
NET200
SAP Web Application Server:
Developing BSP Applications

mySAP Technology

Date

Training Center

Instructors

Education Website

Participant Handbook
Course Version: 2004 Q4
Course Duration: 5 Day(s)
Material Number: 50069796

An SAP course - use it to learn, reference it for work

Copyright

Copyright © 2004 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any
purpose without the express permission of SAP AG. The information contained herein may
be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Trademarks

� Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server®
are registered trademarks of Microsoft Corporation.

� IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®,
AIX®, S/390®, AS/400®, OS/390®, and OS/400® are registered trademarks of IBM
Corporation.

� ORACLE® is a registered trademark of ORACLE Corporation.
� INFORMIX®-OnLine for SAP and INFORMIX® Dynamic ServerTM are registered

trademarks of Informix Software Incorporated.
� UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open

Group.
� Citrix®, the Citrix logo, ICA®, Program Neighborhood®, MetaFrame®, WinFrame®,

VideoFrame®, MultiWin® and other Citrix product names referenced herein are
trademarks of Citrix Systems, Inc.

� HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®,
World Wide Web Consortium, Massachusetts Institute of Technology.

� JAVA® is a registered trademark of Sun Microsystems, Inc.
� JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under

license for technology invented and implemented by Netscape.
� SAP, SAP Logo, R/2, RIVA, R/3, SAP ArchiveLink, SAP Business Workflow, WebFlow,

SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and
mySAP.com are trademarks or registered trademarks of SAP AG in Germany and
in several other countries all over the world. All other products mentioned are
trademarks or registered trademarks of their respective companies.

Disclaimer

THESE MATERIALS ARE PROVIDED BY SAP ON AN "AS IS" BASIS, AND SAP
EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR APPLIED,
INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THESE MATERIALS
AND THE SERVICE, INFORMATION, TEXT, GRAPHICS, LINKS, OR ANY OTHER
MATERIALS AND PRODUCTS CONTAINED HEREIN. IN NO EVENT SHALL SAP BE
LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL,
OR PUNITIVE DAMAGES OF ANY KIND WHATSOEVER, INCLUDING WITHOUT
LIMITATION LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE
USE OF THESE MATERIALS OR INCLUDED SOFTWARE COMPONENTS.

About This Handbook
This handbook is intended to complement the instructor-led presentation
of this course, and serve as a source of reference. It is not suitable for
self-study.

Typographic Conventions
American English is the standard used in this handbook. The following
typographic conventions are also used.

Type Style Description

Example text Words or characters that appear on the screen.
These include field names, screen titles,
pushbuttons as well as menu names, paths, and
options.

Also used for cross-references to other
documentation both internal (in this
documentation) and external (in other locations,
such as SAPNet).

Example text Emphasized words or phrases in body text, titles
of graphics, and tables

EXAMPLE TEXT Names of elements in the system. These include
report names, program names, transaction codes,
table names, and individual key words of a
programming language, when surrounded by
body text, for example SELECT and INCLUDE.

Example text Screen output. This includes file and directory
names and their paths, messages, names of
variables and parameters, and passages of the
source text of a program.

Example text Exact user entry. These are words and characters
that you enter in the system exactly as they
appear in the documentation.

<Example text> Variable user entry. Pointed brackets indicate
that you replace these words and characters with
appropriate entries.

06-10-2004 © 2004 SAP AG. All rights reserved. iii

About This Handbook NET200

Icons in Body Text
The following icons are used in this handbook.

Icon Meaning

For more information, tips, or background

Note or further explanation of previous point

Exception or caution

Procedures

Indicates that the item is displayed in the
instructor�s presentation.

iv © 2004 SAP AG. All rights reserved. 06-10-2004

Contents
Course Overview vii

Course Goals .. .vii
Course Objectivesvii

Unit 1: The SAP Web Application Server..... 1
System Architecture of the SAP Web Application Server2

Unit 2: Business Server Pages: Programming Model.... 13
Business Server Pages: Introduction ... 15
Layout of a Business Server Page ... 26
Processing User Input.. 42
Session Handling .. 79

Unit 3: Layout and Language 111
Including MIME Objects... 112
Adjusting the Layout .121
Internationalization... .129

Unit 4: BSP Extensions..... 141
BSP Extensions: HTMLB143
Composite Elements182
Model View Controller for BSPs192

Unit 5: Special Topics..... 219
User Concepts and Logon Procedures .. .221
Connecting to SAP Systems Through RFC241
Utilities for Creating BSP Applications .. .256
Other Topics .. .261

Appendix 1: UML Diagrams 277

Index 287

06-10-2004 © 2004 SAP AG. All rights reserved. v

Contents NET200

vi © 2004 SAP AG. All rights reserved. 06-10-2004

Course Overview
In this course, you will become familiar with the architecture of the SAP
Web Application Server and learn how to program a Web application
using Business Server Pages. You will first set up the layout of a business
server page using HTML and use the ABAP scripting language to generate
some dynamic parts of the layout. You will also learn how to include
MIME objects in the application, provide BSP applications in multiple
languages, and use topics to adjust the layout of BSP applications without
making modifications. The course also discusses how to include data from
SAP systems by calling BAPIs in the system and how to log on to the SAP
Web Application Server You will learn how BSP extensions can be used
to design the layout. The use of the BSP extension HTMLB is covered
in particular detail.

Target Audience
This course is intended for the following audiences:

� Developers who want to create Web applications based on BSP
applications

Course Prerequisites
Required Knowledge

� Basic knowledge of ABAP (BC400 � ABAP Workbench: Foundations
and Concepts)

� Basic knowledge of HTML and HTTP

Recommended Knowledge

� NET050 - Web Application Development: Foundations
� Knowledge of object-oriented programming (preferably ABAP

Objects)
� Knowledge of transaction programming

Course Goals
This course will prepare you to:

� Describe the system architecture of the SAP Web Application Server
� Develop Web applications that are based on the Business Server Page

programming model

06-10-2004 © 2004 SAP AG. All rights reserved. vii

Course Overview NET200

Course Objectives
After completing this course, you will be able to:

� Describe the system architecture of the SAP Web Application Server
� Describe the request/response cycle
� Name the components of a Business Server Page and a BSP

application and describe their use
� Develop Web applications based on Business Server Pages
� Implement the layout of Business Server Pages using HTMLB

elements
� Implement language-specific BSP applications
� Explain how to assign a desired corporate identity design without

modification by assigning a topic
� Use data from other SAP systems by calling BAPIs in your BSP

applications

SAP Software Component Information
The information in this course pertains to the following SAP Software
Components and releases:

viii © 2004 SAP AG. All rights reserved. 06-10-2004

Unit 1
The SAP Web Application Server

Unit Overview
This unit provides an overview of the architecture of the SAP Web
Application Server. You will learn how an HTTP request is received
and processed by the SAP Web Application Server and how the HTTP
response is created.

Unit Objectives
After completing this unit, you will be able to:

� Describe the system architecture of the SAP Web Application Server
� List the most important steps of an HTTP request/response cycle
� Describe the features and use of the transactions SMICM and SICF

Unit Contents
Lesson: System Architecture of the SAP Web Application Server2

06-10-2004 © 2004 SAP AG. All rights reserved. 1

Unit 1: The SAP Web Application Server NET200

Lesson: System Architecture of the SAP Web
Application Server

Lesson Overview
This lesson provides an overview of the system architecture of the SAP
Web Application Server and describes an HTTP request/response cycle.
You will become familiar with the transactions SMICM and SICF.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe the system architecture of the SAP Web Application Server
� List the most important steps of an HTTP request/response cycle
� Describe the features and use of the transactions SMICM and SICF

Business Example
For certain BSP applications, Web developers must store specific
information (such as logon data, error pages, and so on) in the system.
Furthermore, Web developers must be aware of the errors and warnings
that can occur when starting BSP applications and be able to look up
system settings for communication using HTTP.

System Architecture
The classical SAP R/3 is implemented as a three-tier, client-server
architecture with a presentation level, application level, and database
level. SAP R/3 is scalable at presentation and application server level. This
is an important prerequisite for a system because it allows many users
to work simultaneously. The SAP Web Application Server is a further
development of the classical client/server technology. The SAP kernel has
been extended to include a new process, the Internet Communication
Manager (ICM). It allows you to process requests from the Internet or
intranet directly - such as those made through a browser using the HTTP
protocol.

2 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: System Architecture of the SAP Web Application Server

Figure 1: Architecture of the SAP Web Application Server

Hint: If a request (HTTP, HTTPs, SMTP) is received, the SAP Web
Application Server acts as a server. If a request (HTTP, HTTPs,
SMTP) is sent, the SAP Web Application Server acts as a client.
Both roles are possible. Do not confuse the client role of the SAP
Web Application Server with the role of sending a response.

Note: In an SAP system consisting of several application servers,
the load is distributed using the message server (MS). This principle
also applies to incoming requests from the Internet. By means of
logon balancing the request is assigned to the application server
that has the smallest load at that particular moment, using an
HTTP REDIRECT. As of SAP Web Application Server Release 6.20,
you can also distribute the load using a predefined Web switch,
the SAP Web Dispatcher.

06-10-2004 © 2004 SAP AG. All rights reserved. 3

Unit 1: The SAP Web Application Server NET200

Figure 2: ICM Details

The Internet Communication Manager (ICM) enables communication
between the SAP Web Application Server and the outside world using the
protocols HTTP, HTTPS, and SMTP. The ICM is implemented as a process
that is started, stopped, and monitored by the SAPWeb Dispatcher. Profile
parameters are used to configure the ICM.

As a server, the ICM can process requests from the Internet, whose URL
contains the correct server/port combination pointing to the ICM. The ICM
then calls the appropriate local handler, depending on the URL. Requests
to the ICM are processed in worker threads. Because several worker
threads are available (that is, in a thread pool), the load can be distributed.
A special thread (thread control) distributes the requests to the available
worker threads. A worker thread contains an I/O handler, for network
input and output, and plug-ins for protocol-specific tasks.

4 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: System Architecture of the SAP Web Application Server

The requests can sometimes be processed entirely in the ICM, but a data
exchange with the SAP system is usually required to process the business
logic. In this case, the data is passed on to a work process of the SAP
system and a user context is created. The data is exchanged between the
ICM and the work process using memory pipes.

