:36]

Control API for Text View (textView)

● required
Deprecated - the control 'label' should be used instead to label required input fields.
A boolean value. If set to "true" an asterisks (*) in red color is placed at the end of the text string. This is a common method to indicate that input is required. See also
inputField and label.

● text
Defines the string of text displayed. See 'encode' for a formatting example with embedded HTML commands.

● tooltip
Defines the hint of the textView which is displayed as the mouse cursor passes over the textView, or as the mouse button is pressed but not released.

● width
Defines the width of the textView. The width shows only effect when the 'wrapping' attribute is set to "true". Otherwise the width and layout follows the HTML commands in
the text string.

● wrapping
A boolean value. If set to "true" the text is word wrapped at the set 'width' or - if no 'width' is set - at the form width.

attribute req. values default case
sens.

JSP taglib classlib

design no EMPHASIZED
HEADER1
HEADER2
HEADER3
LABEL
LABELSMALL
LEGEND
REFERENCE
STANDARD

STANDARD yes design="HEADER1" setDesign(TextViewDesign.HEADER1)

encode no TRUE
FALSE

TRUE yes encode="FALSE" setEncode(false)

id yes String none yes id="Intro_Text"
layout no BLOCK

NATIVE
PARAGRAPH

NATIVE yes layout="BLOCK" setLayout(TextViewLayout.BLOCK)

required no TRUE
FALSE

FALSE yes required="TRUE" setRequired(true)

text no String none no text="PDK Introduction" setText("PDK Introduction")
tooltip no String none no tooltip="PDK Document" setTooltip("PDK Document")
width no Unit 100% no width="300" setWidth("300")
wrapping no TRUE

FALSE
FALSE yes wrapping="TRUE" setWrapping(true)

Example

<hbj:textView
 id="Text_ZIP"
 text="ZIP Code"
 design="EMPHASIZED"

/>

Result

file:///F|/resources/htmlb_guidance/textview_dev.html (2 of 2) [17.02.03 10:27:36]

Control API for Tray (tray)

Control API for Tray (tray)

Similar to group the tray allows grouping of controls. The 'tray' allows additional functionality like collapsing/expanding - similar to the behavior of windows on your Microsoft
Windows desktop.

Be aware that portal components (components that will run in the SAP portal) are placed in a tray by the portal.

● design
The design of the tray can be

❍ BORDER
The tray has a title bar and the panel has a frame that defines the size.

❍ BORDERLESS
The tray has only a title bar.

❍ FORM
The tray has a title bar. The panel is filled with a background color. The color is different from the title background color.

❍ TEXT
The tray has a title bar. The panel is filled with the same background color as the title bar.

● id
Identification name of the tray.

● isCollapsed

A boolean value that if "true" shows only the title bar. As indicator that the tray is collapsed, the collapsed symbol is displayed. When clicking on this symbol
the 'onExpand' event is fired.

● onCollapse
Defines the action that will be processed when the user clicks on the collapse symbol .
If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is not displayed in the title bar.

● onEdit

Defines the action that will be processed when the user clicks on the collapse symbol .
If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is not displayed in the title bar.

● onExpand
Defines the action that will be processed when the user clicks on the expand symbol .
This symbol can be actives only when 'isCollapsed' is set to "true". If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is not displayed in the
title bar.

● onRemove
Defines the action that will be processed when the user clicks on the expand symbol .
If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is not displayed in the title bar.

● title
Defines the string of text placed left aligned in the title bar. If no title should be displayed an empty string (null) can be used. The width of the tray is automatically adjusted
to the length of the text when the 'width' attribute is set smaller than the title text width.

● tooltip
Defines the hint of the tray which is displayed as the mouse cursor passes over the tray, or as the mouse button is pressed but not released.

● width
Defines the width of the tray. The width of the button is automatically adjusted to the length of the 'title'. To see an effect of the 'width' attribute 'width' has to be set higher
as the width defined thru the length of the 'title' string. If an empty (null) 'title' string is set no 'title' attribute is defined the width of the tray is set according to the 'width'
attribute.

Attribute req. values default case
sens.