Hint: You can display the monitor for the ICM by choosing
Tools -> Administration -> System Monitoring -> Monitor -> Internet
Communication Manager or by starting the transaction SMICM.. You
can display the monitor for the work processes in the SAP System
by choosing Tools -> Administration -> System Monitoring -> Monitor
-> Process Overview or by starting transaction SM50.

The HTTP Plug-In
The HTTP plug-in handles HTTP requests and HTTP responses.
Depending on the URL prefix, different local handlers are addressed.
Profile parameters are used to define the assignment between the URL
prefix and the local handler. The following operations are possible:

Logging handler
Recording of HTTP requests

Server cache handler
If the queried object is in the server cache, it is read from there.
Objects that are sent back are stored in the server cache.

File access handler
Data in the file system of the SAP system is read directly.

HTTP redirect handler
An incoming HTTP redirect is passed on to another server.

SAP system handler
This handler passes the request on to the ABAP server of the SAP
system, where it is processed by a work process.

J2EE handler
This handler passes the request on to the J2EE Engine.

If no J2EE server is configured, all requests that are not processed by the
HTTP redirect handler or file access handler, or cannot be processed by the
server cache handler, are passed on to the SAP system handler. However,
if a J2EE Server is configured, only those requests whose URLs match the
entries in the URL prefix table are passed on to the SAP system handler.
The entries in this table are created from the structure of the HTTP service
tree, which can be displayed and edited using transaction SICF.

06-10-2004 © 2004 SAP AG. All rights reserved. 5

Unit 1: The SAP Web Application Server NET200

The Internet Server Cache
The Internet server cache stores HTTP objects before they are sent to the
client. If a new HTTP request is made for the object, it can be loaded from
the server cache. The objects in the server cache have an expiration time,
which can be set differently for each object. The server cache consists
of a working memory cache and a hard disk cache. Both cache areas
exist only once for each worker thread. MIME objects (static objects) are
automatically stored in the server cache. The names of objects that cannot
be found and hence cannot be stored in the server cache are included in
the list of unfound objects (UFO). At each new request, the system checks
the UFO list to see whether the object has already been requested but
could not be found. Only then does the system try to load the object from
the server cache.

Each object can be uniquely identified by a key (cache key) that results from
the request URL. Using transaction SMICM, you can display the objects
stored in the server cache and remove them from the cache if necessary.

A special feature of the Internet server cache is that it allows you to
invalidate individual objects, or remove them from the cache, from within
the applications.

Figure 3: The ICM Server Cache

6 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: System Architecture of the SAP Web Application Server

Internet Communication Framework
The Internet Communication Framework (ICF) provides the environment
for handling an HTTP request in a work process of a SAP System (server
and client). The ICF consists of ABAP classes and interfaces on the basis of
which objects can be instantiated. These ABAP classes and interfaces, in
turn, enable access to the request response data. The IF_HTTP_SERVER
and IF_HTTP_CLIENT interfaces are of central importance here. The
following lists the most important steps of an HTTP request/response cycle
(interaction model) in the server case.

Figure 4: Flow of a Request/Response Cycle (Interaction Model)

06-10-2004 © 2004 SAP AG. All rights reserved. 7

Unit 1: The SAP Web Application Server NET200

The graphic shows the flow of an HTTP request/response cycle. The first
two steps are not displayed.

� The HTTP request is received by the ICM.
� The SAP system handler processes the request (based on the URL

prefix).
� The function module HTTP_DISPATCH_REQUEST is called (ICF

controller) (1).
� The server object (of the class CL_HTTP_SERVER) is created using

the function module (server control block - here, ICF Manager) (2).
� The request data is passed from the memory pipes to attributes of the

server control block (3) and (4).
� The HTTP request handler is selected (5). The HTTP request handler

is defined by the structure of the URL using the HTTP service tree.

Note: SAP provides the class CL_HTTP_EXT_BSP for starting
BSP applications.

� Client logon (optional) (6)
� The HTTP request handler is called (7). The HTTP request handler

can use the server control block to access the request data and define
the response data.

� Control is returned to the ICF controller (8), which calls other handlers
if necessary (according to the definitions in the HTTP service tree).

� The HTTP response is created and the data is written back to the
memory pipes (9).

� The data is sent back using the ICM and SAP System handler (10).

The HTTP Service Tree
You define HTTP request handlers in the ABAP Workbench using the
Class Builder. For this purpose, the handler class must implement the
HANDLE_REQUEST method of the IF_HTTP_EXTENSION interface
because this method is called by the server control block. In the
HANDLE_REQUEST method, you can then access the server object.

The URL defines which request handler is called by the server control
block. The request handler is assigned to the URL using transaction SICF.
You can initially define several virtual Web servers that have different IP
addresses, aliases (host header names), or ports. Requests whose URLs
are not suited to any of the defined virtual Web servers are received by
the default host.

For each virtual Web server, you can create a service tree whose node
sequence correlates to the URL prefix. Each node can represent either a
service for which an HTTP request handler and additional service-specific

8 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: System Architecture of the SAP Web Application Server

data (specification of the logon procedure for starting the service, explicit
answer pages for error cases, and so on) can be stored or a reference to
an existing service (alias). The stored logon data is accumulated using
the tree. The services (including all subnodes) can be activated and
deactivated using transaction SICF.

Figure 5: Transaction SICF: The HTTP Service Tree

SAP provides an HTTP service tree for the default host. The BSP service,
which is used for calling BSP applications, is assigned to the node sap/bc.
For all BSP applications, the system uses the HTTP request handler
CL_HTTP_EXT_BSP, which is connected to this service.

06-10-2004 © 2004 SAP AG. All rights reserved. 9

Unit 1: The SAP Web Application Server NET200

Lesson Summary

You should now be able to:
� Describe the system architecture of the SAP Web Application Server
� List the most important steps of an HTTP request/response cycle
� Describe the features and use of the transactions SMICM and SICF

10 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Unit Summary

Unit Summary
You should now be able to:
� Describe the system architecture of the SAP Web Application Server
� List the most important steps of an HTTP request/response cycle
� Describe the features and use of the transactions SMICM and SICF

06-10-2004 © 2004 SAP AG. All rights reserved. 11

Unit Summary NET200

12 © 2004 SAP AG. All rights reserved. 06-10-2004

Unit 2
Business Server Pages: Programming

Model

Unit Overview
In this unit, you will learn about the Business Server Pages programming
model. You will learn how to create BSP applications and Business Server
Pages, how data is managed in BSPs, how to navigate within a BSP
application, and how states are managed in BSP applications.

Unit Objectives
After completing this unit, you will be able to:

� Describe the components of a BSP application
� Create BSP applications
� Create Business Server Pages
� Edit the layout of a Business Server Page
� Describe the components that make up a BSP and the tasks that each

of them has
� Describe the event concept for BSPs with flow logic
� List the various options, and define and use the types and data objects

in BSPs with flow logic
� Enable users to enter information
� Define static navigation between BSPs
� Define dynamic navigation between BSPs
� Enable data transfer between BSPs
� React to errors in transmitted data
� Work with global objects
� List criteria for deciding to use stateful or stateless programming
� Implement techniques for retaining data in a stateless BSP application

Unit Contents
Lesson: Business Server Pages: Introduction .. 15

06-10-2004 © 2004 SAP AG. All rights reserved. 13

Unit 2: Business Server Pages: Programming Model NET200

Exercise 1: Creating a BSP Application .. 21
Lesson: Layout of a Business Server Page 26

Exercise 2: Creating a BSP Application .. 33
Lesson: Processing User Input .. 42

Exercise 3: Enabling and Processing User Input and Navigating to the
Next Page ... 61

Lesson: Session Handling .. 79
Exercise 4: Session Handling.. 97

14 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

Lesson: Business Server Pages: Introduction

Lesson Overview
This unit starts with a general overview of BSP applications. It explains
which components can be included in a BSP application and in what
contexts these components can be used. Finally, it discusses the creation of
Business Server Pages with server-side scripting.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe the components of a BSP application
� Create BSP applications
� Create Business Server Pages
� Edit the layout of a Business Server Page

Business Example
Now that a decision has been made to develop a Web application using
the BSP programming model, you need to create a BSP application and
several Business Server Pages.

BSP Application
A BSP application is a Web application that is functionally self-contained
and is implemented using Business Server Pages (BSPs). BSP applications
and BSPs are standalone development objects, which are developed using
the Web Application Builder on the SAP Web Application Server. BSP
applications are completely integrated in the SAP Web Application Server.
This means, for example, that BSP applications can read data from the
database or call BAPIs. The BSP application is assigned to a package and
thus linked to the Transport Organizer. A BSP application can consist of
the following components:

� Business Server Pages (BSPs)
� Application class
� MIME objects
� Theme
� Navigation structure
� Controller

06-10-2004 © 2004 SAP AG. All rights reserved. 15

Unit 2: Business Server Pages: Programming Model NET200

There are three types of BSPs: pages with flow logic, page fragments, and
views. You do not have to include all the above components in your BSP
application. Simple applications can consist only of BSPs.

The use of controllers and views is supported as of SAP Web Application
Server Release 6.20 in connection with theModel View Controller design
pattern.

Figure 6: Components of a BSP Application

Business Server Pages define the Web pages that are displayed to the user
in the Web browser when a BSP application is launched. The layout of a
BSP can contain only static HTML source code. However, you can also
display information in the layout that can be ascertained only at runtime,
for example, through database selection. This means that the layout of a
BSP usually consists of a static part (such as text or images) and a dynamic
part (data from a database table). The static part of a BSP can be defined
using hypertext markup language (HTML) or extensible markup language
(XML). The dynamic part is implemented using server-side scripting. You
can use either ABAP or JavaScript as your scripting language.

In addition to layout, the page also allows you to save application logic in
event handlers (page with flow logic).

Conversely, page fragments always contain the layout of a Business Server
Page. Page fragments are used in particular for modularization. (For
example, if you want the same page header to appear on every page, you
can define this as a page fragment and include it in all pages.) If a BSP is

16 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

characterized as a page fragment in its attributes, it cannot be executed.
This means that it can be neither addressed through its own URL nor used
as the destination for a link from another page.

Views are used to display data within the framework of the Model View
Controller design pattern.

Figure 7: Layout of a Business Server Page

BSP directives are statements that need to be interpreted by the server at
runtime. They are denoted in the layout using the scripting tag - that is,
you enclose the statements between <% and %>.

The scripting language in the BSP is specified using the page directive as
follows:

<%@page language="abap"%>

Hint: The page directive must be in the first line and first column
of the layout. You cannot mix scripting languages within a single
BSP. This applies in particular when you include page fragments
in a page.

Further important directives are summarized in the following:

Include directive
Includes a page fragment.
Example: <%@ include file=’fragment.htm’ %>

06-10-2004 © 2004 SAP AG. All rights reserved. 17

Unit 2: Business Server Pages: Programming Model NET200

Inline code
Flagging of ABAP or JavaScript source code in the layout of the BSP.
Example: <% data: wa type spfli. %>

Output of variable values
Displays the value of an elementary variable at the time of page
processing.
Example: <%= wa-carrid %>

Comment
Server-side comment. Source-code between the relevant scripting
tags is not interpreted by the server.
Example: <%-- Loop at itab into wa. --%>

Figure 8: Example of Server-Side Scripting

Caution: The layout should be used only to specify the appearance
of the page. It should be clearly separated from the business logic
(for example, reading data from a database table).

18 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

Caution: For ABAP statements, the constraints for ABAP Objects
apply.

Hint: Naturally, you can use JavaScript for client-side scripting,
regardless of whether the server-side scripts are written in ABAP
or JavaScript.

You can assign an application class to a BSP application. This class
encapsulates business logic needed in the application. You can access the
methods and attributes of the class from any page in the BSP application.
For this purpose, the system automatically creates an object instance of
this application class, which can be accessed using the instance name
application. The application class must be created as a global class in the
Class Builder (in the customer namespace Z_CL_).

The application class also allows you to define global attributes for the
whole BSP application.

Hint: You can assign an application class to several BSP
applications.

MIME stands for Multipurpose Internet Mail Extension. In the SAP Web
Application Server, allMIME objects (such as graphics, style sheets,
audio files, and video files) are stored in the MIME Repository. The MIME
repository can be accessed from the Object Navigator (transaction: SE80).

A theme is a container for MIME objects. Using themes lets you customize
the layout of pages, without having to change the layout source code. You
can assign a theme to several BSP applications.

The term navigation structure refers to the sequence of BSPs within an
application. Navigation requests, which allow you to follow navigation
paths in the BSP application, are assigned to each path. The navigation
paths are maintained in a table as a property of the BSP application.

06-10-2004 © 2004 SAP AG. All rights reserved. 19

Unit 2: Business Server Pages: Programming Model NET200

20 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

Exercise 1: Creating a BSP Application

Exercise Objectives
After completing this exercise, you will be able to:
� Create a BSP application
� Create Business Server Pages
� Use ABAP scripting to create the layout for a BSP

Business Example
Now that a decision has been made to develop a Web application using
the BSP programming model, you need to create a BSP application and
several business server pages.

Task:
Create the the BSP application ZNET200_##_01 (where ## is your group
number), with a BSP named start.htm. Sample solution for this exercise:
NET200_S_01.

1. Create the package ZNET200_##.

2. Create the BSP application ZNET200_##_01 and assign it to your
package ZNET200_##.

3. In the BSP application ZNET200_##_01, create a BSP (page with flow
logic) with the name start.htm.

4. Edit the BSP layout. Make sure that a text (in this case, �Hello,
World!�) appears centered on the page.

5. Change the layout of your BSP to insert its dynamic parts using
server-side ABAP scripting.

Carry out one of the following two tasks:

a) Change (for example, increase) the font size dynamically

b) Make the text color striped

06-10-2004 © 2004 SAP AG. All rights reserved. 21

Unit 2: Business Server Pages: Programming Model NET200

Solution 1: Creating a BSP Application
Task:
Create the the BSP application ZNET200_##_01 (where ## is your group
number), with a BSP named start.htm. Sample solution for this exercise:
NET200_S_01.

1. Create the package ZNET200_##.

a) Start the Object Navigator (transaction: SE80). Start the
Repository Browser and choose Package. Enter the package
name in the appropriate field. Create the package using forward
navigation. Enter a short description. Specify the application
component CA and the software component HOME. The name of
the transport layer depends on the system you are using.

2. Create the BSP application ZNET200_##_01 and assign it to your
package ZNET200_##.

a) Start the Repository Browser and choose BSP Application. Enter
the name of your application and choose Display. The system
now takes you through the steps of creating a BSP application.
Save your application. When you save your application, assign
the BSP application to your package ZNET200_## and to the
transport request created for you.

3. In the BSP application ZNET200_##_01, create a BSP (page with flow
logic) with the name start.htm.

a) Display your BSP application in the Object Navigator. Position
the cursor on the application and, using the right mouse button,
choose Create -> Page. Enter the page name. Choose Page with
Flow Logic as a property of your page. Save the page.

Continued on next page

22 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

4. Edit the BSP layout. Make sure that a text (in this case, �Hello,
World!�) appears centered on the page.

a)

<%@page language="abap"%>

<html>

<head>

<title>

Simple example: Scripting in ABAP

</title>

</head>

<body>

<center>

<!----------------->

<!-- Static -->

<!----------------->

<h2>

Static

</h2>

Hello World!

</center>

</body>

</html>

5. Change the layout of your BSP to insert its dynamic parts using
server-side ABAP scripting.

Carry out one of the following two tasks:

a) Change (for example, increase) the font size dynamically

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 23

Unit 2: Business Server Pages: Programming Model NET200

b) Make the text color striped

a)

<!-------------------------------->

<!-- With scripting: Solution A -->

<!-------------------------------->

<h2>

Solution A

</h2>

<% do 5 times. %>

<font size="<%=sy-index%>">

Hello World!

<% enddo. %>

b)

<!-------------------------------->

<!-- With scripting: Solution B -->

<!-------------------------------->

<h2>

Solution B

</h2>

<% data: color type string,

int type i.

do 6 times.

int = sy-index mod 2.

if int < 1.

color = ’#0000DD’.

else.

color = ’#00DD00’.

endif. %>

<font color="<%=color%>">

Hello World!

<% enddo. %>

24 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Business Server Pages: Introduction

Lesson Summary

You should now be able to:
� Describe the components of a BSP application
� Create BSP applications
� Create Business Server Pages
� Edit the layout of a Business Server Page

06-10-2004 © 2004 SAP AG. All rights reserved. 25

Unit 2: Business Server Pages: Programming Model NET200

Lesson: Layout of a Business Server Page

Lesson Overview
This lesson explains in detail the components that make up a Business
Server Page (BSP). We will present the event concept of Business Server
Pages for the classic programming model (page with flow logic). Events
represent points in time during the processing of a BSP. Finally we will
explain how data is managed in a BSP.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe the components that make up a BSP and the tasks that each
of them has

� Describe the event concept for BSPs with flow logic
� List the various options, and define and use the types and data objects

in BSPs with flow logic

Business Example
Now that you have created the BSPs, the business logic must be
implemented. The decision has been made not to use the Model View
Controller Design Pattern. This means that the control flow, the business
logic, and the layout form an object (BSP with flow logic). Now you need
to decide the source code that you want to execute at each event. As part
of this , the appropriate data objects must be created and have types
assigned to them.

Components of a Business Server Page
BSPs can be made up of the following components, depending on the page
type (A = page with flow logic, V = view, and S = page fragment):

� Properties (A, V, S)
� Layout (A, V, S)
� Page attributes (A, V)
� Type definitions (A)
� Event handlers (A)

26 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Figure 9: Layout of a Business Server Page

The properties of a BSP include the page type.

An error page can be assigned to views and pages with flow logic. If a
runtime error occurs, this error page is then sent to the Web client.

The source code of the layout can be compressed.

Pages with flow logic have their own URL. You can specify that certain
pages are to be executed using HTTPs only. In addition, the data from
the HTTP response can be compressed on the server so that the HTTP
request/response cycle time is shorter, and the network load lower.

In the Layout, you specify how the page will appear in the browser. This
can consist of both static HTML elements - like text display - and dynamic
elements. You implement the dynamic elements using ABAP or JavaScript.

There are predefined event handlers that are processed in a defined
sequence when a Business Server Page is interpreted. The handlers thus
reflect the time required for processing a page. Event handlers allow
separation of static (layout) and dynamic (business logic) source code.

The page attributes serve two purposes: They provide the external
interface for the Business Server Page (automatic page attributes), and
they are used to define the fields, work areas, and internal tables whose
definitions are always visible within this page (non-automatic page
attributes).

06-10-2004 © 2004 SAP AG. All rights reserved. 27

Unit 2: Business Server Pages: Programming Model NET200

In the type definition, you can define ABAP types that can be accessed by
any event associated with the page. In particular, page attributes can be set
for pages on the basis of these types.

The Preview displays a preview of the static HTML elements of the page.

Event Concept for Business Server Pages
In each BSP source code can be defined, that is related to standard
handlers, known as event handlers. These event handlers are executed
in a predefined sequence.

Figure 10: Components of a Business Server Page

The event handlers are written in ABAP. All the constraints that apply
to ABAP Objects programming also apply to these event handlers. You
program the business logic of a BSP in the event handlers - for example,
reading from the database, or calling function modules or BAPIs.

Note: The system generates an ABAP Objects method for each
event handler that contains the code stored in the handler.

28 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Figure 11: ABAP Programming Within a BSP

The following list shows the event handlers with their attributes and
includes examples for their use.