JSP taglib classlib

design no BORDER
BORDERLESS
FORM
TEXT

BORDER yes design="BORDERLESS" setDesign(TrayDesign.BORDERLESS)

id yes String none yes id="Intro_Text"
isCollapsed no FALSE

TRUE
FALSE yes isCollapsed="TRUE" setCollapsed(true)

file:///F|/resources/htmlb_guidance/tray_dev.html (1 of 2) [17.02.03 10:29:25]

Control API for Tray (tray)

title no String none no title="Headlines" setTitle("Headlines")
tooltip no String none no tooltip="latest news" setTooltip("latest news")
width no Unit 50% no width="300" setWidth("300")

events req. values default case
sens.

JSP taglib classlib

onCollapse no String none yes onCollapse("ev_Col") setOnCollapse("ev_Col")
onEdit no String none yes onEdit("ev_Ed") setOnEdit("ev_ed")
onExpand no String none yes onExpand("ev_Ex") setOnExpand("ev_Ex")
onRemove no String none yes onRemove("ev_Re") setOnRemove("ev_Re")

trayBody

Defines the items in the tray. A tray can be filled with any any control (checkbox, image, textView etc.).

Example

<hbj:tray
 id="HeadlineNews"
 design="BORDER"
 title="latest Headlines"
 tooltip="all the news you need"
 onEdit="ev_hd_edit"
 onRemove="ev_hd_rem"
 width="25%"
 >

 <hbj:trayBody>
 <hbj:textView
 encode="true"
 text="The NASDAQ on an upswing
Good news for homeowners" />
 </hbj:trayBody>

</hbj:tray>

Result

file:///F|/resources/htmlb_guidance/tray_dev.html (2 of 2) [17.02.03 10:29:25]

Tree View

Tree View

Usage | Design-relevant Attributes | Related Controls

The tree view control is used to display hierarchical data or text. The
hierarchy levels may be expanded and collapsed. Every tree node contains
a text and an arrow icon that expands and collapses the node. If a node has
no child elements in the hierarchy, there is no arrow icon. The node text
might also link to a function that displays the connected data.
The first four levels have different colors. From the 5th level on the color
stays the same like in the 4th level.

Figure 1: Example of a tree with three levels

 Top

Usage

Trees contain complex information and are cumbersome to use. If possible, do not use trees and consider other alternatives,
especially in iViews. Trees with hierarchies more than 2-3 levels deep should be avoided altogether!

How to Avoid Trees

If the number of tree elements is small, hierarchies can be flattened to lists, and the items may follow some other ordering like by
alphabet or relevance.

Consider using dropdown list boxes, the shuffler (filter) or tabstrips in combination with tables in order to select partial data sets.
This leads to a far less complex user interface than large trees that have to be scrolled or paged through.

 Top

Design-relevant Attributes

The tree view control does not have a width attribute. To set the width, place the tree inside a grid layout control.

Use attribute title to set a title for the tree.

file:///F|/resources/htmlb_guidance/treeview.html (1 of 2) [17.02.03 10:27:59]

Tree View

For tree items, the item text and a corresponding tooltip text can be defined (attributes text and tooltip).

 Top

Related Controls

Item List, Dropdown List Box, Table View, Tabstrip, Grid Layout (for sizing)

 Top

file:///F|/resources/htmlb_guidance/treeview.html (2 of 2) [17.02.03 10:27:59]

More Info about Tree View

More Info about Tree View

Browser Compatibility | Editability in Style Editor | Accessibility – 508 Support

Browser Compatibility

Netscape 4.7 cannot display certain visual nuances of the standard tree control. This tree has no borders and the title height differs
from the standard tree (figure 1).

Figure 1: Example of the Standard Tree Figure 2: Example of the Tree in Netscape Navigator 4.7

The tree view is always opened completely in Netscape 4.7. It is not possible to expand and collapse nodes locally. The application
has to handle these operations (requires server round-trip).

 Top

Editability in Style Editor

In the Style Editor, it is possible to modify the following attributes of the tree view control:

Group Style IE 5 and above Netscape 4.7

Level Background Colors Background Color of 1st Level x x

Background Color of 2nd Level x x

Background Color of 3rd Level x x

file:///F|/resources/htmlb_guidance/treeview_tec.html (1 of 2) [17.02.03 10:29:26]

More Info about Tree View

Background Color of 4th Level x

Tree Icons URL to "Expand" Icon x

URL to "Collapse" Icon x x

URL to "Node" Icon x x

Height of Tree Icon x

Width of Tree Icon x

Container Background Color of Container Title x x

Font Color of Container Title x x

Height of Container Title x

Container Border x

Bottom Border of Container x

Cell Padding x

Table 1: Editable styles for the tree view control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and Style Editor.