OnCreate

� Executed first
� Will be executed only once for "stateful"; otherwise at each call of a

BSP
� Therefore appropriate only for use with "stateful"
� Initializes data and creates objects

OnRequest

� Executed every time a BSP is accessed
� Restores the internal data structures from the request
� Should always be used if logic is to be executed independently of

further navigation and independently of whether the application is
stateful or stateless

OnInitialization

� Is run through after OnRequest
� Used mainly for data retrieval (that is, reading from database tables,

filling internal tables)
� Should always be used if processing of the source code is to take place

only if the layout will be processed as well

06-10-2004 © 2004 SAP AG. All rights reserved. 29

Unit 2: Business Server Pages: Programming Model NET200

OnInputProcessing

� Executed under certain conditions (after a user dialog)
� Used for processing user inputs and subsequent navigation to a

next page

OnManipulation

� Used for manipulating the HTTP data stream according to the layout

OnDestroy

� Is the last to be executed
� Only executed for "stateful" if the page is destroyed
� Therefore appropriate only for use with "stateful"
� Used for deleting information at the end of a BSP application

Data Definition and Visibility Within a Business Server
Page
The process of defining data for a BSP follows simple rules. One important
criterion is the visibility necessary.

If the data object has to be available at several times - that is, in several
event handlers - then you must define this data object as a page attribute
of the Business Server Page.

If the data object needs to be available only during a single event, then
you create the data object in the appropriate event handler.

All data objects can be typed using ABAP Dictionary types or the
predefined ABAP types. In the same way as the page attributes, you can
define types for a Business Server Page. These types are then visible at
each event (in each event handler). It is possible to refer to these types
also when creating page attributes. If types are created within an event
handler, they are visible only in this event handler.

30 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Figure 12: Visibility of Types and Attributes in a Business Server Page

Finally, the public types and attributes of the application object are visible
in all BSPs of the BSP application and in all events of a BSP. To have
this, you must enter the application class in the respective field in the
tab Attributes of the BSP application. Whenever a BSP of the application
is called, an instance of this class with the name APPLICATION is
automatically created. In case the BSP application is executed "stateful",
the attributes of the application class can be used for exchanging data
between two BSPs since the object APPLICATION is kept after sending the
HTTP response. Using the application class, you can encapsulate business
logic and make it accessible through public methods.

06-10-2004 © 2004 SAP AG. All rights reserved. 31

Unit 2: Business Server Pages: Programming Model NET200

Figure 13: Using an Application Class

32 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Exercise 2: Creating a BSP Application

Exercise Objectives
After completing this exercise, you will be able to:
� Incorporate a page fragment in a BSP that includes flow logic
� Implement source code in the event handlers of a BSP
� Define types and data objects that are visible in every event of a BSP

or in only one event of a BSP

Business Example
You need to create a self-service flight booking application. To do this,
create the BSP application and individual BSPs. The first page of the BSP
application should always display last-minute offers. This means that you
must make sure that the most up-to-date data is read from the database
before the data is sent to the browser.

Task:
Create a new BSP application with 5 BSPs. You should implement the
page header of each BSP by incorporating a page fragment. The first page
should display flight data for last-minute offers.

1. Create a BSP application named ZNET_##_02, where ## is your group
number. If you have a a single-digit group number, always enter it in
the form 0#. Assign the BSP application and the subobjects you create
in the following exercises to your package ZNET200_##. Sample
solution for this exercise: NET200_S_02.

2. Create five BSPs, giving them the following names and descriptions.
Save the Business Server Page.

Page name Title
public/start.htm Select flight
public/flights.htm Flight connections
public/details.htm Flight details
protected/customer.htm Display customer data

protected/confirm.htm Confirm booking

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 33

Unit 2: Business Server Pages: Programming Model NET200

3. Create the page fragment, header.htm. Give it the description Page
Header Include. In the Layout section, create a page header
that will appear at the top of each page. For example, display the
name of your travel agency and add a horizontal separator. Insert
the page fragment in the Business Server Pages public/start.htm ,
public/flights.htm, and public/details.htm. Activate the BSP application
and test the pages.

4. The following tasks pertain to the BSP public/start.htm. The first
page should display last-minute offers, which can be booked by travel
agency number 110. Use the method GET_LAST_MINUTE_FLIGHTS
of the application class CL_NET200S_FINAL to read the flights
between today and exactly 3 weeks after today from the database.
(Use the parameter i_range.) Limit the number of records returned
by the method to 5 (using the parameter i_max_rows). Create a
suitable page attribute (with the type of an internal table) for the
corresponding interface parameter of the method (e_flights).

5. Display the last-minute offers in an HTML table on the page. Assign
a column header to the columns you display. Display the following
fields:

Column Description
flightdate Flight date
cityfrom Departure location
cityto Arrival Location
flightconn Flight connection number
numhops Number of individual connections
flighttime Total duration of flight

6. Improve the appearance of your pages by defining style attributes.
For example, specify the background color and font for the whole
page. Refer to the model solution. Store the style attributes in a page
fragment and insert this fragment in the <head>...</head> section of
all your BSPs.

34 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Solution 2: Creating a BSP Application
Task:
Create a new BSP application with 5 BSPs. You should implement the
page header of each BSP by incorporating a page fragment. The first page
should display flight data for last-minute offers.

1. Create a BSP application named ZNET_##_02, where ## is your group
number. If you have a a single-digit group number, always enter it in
the form 0#. Assign the BSP application and the subobjects you create
in the following exercises to your package ZNET200_##. Sample
solution for this exercise: NET200_S_02.

a) Start the Object Navigator (transaction: SE80). Start the
Repository Browser and choose BSP Application. Enter the name
of your application and choose Display. The system now takes
you through the process of creating a BSP application. Save
your application. When doing so, assign the BSP application to
your package ZNET200_## and to the transport request created
for you.

2. Create five BSPs, giving them the following names and descriptions.
Save the Business Server Page.

Page name Title
public/start.htm Select flight
public/flights.htm Flight connections
public/details.htm Flight details
protected/customer.htm Display customer data

protected/confirm.htm Confirm booking

a) Create the BSPs using these names. Choose Page with Flow Logic.
Two subnodes will appear: public and protected, containing all
the pages. The titles are generated automatically in the pages.

3. Create the page fragment, header.htm. Give it the description Page
Header Include. In the Layout section, create a page header
that will appear at the top of each page. For example, display the
name of your travel agency and add a horizontal separator. Insert

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 35

Unit 2: Business Server Pages: Programming Model NET200

the page fragment in the Business Server Pages public/start.htm ,
public/flights.htm, and public/details.htm. Activate the BSP application
and test the pages.

a) Create a BSP logo.htm and check the indicator Page Fragment.

logo.htm - LAYOUT

<h2>

SAP Travel Agency: Book Your Flights Online!

</h2>

<hr>

b) Add the Include directive to the following pages:

public/start.htm, public/flights.htm, and public/details.htm -
LAYOUT

<%@page language="ABAP"%>

...

<body>

<!-->

<!-- Page Fragment with the page header -->

<!-->

<%@ include file="Header.htm" %>

...

4. The following tasks pertain to the BSP public/start.htm. The first
page should display last-minute offers, which can be booked by travel
agency number 110. Use the method GET_LAST_MINUTE_FLIGHTS
of the application class CL_NET200S_FINAL to read the flights
between today and exactly 3 weeks after today from the database.
(Use the parameter i_range.) Limit the number of records returned

Continued on next page

36 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

by the method to 5 (using the parameter i_max_rows). Create a
suitable page attribute (with the type of an internal table) for the
corresponding interface parameter of the method (e_flights).

a) Assign the application class CL_NET200S_FINAL to your
BSP application. Use the pattern function to call the method
GET_LAST_MINUTE_FLIGHTS at the OnInitialization event. The
object name is APPLICATION. Navigate to the method source
code by double-clicking the method name. Display the interface
parameters and their types by choosing the button Signature. On
the page public/start.htm, create a page attribute of the same type.
Assign the following values to the method parameters:

Parameter Values
i_max_rows Number of records to be read
i_range Time (in days) from the system date
i_travelagency Travel agency number
e_flights Flight list with last-minute flights

public/start.htm - PAGE ATTRIBUTES

it_last_minute TYPE net200_tt_bapiscodat

public/start.htm - OnInitialization

* Data Retrieval for Last Minutes Offers

CALL METHOD application->get_last_minute_flights

EXPORTING

i_range = 21

i_max_rows = 5

i_travelagency = ’00000110’

IMPORTING

e_flights = it_last_minute.

5. Display the last-minute offers in an HTML table on the page. Assign
a column header to the columns you display. Display the following
fields:

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 37

Unit 2: Business Server Pages: Programming Model NET200

Column Description
flightdate Flight date
cityfrom Departure location
cityto Arrival Location

Continued on next page

38 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

flightconn Flight connection number
numhops Number of individual connections
flighttime Total duration of flight

a)

public/start.htm - LAYOUT

<!--------------------------------------->

<!-- Last Minute Offers -->

<!--------------------------------------->

<h3>

Last Minute Offers

</h3>

<table>

<thead>

<tr>

<td> Flight Date</td>

<td> Departure</td>

<td> Destination</td>

<td> Connection ID</td>

<td> Number of Hops</td>

<td> Total Flight Time</td>

</tr>

</thead>

<tbody>

<% data wa_last_minute like line of it_last_minute.

loop at it_last_minute into wa_last_minute.%>

<tr>

<td><%= wa_last_minute-flightdate%></td>

<td><%= wa_last_minute-cityfrom%></td>

<td><%= wa_last_minute-cityto%></td>

<td><%= wa_last_minute-flightconn%></td>

<td><%= wa_last_minute-numhops%></td>

<td><%= wa_last_minute-flighttime%></td>

</tr>

<% endloop. %>

</tbody>

</table>

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 39

Unit 2: Business Server Pages: Programming Model NET200

6. Improve the appearance of your pages by defining style attributes.
For example, specify the background color and font for the whole
page. Refer to the model solution. Store the style attributes in a page
fragment and insert this fragment in the <head>...</head> section of
all your BSPs.

a)

styles.htm - LAYOUT (EXAMPLE)

<style>

body {background-color:rgb(204,204,255);

font-family :Arial}

table {border:solid;

border-collapse:collapse;

empty-cells:show;

width:100%}

thead {font:bold}

tr {border:solid}

td {border:solid;

border-width:1px;

padding:3px;

background-color:rgb(204,204,204)}

hr {height:5;

background-color:rgb(0,0,0)}

.noborder {border:none;

background-color:rgb(204,204,255)}

</style>

All BSPs - LAYOUT

<head>

...

<%@ include file = "styles.htm" %>

</head>

40 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Layout of a Business Server Page

Lesson Summary

You should now be able to:
� Describe the components that make up a BSP and the tasks that each

of them has
� Describe the event concept for BSPs with flow logic
� List the various options, and define and use the types and data objects

in BSPs with flow logic

06-10-2004 © 2004 SAP AG. All rights reserved. 41

Unit 2: Business Server Pages: Programming Model NET200

Lesson: Processing User Input

Lesson Overview
This lesson outlines how you enable users to enter information on a
Business Server Page and how you have this information processed in
the OnInputProcessing event. The lesson also describes the options for
navigating statically or dynamically to the next page, and how to pass
data to the next page.

Lesson Objectives
After completing this lesson, you will be able to:

� Enable users to enter information
� Define static navigation between BSPs
� Define dynamic navigation between BSPs
� Enable data transfer between BSPs
� React to errors in transmitted data
� Work with global objects

Business Example
It should be possible to navigate between different pages in a Web
application. The user input should also be analyzed. If an error occurs
(such as an invalid date), an appropriate user dialog should take place.
Data (user input or page attributes) should be exchanged between the
pages of the application (which is stateless for the time being).

Making User Input Possible with HTML Forms
To allow users to enter data on an HTML page, you must define input
fields in an HTML form.

You can define forms at any point on an HTML page using <FORM> ...
</FORM>. You can provide different elements � such as input fields,
output fields, selection lists, or checkboxes � on the form. An HTML page
can contain several forms. Forms cannot be nested. The following table
summarizes the most important tags used in HTML forms.

42 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Important Elements in HTML Forms
Field type HTML Tag Comments
Input/output
field

<input type="text"
name="A"
value="B">

The field is filled with
the value B.

Password field <input
type="password"

name="A">

Checkbox <input
type="checkbox"

name="A"
value="X">

The name/value pair
A=X is then sent to
the receiver in the
HTTP request, if the
checkbox is ticked.

Radio button <input type="radio"
name="A"
value="X">

All selection buttons
in a group have
the same name (but
different values).

Dropdown list <select name="A">
<option value="B">

Disp
</option>
...

</select>

The user sees the
values specified
between <option>
and </option> (in
this example, Disp).

Input area with
more than one
line

<textarea name="A"
rows="..."
cols="...">

Send button <input type="submit"
name="A"
value="Send">

The text specified after
the value addition
appears on the button
as a label.

The simplest way to send an HTML form to the server is to press a Send
button, which must be in the form. When the user does this, the Web
browser searches the whole form for input elements and combines them
to form a query string. The query string consists of a name/value pair
for each element in the form. Each name/value pair is separated by an
ampersand (&). The name of a name/value pair is specified by the name
attribute, while the value is specified either by the value attribute or by
the user input in the field.

06-10-2004 © 2004 SAP AG. All rights reserved. 43

Unit 2: Business Server Pages: Programming Model NET200

An alternative to sending the form is for the user to click an HTTP
hyperlink. Hyperlinks are defined by the tag and by the
corresponding closing tag . A hyperlink can be either a picture or a
text enclosed between the opening and closing tags. It does not matter to
the hyperlink whether it is defined in the form or outside it. The query
string is not created automatically. Instead, the URL is used as defined in
the href attribute of the HTML element. There is another way of using a
hyperlink to call a JavaScript function defined on an HTML page. This
approach is very common in Web programming. You use JavaScript to
generate a query string from the form data and then send this to the
receiver with the next request.

Figure 14: Example of an HTML Form

On the server, the data is generally passed to a program, which analyzes
the query string and starts an appropriate action. In this way it is possible
to navigate to different subsequent pages, depending on the data that
has been sent (dynamic navigation). You can also define the next page
statically. This means that the next page is specified on the HTML page
itself, not by the program analyzing the data passed in the query string.
This is known as static navigation. We will examine these two types of
navigation more closely in the following sections.

44 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Specifying the Next Page Statically
The definition of the HTML form includes attributes that specify how the
form is to be processed. You list these attributes in the opening form tag.

<FORM method=... action=... >

Attributes Used to Process Forms
Attribute Description
method="type" Specifies how the system sends the form to the

server (that is, which method is used).

GET
The query string is appended to the URL,
separated by a question mark (?). Note:
This means that the query string appears
in the address bar in the browser. The
maximum length of the query string is 4
kilobytes (KB). This is the default method.

POST
The data is sent to the server in the HTTP
body, which means that it does not appear
in the browser address bar. The data is not
buffered in an HTTP cache. There is no
limit to the length of the query string.

ACTION="execution" Specifies the program that is to be executed on
the server.

To specify the destination statically in a BSP application (that is, the
next BSP), assign the name of this next BSP to the action attribute in the
HTML form. The SAP Web Application Server will process the next page
whenever the user sends the form to the server using a Send button. The
query string will either be appended to the URL or sent in the HTTP
body, depending on the method. You can work with several forms on one
HTML page to enable the user to navigate to different next pages. Forms
cannot be nested.

Alternatively, you can navigate to the next BSP using a hyperlink. To do
this, the attribute hrefmust contain the name of the next BSP. Whenever the
user chooses this link, the system will take him or her to this same target
page. If you want to pass form data to the next BSP using a hyperlink, you
must implement this data transfer in a JavaScript function because the
query string is not automatically constructed when a hyperlink is selected.

06-10-2004 © 2004 SAP AG. All rights reserved. 45

Unit 2: Business Server Pages: Programming Model NET200

Figure 15: Specifying the Next Page Statically

Specifying the Next Page Dynamically
Processing the OnInputProcessing Event Handler

If you want the next page to be dependent on the consistency or values of
the input data, this data must be analyzed before navigation continues. In
the BSP programming model (without the implementation of the Model
View Controller design pattern) this is realized by passing the data to the
BSP, which was used to process the actual HTML page (containing the
form). The event handler OnInputProcessing is available to analyze the
data and navigate to the next page.

This raises the question of how processing of the OnInputProcessing event
is to be triggered.

For this to happen, the name OnInputProcessing must appear in the
query string.

If you use a Send button, you assign this value to the attribute name. The
action attribute can be deleted in the form tag, since the HTTP response is
sent to the same BSP on which the current HTML page is based.

<form>
...

<input type="submit"
name="OnInputProcessing"

46 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

value="Label">
...
</form>

If you use a hyperlink, the name OnInputProcessing must be added to the
query string. Because the request is passed to the last page to be processed,
you can omit the URL completely.

Figure 16: Processing OnInputProcessing

Case distinction using EVENT_ID

To enable the user to trigger different actions within one HTML form, you
need to provide a different Send button for each possible action. You must
assign the name OnInputProcessing to each of these Send buttons, so that
the OnInputProcessing event handler will be triggered when the button is
chosen. The text <label> is assigned to the value attribute of a send button
in order to be displayed on the button. In this way, the name/value pair
OnInputProcessing=<label> appears for each query string.:

<input type="submit"
name="OnInputProcessing"

06-10-2004 © 2004 SAP AG. All rights reserved. 47

Unit 2: Business Server Pages: Programming Model NET200

value="To_Page_1">

A case distinction in the event handlerOnInputProcessing can now be made
because the value following the name OnInputProcessing in the query
string is automatically passed to an attribute with the name EVENT_ID.
This attribute is created automatically in the BSP environment. Depending
on the button, another text may also be passed to this attribute. Case
distinction is possible with the help of a CASE event_id. ...
ENDCASE. structure.

Hint: The value of EVENT_ID is case-sensitive.

It is impractical to use the label of a button for case distinction, since it may
contain special characters and is usually language-specific. This is why
you have the option of sending a unique text fragment with the name
OnInputProcessing and the Send button label. This text fragment must be
appended to the OnInputProcessing name in parentheses:

<input type="submit"
name="OnInputProcessing(Opt1)"
value="To_Page_1">

There is now a name/value triplet for the Send button in the query string.
In such cases, the text fragment, not the label, is passed to the EVENT_ID
attribute.

48 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 17: Case Distinction for OnInputProcessing

If you implement dynamic navigation using hyperlinks, the query string
must contain the name/value pair OnInputProcessing=Opt1. The value
following OnInputProcessing (here: Opt1) is passed to the attribute
EVENT_ID if a form is included.

Navigation to the Next Page

Typically, you specify the next page at the OnInputProcessing event.
So that you now process the appropriate next page depending on
the value of EVENT_ID, use the global object, NAVIGATION. The
interface IF_BSP_NAVIGATION provides a template for the global
object NAVIGATION. Both this interface and the class that implements
it, CL_BSP_NAVIGATION, are part of the Internet Communication
Framework (ICF). Among other things, they offer the methods
NEXT_PAGE and GOTO_PAGE for specifying the next page.

06-10-2004 © 2004 SAP AG. All rights reserved. 49

Unit 2: Business Server Pages: Programming Model NET200

Figure 18: Specifying the Next Page Dynamically

next_page
If you have defined a navigation structure for your application,
specify the name of the navigation request as the actual parameter.
You define the navigation requests and structure in the BSP
application attributes.
NEXT_PAGE(’TO_PAGE2’)

goto_page
Specify the name of the next BSP as the actual parameter.
GOTO_PAGE(’PAGE2.HTM’)

When you use the method NEXT_PAGE or GOTO_PAGE, an HTTP redirect
is generated; the browser thus generates another HTTP request. This
new request then causes the next page specified in the logic to be called
(explicit navigation). If you do not generate an HTTP redirect, this is
known as implicit navigation. In such cases, the other events on the
current page are processed (beginning with OnInitialization).

50 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 19: Sequence of Events in Implicit and Explicit Navigation

Data Transfer Between BSPs
Data entered by the user in the input fields in an HTML form is passed
to the server as a query string with the HTTP request. For this data to be
transferred to the BSP attributes, there must be an identically-named page
attribute for each form field. This page attribute must also be flagged as
an auto page attribute � that is, the "Auto" indicator must be set.

06-10-2004 © 2004 SAP AG. All rights reserved. 51

Unit 2: Business Server Pages: Programming Model NET200

Figure 20: Getting Data from a Query String

The Auto page attributes can be thought of as the data interface of the BSPs.
The corresponding query string, which contains the data as name/value
pairs, can be generated using either a Send button in an HTML form or
a hyperlink.