 Top

Accessibility – 508 Support

● Keyboard: Each tree node is inserted into the accessibility hierarchy by default.
● Default Description: Is provided by the HTMLB rendering engine for each tree node.
● Application-specific Description: Set an additional description using the setTooltip method for each tree node if needed.

 Top

file:///F|/resources/htmlb_guidance/treeview_tec.html (2 of 2) [17.02.03 10:29:26]

Control API for Tree View (treeView)

Control API for Tree View (treeView)

A representation of hierarchical data (for example, directory and file names) as a graphical outline. Clicking expands or collapses elements of the outline. The item in a tree is
called treeNode. The nesting depth of treeNodes define the hierarchy level.
The tree has no width attribute. Place the tree in a grid layout control if a certain width is required.

● id
Identification name of the tree.

● offsetForTreeNode
Defines the distance in pixel used by the control to indent the sub nodes.

● rootNode
Defines the root node of tree. This attribute is used when the tree structure is defined in a bean. The tree node in the bean is created with the command line:
TreeNode root = new TreeNode("root", "RootNode");

● rootNodeIsVisible
A Boolean value that indicates if the rootNodeIsVisible.

● title
Defines the headline of the tree.

● tooltip
Defines the hint of the tree which is displayed as the mouse cursor passes over the tree, or as the mouse button is pressed but not released.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

id yes String none yes id="Intro_Text" setId("Intro_Text")
offsetForTreeNode no Value - offsetForTreeNode="20" setOffsetForTreeNode(20)

rootNode no* String none no rootNode="TreeNode" setRootNode("TreeNode")

rootNodeIsVisible no TRUE
FALSE

TRUE no rootNodeIsVisible="TRUE" setRootNodeIsVisible(true)

title no String none no title="Family tree" setTitle("Family tree")
tooltip no String none no tooltip="Our family" setTooltip("Our family")

* 'rootNode' is required when the treeNode definition is not made immediately after the tree definition. In this case an error message - indicating that a tree
without treeNodes is invalid - is generated.

treeNode

Defines the items in the tree. The level of the tree is defined by the nesting depth. A treeNode with sub nodes has an indicator. The indicator is a triangle that shows if the
node is expanded or collapsed .

● hoverMenuId
Defines which hover menu is displayed for this tree node. You can define different trigger methods to display the hover menu. For more details, see hover menu.

● id
Identification name of the tree.

● isOpen
A Boolean value that indicates if the node is expanded or collapsed. This attribute only has an effect when the node has at least one sub node. If a node is expanded all
sub nodes of the node are displayed. Symbols to indicate the node status:

Status Symbol
Node expanded
Node collapsed

● onNodeClick

file:///F|/resources/htmlb_guidance/treeview_dev.html (1 of 5) [17.02.03 10:29:28]

file:///F|/resources/htmlb_guidance/hovermenu_dev.html

Control API for Tree View (treeView)

Defines the event handling method that will be processed when the user clicks on the text of the node.

● onNodeClose
Defines the event handling method that will be processed when the user clicks on the node symbol. The node has to be initially defined in expanded mode (isOpen=true)
in order to create the event. The event will than always occur when the user clicks on the symbol to expand the node. No event occurs when the tree node expands.
When the onNodeClose attribute is set, the tree node does not collapse on the web client. The event is sent to the server and the application has to take care about the
further processing (e.g. define the sub nodes of the tree node and set the tree node collapsed (isOpen=false).

● onNodeExpand
Defines the event handling method that will be processed when the user clicks on the node symbol. The node has to be collapsed initially (isOpen=false) in order to
create the event. The event will than always occur when the user clicks on the symbol to expand the node. No event occurs when the tree node collapses.
When the onNodeExpand attribute is set, the tree node does not expand on the web client. The event is sent to the server and the application has to take care about the
further processing (e.g. define the sub nodes of the tree node and set the tree node expanded (isOpen=true).