If you use explicit navigation, it is also possible to transfer the name/value
pairs from the HTTP request to the HTTP redirect and thus to pass the user
input to the next page. For this you use the method set_parameter of the
global object navigation. When this method is called, you need only specify,
as a parameter, the name of the name/value pair that is to be added to the
query string in the HTTP redirect. The set_parameter method must be
executed once for each name/value pair.

navigation->set_parameter(name = ’in1’).

52 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 21: Data Transfer When Using Explicit Navigation

The set_parameter method also permits character-like page attributes to
be passed between two BSPs. Any data structure can be passed in this
way. However, the maximum size of the dataset for the whole URL is 4
KB. It is easy to reach this limit because the query string is appended to
the HTTP redirect in an encoded form, which makes the dataset much
larger. In such general cases, you must specify the method call, the name,
and the value of the name/value pair appended to the query string. If
the BSP application is stateful, there are more elegant ways to pass page
attributes between two BSPs.

navigation->set_parameter(name = ’par_2’
value = par_1).

06-10-2004 © 2004 SAP AG. All rights reserved. 53

Unit 2: Business Server Pages: Programming Model NET200

Figure 22: Data Transfer for character-like Page Attributes

Error Handling
The global objectMESSAGES is provided so that you can handle errors.
This global object contains a list of error messages and their severity. It
also specifies the input associated with the error message (the condition).
Entries in this list can be made either automatically (if a type conflict has
been specified with the appropriate Auto page attribute by the system) or
as part of the program logic. In the latter case, the error text, severity,
and condition can be specified in the program. Errors should always be
processed on the page where they occurred. The user should be able to
navigate to the next page only if no errors occur.

Hint: For page attributes of type D, the data is expected in the
format specified in the user�s default values and automatically
converted to the internal format, YYYYMMDD.

For page attributes of type T, the data is expected in the format
specified in the format HH:MM:SS and automatically converted to
the internal format, HHMMSS.

54 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 23: Automatic Error Recognition due to a Type Conflict (1)

Figure 24: Automatic Error Recognition due to a Type Conflict (2)

06-10-2004 © 2004 SAP AG. All rights reserved. 55

Unit 2: Business Server Pages: Programming Model NET200

The disadvantage of having the type conflict recognized by the system
is that the data is not automatically passed to the page attributes, and
thus cannot be displayed again. However, in this case you can use
the GET_FORM_FIELD method of the object REQUEST to pass the
name of a name/value pair to an attribute of the type STRING. The
GET_FORM_FIELDS method allows you to split the query string into
name/value pairs.

Alternatively, you can select all auto page attributes of the type STRING. In
this case however, all type checks must be executed by the program logic.

Figure 25: Error Recognition Using the Program Logic (1)

56 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 26: Error Recognition Using the Program Logic (2)

Finally, an error message can be placed beside the field where the input
error occurred using the ASSERT_MESSAGEmethod of the global object
MESSAGES. To do this, you must pass the field name as an attribute of
the ASSERT_MESSAGE method.

06-10-2004 © 2004 SAP AG. All rights reserved. 57

Unit 2: Business Server Pages: Programming Model NET200

Figure 27: Context-Sensitive Display of Error Messages

Possible runtime errors should be caught by corresponding TRY. ...
ENDTRY. statement blocks. However, it is also possible to assign an error
page in the case of non-explicitly caught runtime errors. This is done by
making an entry in the relevant field in the attributes of a BSP. The error
page is selected from a dropdown list box. Here, all pages of the same BSP
application are displayed for which the attribute Is Error Page is set. In
the case of a runtime error, the error page is processed directly (no HTTP
redirect) and the corresponding HTML page is sent to the client.

Global Objects
The following table summarizes some important global objects and
selected methods. You cannot always access every object at every BSP
event.

58 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Figure 28: Selected Global Objects and Event Handlers

Hint: For detailed information on all global objects, see the online
documentation.

You use the NAVIGATION global object to control the sequence of the BSPs
and to set values for the next page.

You use the EVENT_ID global object to implement a case distinction for
several pushbuttons.

You use the global object PAGE and the write method to control the
formatting of the output on the HTML page.

<% page->write(value = wa-fldate). %>

You use the global objectMESSAGE to implement pages for error handling.

You can use the global object APPLICATION to access the methods of
the application class associated with your BSP application. You store the
business logic of your application in these methods. If the BSP application
is executed as stateful, the attributes of the application class can be used
for exchanging data between two BSPs.

06-10-2004 © 2004 SAP AG. All rights reserved. 59

Unit 2: Business Server Pages: Programming Model NET200

60 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Exercise 3: Enabling and Processing User
Input and Navigating to the Next Page

Exercise Objectives
After completing this exercise, you will be able to:
� Enable users to enter information
� Process user input
� Specify the next page dynamically
� Implement data transfer between BSPs

Business Example
You will implement the first three BSPs in the self-service application for
booking flights. The user selects a flight from the first page. On the next
page (Flights), the user should see suitable offers in a table. The user can
use a link to display the flight details.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_02 or the BSP application NET200_S_02, giving it the name
ZNET200_##_03, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers with a leading zero, 0#.
Model solution for this exercise: NET200_S_03.

1. Make it possible for the user to enter the following information on
the first page:

Input fields on the first page
Name Name of the HTML element
Departure location depa
Arrival location dest
Date of departure (Range
from to)

day_low, month_low, year_low,
day_high, month_high, year_high

Use the model solution as a basis for the layout of your first page.
You should present the departure interval as dropdown boxes for the
day, month, and year. You can use the copy template for this purpose.
This copy template is stored on the BSP template_start.htm in the BSP
application NET200_T_03. Copy the code segment you have selected

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 61

Unit 2: Business Server Pages: Programming Model NET200

into the layout of your first page (using Ctrl + C, followed by Ctrl + V).
Offer the user a pushbutton for sending the form to the server. Make
sure that the OnInputProcessing event handler will be executed.

2. Make sure that the application displays the public/flights.htm BSP as
the next page when the user clicks the pushbutton on the first page.
On the public/flights.htm BSP (Flight Connections), offer another
pushbutton to take the user back to the first page.

Caution: Provide a way for the user to navigate to the next
page dynamically.

3. Make sure that the data entered by the user on the first page is passed
to the next page (public/flights.htm).

Hint: Assign the type STRING to the page attributes that
correspond to the form fields. Assign the type S_CITY to
the Departure Location and Arrival Location page
attributes.

4. Make sure that the application reads the appropriate flight connections
from the database, based on what the user enters on the first page.
The method used to read these flight connections, get_flight_list,
is included in the application class CL_NET200S_FINAL, which is
already assigned to your application. Implement this method.

Hint: You can address methods included in the application
class using the global object APPLICATION.

Before the application calls the method, it must format the data
correctly for the interface. To do this, use the function module
FIT_IN_BAPI_FLCONN_GETLIST. The departure location, arrival
location, and attributes for the range of departure dates are passed
to this function module. Test the function module using transaction
SE37. Find out about the types of the data structures filled by the
function module. Call the function module before you call the
method. Create auxiliary variables for the function module�s actual
parameters dest_from, dest_to, and date. Assign the following types to
these auxiliary variables:

dest_from bapiscodst
dest_to bapiscodst
it_date STANDARD TABLE OF bapiscodra

Continued on next page

62 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Pass the function module parameters to the method get_flight_list. In
addition, pass the travel agency number �00000110� to the method
using the TRAVELAGENCY parameter. As a result you will get
an internal table with the relevant flight connections (changing
parameter: flight_connection_list). Assign the Data Dictionary
structure BAPISCODAT as the table�s line type (create the table type
first). The internal table data is to be displayed in an HTML table on
the BSP public/flights.htm. Display the following columns:

Column Description
flightconn Flight connection number
flightdate Flight date
airportfr Departure airport
cityfrom Departure location
deptime Departure time
airportto Destination airport
cityto Destination city
arrtime Arrival time

5. Create a link from the public/flights.htm BSP to the public/details.htm
BSP. Use the flight number as the link. So that your application can
display the correct detail list for the flight connection, you must pass
the appropriate parameters (name/value pairs) with the link.

Hint: In principle, links are structured as follows:

 text

Hint: The value of the attribute href in the hyperlink must
not include any line breaks.

Pass the following information to public/details.htm:

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 63

Unit 2: Business Server Pages: Programming Model NET200

Parameter name Information passed
travel_ag �00000110�
connid Flight connection number

(flightconn)
fldate Flight date (flightdate)

Caution: Do not change the names of these parameters.

6. Use the PAGE global object and theWRITE method to format the
display of the date and time fields on the start and connections pages.

Hint: The flight duration field (column FLIGHTTIME) is
not a field of type T. This means that this column cannot be
formatted using theWRITE method.

7. Delete the public/details.htm BSP from your application. Copy
the BSP public/details.htm from the copy template NET200_T03 to
template_details.htm in your own application. You may have to
change the name of the page fragment Header.htm in the include
statement if you have used a different name in your solution.

64 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Solution 3: Enabling and Processing User
Input and Navigating to the Next Page
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_02 or the BSP application NET200_S_02, giving it the name
ZNET200_##_03, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers with a leading zero, 0#.
Model solution for this exercise: NET200_S_03.

1. Make it possible for the user to enter the following information on
the first page:

Input fields on the first page
Name Name of the HTML element
Departure location depa
Arrival location dest
Date of departure (Range
from to)

day_low, month_low, year_low,
day_high, month_high, year_high

Use the model solution as a basis for the layout of your first page.
You should present the departure interval as dropdown boxes for the
day, month, and year. You can use the copy template for this purpose.
This copy template is stored on the BSP template_start.htm in the BSP
application NET200_T_03. Copy the code segment you have selected
into the layout of your first page (using Ctrl + C, followed by Ctrl + V).
Offer the user a pushbutton for sending the form to the server. Make
sure that the OnInputProcessing event handler will be executed.

a)

public/start.htm - LAYOUT

<!-->

<!-- Begin of Form -->

<!-->

<form>

<table class=noborder>

<tr>

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 65

Unit 2: Business Server Pages: Programming Model NET200

<td class=noborder>Departure:</td>

<td class=noborder colspan=3>

<input type=text name=depa></td>

</tr>

<tr>

<td class=noborder>Destination:</td>

<td class=noborder colspan=3>

<input type=text name=dest></td>

</tr>

<tr>

<td class=noborder>Destination date:</td>

<td class=noborder>

<% data: counter2(2) type n,

counter4(4) type n. %>

<select name="day_low">

<% do 31 times.

counter2 = sy-index. %>

<option VALUE="<%=counter2%>">

<%=counter2%>

</option>

<% enddo. %>

</select>

<select name="month_low">

<% do 12 times.

counter2 = sy-index. %>

<option VALUE="<%=counter2%>">

<%=counter2%>

</option>

<% enddo. %>

</select>

<select name="year_low">

<% do 5 times.

counter4 = sy-index + 2001. %>

<option VALUE="<%=counter4%>">

<%=counter4%>

</option>

<% enddo. %>

</select>

</td>

<td class=noborder>

to

</td>

<td class=noborder>

<select name="day_high">

<% do 31 times.

Continued on next page

66 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

counter2 = sy-index. %>

<option VALUE="<%=counter2%>">

<%=counter2%>

</option>

<% enddo. %>

</select>

<select name="month_high">

<% do 12 times.

counter2 = sy-index. %>

<option VALUE="<%=counter2%>">

<%=counter2%>

</option>

<% enddo. %>

</select>

<select name="year_high">

<% do 5 times.

counter4 = sy-index + 2003. %>

<option VALUE="<%=counter4%>">

<%=counter4%>

</option>

<% enddo. %>

</select>

</td>

</tr>

</table>

<input type=submit

name="OnInputProcessing(flights)"

value="Show flights">

</form>

2. Make sure that the application displays the public/flights.htm BSP as
the next page when the user clicks the pushbutton on the first page.
On the public/flights.htm BSP (Flight Connections), offer another
pushbutton to take the user back to the first page.

Caution: Provide a way for the user to navigate to the next
page dynamically.

a)

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 67

Unit 2: Business Server Pages: Programming Model NET200

public/start.htm - OnInputProcessing

CASE event_id.

WHEN ’flights’.

* Navigation to the next page

navigation->goto_page(’FLIGHTS.HTM’).

ENDCASE.

public/flights.htm - OnInputProcessing

CASE event_id.

WHEN ’back’.

* Navigation to the previous page

navigation->goto_page(’START.HTM’).

ENDCASE.

public/flights.htm - LAYOUT

<%@page language="abap"%>

<html>

<head>

<title> Flight Connections </title>

<%@ include file = "styles.htm" %>

</head>

<body>

<!-->

<!-- Page Fragment with the page header -->

<!-->

<%@ include file="Header.htm" %>

<!-->

<!-- Begin of Form -->

<!-->

<form>

Continued on next page

68 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

<input type=submit

name="OnInputProcessing(back)"

value="Back">

</form>

<!-->

<!-- End of Form -->

<!-->

</body>

</html>

3. Make sure that the data entered by the user on the first page is passed
to the next page (public/flights.htm).

Hint: Assign the type STRING to the page attributes that
correspond to the form fields. Assign the type S_CITY to
the Departure Location and Arrival Location page
attributes.

a)

public/start.htm - OnInputProcessing

CASE event_id.

WHEN ’flights’.

* Setting attributes for the next page (Form fields entries)

navigation->set_parameter(name = ’depa’).

navigation->set_parameter(name = ’dest’).

navigation->set_parameter(name = ’day_low’).

navigation->set_parameter(name = ’month_low’).

navigation->set_parameter(name = ’year_low’).

navigation->set_parameter(name = ’day_high’).

navigation->set_parameter(name = ’month_high’).

navigation->set_parameter(name = ’year_high’).

* Navigation to the next page

navigation->goto_page(’FLIGHTS.HTM’).

ENDCASE.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 69

Unit 2: Business Server Pages: Programming Model NET200

public/flights.htm: PAGE ATTRIBUTES

Attribute Auto Type Reference
Type

Description

day_high X TYPE STRING To (Day)
day_low X TYPE STRING From (Day)
depa X TYPE S_CITY Arrival

location
dest X TYPE S_CITY Departure

location
month_high X TYPE STRING To (Month)
month_low X TYPE STRING From (Month)
year_high X TYPE STRING To (Year)
year_low X TYPE STRING From (Year)

4. Make sure that the application reads the appropriate flight connections
from the database, based on what the user enters on the first page.
The method used to read these flight connections, get_flight_list,
is included in the application class CL_NET200S_FINAL, which is
already assigned to your application. Implement this method.

Hint: You can address methods included in the application
class using the global object APPLICATION.

Before the application calls the method, it must format the data
correctly for the interface. To do this, use the function module
FIT_IN_BAPI_FLCONN_GETLIST. The departure location, arrival
location, and attributes for the range of departure dates are passed
to this function module. Test the function module using transaction
SE37. Find out about the types of the data structures filled by the
function module. Call the function module before you call the
method. Create auxiliary variables for the function module�s actual
parameters dest_from, dest_to, and date. Assign the following types to
these auxiliary variables:

dest_from bapiscodst
dest_to bapiscodst
it_date STANDARD TABLE OF bapiscodra

Continued on next page

70 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Pass the function module parameters to the method get_flight_list. In
addition, pass the travel agency number �00000110� to the method
using the TRAVELAGENCY parameter. As a result you will get
an internal table with the relevant flight connections (changing
parameter: flight_connection_list). Assign the Data Dictionary
structure BAPISCODAT as the table�s line type (create the table type
first). The internal table data is to be displayed in an HTML table on
the BSP public/flights.htm. Display the following columns:

Column Description
flightconn Flight connection number
flightdate Flight date
airportfr Departure airport
cityfrom Departure location
deptime Departure time
airportto Destination airport
cityto Destination city
arrtime Arrival time

a)

public/flights.htm: TYPE DEFINITION

TYPES:

tab_bapiscodat type standard table of BAPISCODAT.

public/flights.htm: PAGE ATTRIBUTES

Attribute Auto Type Reference Type Description
it_con_dat TYPE TAB_BAPISCO-

DAT
Internal table
for flight
connection
data

public/flights.htm - OnInitialization

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 71

Unit 2: Business Server Pages: Programming Model NET200

* event handler for data retrieval

**

* Prepare the form fields for the BAPI Interface

**

DATA: dest_from TYPE bapiscodst,

dest_to TYPE bapiscodst,

it_date TYPE TABLE OF bapiscodra.

* Data Conversion for Method Call

CALL FUNCTION ’FIT_IN_BAPI_FLCONN_GETLIST’

EXPORTING

start = depa

end = dest

day_low = day_low

day_high = day_high

month_low = month_low

month_high = month_high

year_low = year_low

year_high = year_high

IMPORTING

dest_from = dest_from

dest_to = dest_to

TABLES

date = it_date.

**.

* BAPI Call via Application class method

**

CALL METHOD application->get_flight_list

EXPORTING

travelagency = ’00000110’

* AIRLINE =

destination_from = dest_from

destination_to = dest_to

* MAX_ROWS =

CHANGING

date_range = it_date

flight_connection_list = it_con_dat.

public/flights.htm - LAYOUT

Continued on next page

72 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

...

<body>

<!-->

<!-- Page Fragment with the page header -->

<!-->

<%@ include file="Header.htm" %>

<!-->

<!-- Begin of Form -->

<!-->

<form>

<input type=submit

name="OnInputProcessing(back)"

value="Back">

</form>

<!-->

<!-- End of Form -->

<!-->

<!-->

<!-- Begin of Flight Table -->

<!-->

<table>

<thead>

<tr>

<td colspan="2">

</td>

<td colspan="3">

Departure Info

</td>

<td colspan="3">

Arrival Info

</td>

</tr><tr>

<td>Connection</td>

<td>Date</td>

<td>Airport</td>

<td>Departure</td>

<td>Departure Time</td>

<td>Airport</td>

<td>Destination</td>

<td>Arrival Time</td>

</tr>

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 73

Unit 2: Business Server Pages: Programming Model NET200

</thead>

<tbody>

<!-->

<!-- Scripting -->

<!-->

<% data: wa_con_dat type BAPISCODAT.

loop at it_con_dat into wa_con_dat. %>

<tr>

<td><%= wa_con_dat-flightconn %></td>

<td><%= wa_con_dat-flightdate %></td>

<td><%= wa_con_dat-airportfr %></td>

<td><%= wa_con_dat-cityfrom %></td>

<td><%= wa_con_dat-deptime %></td>

<td><%= wa_con_dat-airportto %></td>

<td><%= wa_con_dat-cityto %></td>

<td><%= wa_con_dat-arrtime %></td>

</tr>

<% endloop. %>

</tbody>

</table>

<!-->

<!-- End of Flight Table -->

<!-->

</body>

5. Create a link from the public/flights.htm BSP to the public/details.htm
BSP. Use the flight number as the link. So that your application can
display the correct detail list for the flight connection, you must pass
the appropriate parameters (name/value pairs) with the link.

Hint: In principle, links are structured as follows:

 text

Hint: The value of the attribute href in the hyperlink must
not include any line breaks.

Pass the following information to public/details.htm:
Continued on next page

74 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

Parameter name Information passed
travel_ag �00000110�
connid Flight connection number

(flightconn)
fldate Flight date (flightdate)

Caution: Do not change the names of these parameters.

a)

public/flights.htm: LAYOUT

<!-->

<!-- Scripting -->

<!-->

<% data: wa_con_dat type BAPISCODAT.

loop at it_con_dat into wa_con_dat. %>

<tr>

<td>

<!-- The value of the href attribute has to be in a -->

<!-- single line; line breaks are added here for -->

<!-- technical reasons -->

<a href="Details.htm?

travel_ag=00000110&

connid=<%=wa_con_dat-flightconn%>&

fldate=<%=wa_con_dat-flightdate%>">

<%= wa_con_dat-flightconn %>

</td>

...

</tr>

<% endloop. %>

6. Use the PAGE global object and theWRITE method to format the
display of the date and time fields on the start and connections pages.

Hint: The flight duration field (column FLIGHTTIME) is
not a field of type T. This means that this column cannot be
formatted using theWRITE method.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 75

Unit 2: Business Server Pages: Programming Model NET200

a)

public/flights.htm - LAYOUT

<!--->

<!-- Scripting -->

<!--->

...