Hint:
The attributes onNodeExpand and onNodeClose are useful for trees with a lot of entries (transmission problems possible since the page could become pretty big) or if
you want to have full control over the tree nodes and build the sub nodes dynamically. The server application has to take care about the modes of the node itself. If you
have set an onNodeExpand attribute initially, you have to take care about following steps yourself when the event is fired:

❍ Create the sub nodes.
❍ Set the node status (isOpen=true).
❍ Set the onNodeClose event to receive an event when the user closes the tree node again.

This works vice versa if you have set an onNodeClose attribute initially.

● text
Defines the string of text displayed for the treeNode. HTML commands for text formatting (e.g. for bold characters) can be used..

● tooltip
Defines the hint of the treeNode which is displayed as the mouse cursor passes over the treeNode, or as the mouse button is pressed but not released.

Attribute Req. Values Default Case
sens.

JSP Taglib Classlib

hoverMenuId no String none yes hoverMenuId="helpHover1" setHoverMenu(helpHover1)
id yes String none yes id="Intro_Text" setId("Intro_Text")
isOpen no FALSE

TRUE
TRUE yes isOpen="False" setIsOpen(false)

text no String none no text="Smith" setTitle("Smith")
tooltip no String none no tooltip="1st familyname" setTooltip("1st familiyname")

Events Req. Values Default Case
sens.

JSP Taglib Classlib

onNodeClick no String none yes setOnNodeClick("no1_textclick")
onNodeClose no String none yes setOnNodeClose("no1_close")
onNodeExpand no String none yes setOnNodeExpland("no1_ex")

file:///F|/resources/htmlb_guidance/treeview_dev.html (2 of 5) [17.02.03 10:29:28]

Control API for Tree View (treeView)

Example using the taglib

<hbj:tree
 id="S_Tree"
 title="e-enviroment"
 tooltip="enviroment of my computer"
 >

 <hbj:treeNode
 id="e_root"
 text="Desk"
 isOpen="true"
 tooltip="My desk"
 >
 <hbj:treeNode
 id="e_comp"
 text="Computer"
 isOpen="true"
 >

 <hbj:treeNode
 id="e_comp_fl"
 text="Floppy"
 />
 <hbj:treeNode
 id="e_comp_hd"
 text="Harddisk"
 />
 <hbj:treeNode
 id="e_comp_dvd"
 text="DVD"
 />
 </hbj:treeNode>

 <hbj:treeNode
 id="e_net"
 text="Network"
 isOpen="true"
 tooltip="Company network"
 >
 <hbj:treeNode
 id="n_lan"
 text="LAN"
 tooltip="Local Area Network"
 />
 <hbj:treeNode
 id="n_wan"
 text="WAN"
 tooltip="Wide Area Network"
 />
 <hbj:treeNode
 id="n_infra"
 text="Infrared"
 tooltip="Infrared connection"
 />
 </hbj:treeNode>

 </hbj:treeNode>

</hbj:tree>

Example using the classlib

Form form = (Form)this.getForm();
Tree tree = new Tree("S_Tree", "e-enviroment");
tree.setTooltip("enviroment of my computer");

TreeNode root = new TreeNode("e_root", "Desk");
root.setOpen(true);
root.setTooltip("My desk");

// Tags at the second level - the entries are defined with the event "onName"
// which is fired when the event is clicked.
TreeNode name1 = new TreeNode("e_comp", "Computer", root);
name1.setOnNodeClick("onName");
TreeNode name2 = new TreeNode("e_net", "Network", root);
name2.setOnNodeClick("onName");

file:///F|/resources/htmlb_guidance/treeview_dev.html (3 of 5) [17.02.03 10:29:28]

Control API for Tree View (treeView)

TreeNode name11 = new TreeNode("e_comp_fl", "Floppy", name1);
name11.setOnNodeClick("onName");
TreeNode name12 = new TreeNode("e_comp_hd", "Harddisk", name1);
name12.setOnNodeClick("onName");
TreeNode name13 = new TreeNode("e_comp_dvd", "DVD", name1);
name13.setOnNodeClick("onName");
TreeNode name21 = new TreeNode("n_lan", "LAN", name2);
name21.setOnNodeClick("onName");
TreeNode name22 = new TreeNode("n_wan", "WAN", name2);
name22.setOnNodeClick("onName");
TreeNode name23 = new TreeNode("n_infra", "Infrared", name2);
name23.setOnNodeClick("onName");

tree.setRootNode(root);
form.addComponent(tree);

Result

Programming Tip

Usually the root node is visible and all sub nodes are displayed on the second level.
If you make the root node invisible all sub nodes are displayed on first level.

Example

<hbj:tree
 id="S_Tree"
 title="e-enviroment"
 tooltip="enviroment of my computer"
 >
 <% S_Tree.setRootNodeIsVisible(false); %>

 <hbj:treeNode
 id="e_root"
 text="Desk"
 isOpen="true"
 tooltip="My desk"
 >
 <hbj:treeNode
 id="e_comp"
 text="Computer"
 isOpen="true"
 >

 <hbj:treeNode
 id="e_comp_fl"
 text="Floppy"
 />
 <hbj:treeNode
 id="e_comp_hd"
 text="Harddisk"
 />
 <hbj:treeNode
 id="e_comp_dvd"
 text="DVD"
 />
 </hbj:treeNode>

 <hbj:treeNode
 id="e_net"
 text="Network"

file:///F|/resources/htmlb_guidance/treeview_dev.html (4 of 5) [17.02.03 10:29:28]

Control API for Tree View (treeView)

 isOpen="true"
 tooltip="Company network"
 >
 <hbj:treeNode
 id="n_lan"
 text="LAN"
 tooltip="Local Area Network"
 />
 <hbj:treeNode
 id="n_wan"
 text="WAN"
 tooltip="Wide Area Network"
 />
 <hbj:treeNode
 id="n_infra"
 text="Infrared"
 tooltip="Infrared connection"
 />
 </hbj:treeNode>

 </hbj:treeNode>

</hbj:tree>

Result

file:///F|/resources/htmlb_guidance/treeview_dev.html (5 of 5) [17.02.03 10:29:28]

	SAP HTMLB Guidelines
	Read First
	1. Introduction
	What is HTMLB?
	About the Reference

	2. General
	Customer Branding and Style Editor
	Forms - Using Checkboxes
	Forms - Using Radio Buttons
	Forms - Using Different List Types
	Table View Functions
	Positioning Buttons
	Error Handling
	Accessibility of HTMLB Controls

	3. Layout
	General Layout Strategy
	Layout Hierarchy
	Spacing Between Grouped Controls
	Spacing Between Single Controls

	4. Layout Controls
	Content
	Control API

	Document
	Control API

	Page
	Control API

	Form
	Control API

	Flow Layout
	Usage and Types
	More Info
	Control API

	Form Layout
	Usage and Types
	More Info
	Control API

	Grid Layout
	Usage and Types
	More Info
	Control API

	5. Visible Controls
	Breadcrumb
	Usage and Types
	More Info
	Control API

	Button
	Usage and Types
	More Info
	Control API

	Chart
	Usage and Types
	More Info about Chart
	Control API for Chart (chart)

	Checkbox
	Usage and Types
	More Info
	Control API (checkBox)
	Control API (checkboxGroup)

	Date Navigator
	Usage and Types
	More Info
	Control API

	Dropdown List Box
	Usage and Types
	More Info
	Control API

	File Upload
	Usage and Types
	More Info
	Control API

	Group
	Usage and Types
	More Info
	Control API

	Image
	Usage and Types
	More Info
	Control API

	Input Field
	Usage and Types
	More Info
	Control API

	Item List
	Item List
	More Info
	Control API

	Label
	Usage and Types
	More Info
	Control API

	Link
	Usage and Types
	More Info
	Control API

	List Box
	Usage and Types
	More Info
	Control API

	Radio Button
	Usage and Types
	More Info
	Control API (radioButton)
	Control API (radioButtonGroup)

	Table View
	Usage and Types
	table_colors.gif

	More Info
	Control API

	Tabstrip
	Usage and Types
	More Info
	Control API

	Text Edit
	Usage and Types
	More Info
	Control API

	Text View
	Usage and Types
	More Info
	Control API

	Tray
	Control API

	Tree View
	Usage and Types
	More Info
	Control API