<% loop at it_con_dat into wa_con_dat. %>

...

<td> <% page->write(

value = wa_con_dat-flightdate). %>

</td>

...

<td> <% page->write(

value = wa_con_dat-deptime). %>

</td>

...

<td> <% page->write(

value = wa_con_dat-arrtime). %>

</td>

...

<% endloop. %>

public/start.htm - LAYOUT

<% Loop at it_last_minute into wa_last_minute. %>

...

<% page->write(

value = wa_last_minute-fldate). %>

...

<% Endloop. %>

Continued on next page

76 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Processing User Input

7. Delete the public/details.htm BSP from your application. Copy
the BSP public/details.htm from the copy template NET200_T03 to
template_details.htm in your own application. You may have to
change the name of the page fragment Header.htm in the include
statement if you have used a different name in your solution.

a) Delete the public/details.htm BSP. Copy the BSP
template_details.htm from the template to the BSP
public/details.htm in your application. Check the include names.
Activate and test the application.

06-10-2004 © 2004 SAP AG. All rights reserved. 77

Unit 2: Business Server Pages: Programming Model NET200

Lesson Summary

You should now be able to:
� Enable users to enter information
� Define static navigation between BSPs
� Define dynamic navigation between BSPs
� Enable data transfer between BSPs
� React to errors in transmitted data
� Work with global objects

Related Information

� Online documentation on global objects
� Class documentation for the global class CL_BSP_NAVIGATION

78 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Lesson: Session Handling

Lesson Overview
In this training unit, we will introduce and evaluate stateless and stateful
programming. We will also explain techniques such as the use of hidden
fields and cookies in a BSP application.

Lesson Objectives
After completing this lesson, you will be able to:

� List criteria for deciding to use stateful or stateless programming
� Implement techniques for retaining data in a stateless BSP application

Business Example
You need to consider which parts of a BSP application should be
implemented statefully and which should be stateless. If part of an
application is stateless, you also need to consider how data that may
be needed in the future can be retained on the SAP Web AS and later
identified correctly.

Stateful and Stateless BSP Applications
What does stateful programming mean?

Executing a BSP application statefullymeans that the application context is
retained after the response and is available when the application continues
executing. This, in turn, means that the application context is rolled into
the work process if processing is continued. This is the case with classical
SAP R/3 transactions at each SAP GUI screen change. In BSP applications,
it means that the roll area is available even after a page has been
transmitted to the browser for further requests from the same application.

06-10-2004 © 2004 SAP AG. All rights reserved. 79

Unit 2: Business Server Pages: Programming Model NET200

Figure 29: Stateful Programming

� A large load is created on the SAP Web Application Server: Web
applications are generally used by several Internet and Intranet users.
For each application, the context on the SAP Web Application Server
is retained.

� Resources are retained for an unnecessarily long time on the SAPWeb
Application Server. The session is not deleted when the user navigates
to another page in the browser. Thus, the program context is retained
until a timeout mechanism releases it. Because this can normally take
some time, limited resources are blocked longer than necessary.

� Applications are easier to program: Data is available at each new
access.

What does stateless programming mean?

Executing a BSP application statelesslymeans that for each new request, a
new application context (roll area) is created. In addition when the BSP
application continues, the old context is no longer available (stateless
execution or execution without memory). After an HTTP request/response
cycle, all resources are released.

80 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 30: Stateless Programming

� Resources on the SAP Web Application Server are used only during
HTTP request processing: Stateless programming usually results
in good server scalability and is thus particularly suitable for Web
applications (with many users).

� Data must be generated again: Data that is required over several
BSPs must be read from the database, often several times in a row.
This increases the load on the database and makes the program logic
more complex.

Stateless programming poses the question of how data can be retained
over several request/response cycles if the data must be available while
the rest of the application executes.

Mixed Stateful and Stateless Programming

In actual applications, it is generally desirable to make some parts of a BSP
application stateful, and others stateless. For this reason, SAP has made it
possible for developers to change a part of the program from stateful to
stateless (and vice versa) either statically or dynamically.

Firstly, you can specify statically (by setting a flag on the Properties tab)
whether a BSP application should be executed statelessly or statefully.
When a BSP in this application is called, you can also specify whether this

06-10-2004 © 2004 SAP AG. All rights reserved. 81

Unit 2: Business Server Pages: Programming Model NET200

mode should be retained or whether it should be changed from this point
on. In addition, you can change this preset value at any time by setting the
KEEP_CONTEXT attribute of the global object RUNTIME:

runtime->keep_context = 0.

After the BSP has been processed, the application is executed
statelessly.

runtime->keep_context = 1.

After the BSP has been processed, the application is executed
statefully.

Setting this property has the following effect, with regard to the session
and the APPLICATION object:

� If the BSP application is executed statelessly, the session and thus
(when using an application class) the APPLICATION object is
instantiated anew for every HTTP request and then destroyed at the
end of the HTTP request/response cycle.

� If the BSP application is executed statefully, the session and thus
(when using an application class) the APPLICATION object is
retained along with its attributes. A temporary cookie containing
the session ID is sent to the Web browser. In order to restart a BSP
application, an appropriate name/value pair has to be send in the
query string (sap-sessioncmd=open). In this case, the existing session
is ended, a new session is started, and the associated session ID is
sent to the Web browser using a cookie. The current session can be
ended by sending (sap-sessioncmd=close) in the query string. Here,
the next page is specified in the name/value pair sap-exitURL=<URL>
in the query string. The BSP application can also be ended in the
program logic. To do so, you use the method exit belonging to the
global object navigation. In this case, the next page is passed as a
parameter when the method is called:

navigation->exit(’http://www.sap.com’).

82 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 31: Lifetime of the Session and the Object APPLICATION (1)

Figure 32: Lifetime of the Session and the Object APPLICATION (2)

06-10-2004 © 2004 SAP AG. All rights reserved. 83

Unit 2: Business Server Pages: Programming Model NET200

If the BSP application is executed statefully, you can also let the individual
BSPs (and thus the corresponding page attributes) live longer than a single
HTTP request/response cycle. The lifetime of a BSP is defined statically
(by choosing the appropriate value from a drop-down box). You have
several options:

Lifetime: Session
The PAGE object for this BSP is not deleted until the BSP application
is switched to stateless or ended explicitly:
navigation->exit(...).

Lifetime: Page change
The PAGE object for this BSP is not deleted until the BSP application
is switched to stateless, ended explicitly, or a page change takes place
as a result of explicit navigation:
navigation->goto_page(...).

or
navigation->next_page(...).

Lifetime: Request
The object PAGE for this BSP is deleted after each HTTP
request/response cycle.

Figure 33: Lifetime of a BSP with the Property Lifetime: Session

84 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 34: Lifetime of a BSP with the Property Lifetime: Until Page Change

Figure 35: Lifetime of a BSP with the Property Lifetime: REQUEST

06-10-2004 © 2004 SAP AG. All rights reserved. 85

Unit 2: Business Server Pages: Programming Model NET200

Data Transfer in Stateful BSP Applications
The visibility of page attributes in a BSP is always restricted to the
execution of this BSP. This means that the page attributes of BSP1 cannot be
addressed while BSP2 is being processed, regardless of the lifetime of BSP1.
For you to be able to process data from BSP1 in BSP2, it must first be passed
from BSP1 to BSP2. To do this, you use the method SET_PARAMETER of
the global object NAVIGATION. However, transferring this kind of data
is only practicable if it is made up of values from the query string of an
HTTP request (such as form data). Even internal tables quickly push this
procedure to its limits (because only a limited quantity of data can be
transferred, and this data must be character-type).

If the BSP application is being executed statefully at the time of the
navigation between it and a second BSP, you can use the attributes of the
application class to transfer the data. In this approach, the data from
BSP1 is transferred to attributes of the application class. When BSP2 is
processed, it accesses these attributes. To use this option, you simply set
the BSP application mode to stateful before you leave BSP1 and then
restore it to stateless after BSP2 has been processed.

Figure 36: Data Transfer in a Stateful BSP Application

86 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Canceling Stateful BSP Applications
Statefully programmed BSP applications should always be exited so that
the session is also deleted on the application server. There are different
ways of doing this:

The user exits the application using a hyperlink or a button on
the HTML page. As a result of the corresponding HTTP request,
the BSP is called again and the session is deleted there using
navigation->exit(’..’)..
If the user closes the browser or enters the URL to the next
page in the address line of the browser, this must lead to an
HTTP request that also results in the exiting of the session.
For this, the browser event OnUnload must be caught. The
corresponding URL for exiting the session can be created in the
source code of the relevant BSP using the following static method:
CL_BSP_LOGIN_APPLICATION=>GET_SESSIONEXIT_URL(page
= page).

To ensure that the source code for catching the browser event OnUnload is
available to the programmer in reusable form (so that the source code does
not have to be manually added to layout of each BSP), the HTML frameset
can be used. The frameset consists of a single frame. In this frame, the
actual BSP application to be displayed is embedded. If the browser is
closed or the next page is called by entering a URL in the browser address
line, the frameset is also deleted. A corresponding template is available in
the BSP application system. Name: session_single_frame.htm. This page
is copied to your BSP application and is then the new start page. After
copying, you only need to correct the name of the first BSP to be embedded
(Data statement in the upper part of the layout).

Stateful BSP Applications Without the Use of Cookies
If a BSP application is started statefully, a temporary cookie, which contains
the session ID, is sent by the BSP runtime environment. At the next HTTP
request, the cookie is sent back to the creating server by the client. The
server can read the session ID and this assign the session to the client.

However, if the use of temporary cookies is not supported by the browser,
the session ID must be swapped between the server and the client in a
different way. Otherwise, it would not be possible to execute stateful BSP
applications. There is therefore a second possibility, with which the session
ID is included in the URL in encrypted form. To use this procedure, you
must start the BSP application using a URL that contains the query string
sap-syscmd=nocookie. In this case, the session ID is inserted in the cache
key - that is, the parenthetical expression in the URL.

06-10-2004 © 2004 SAP AG. All rights reserved. 87

Unit 2: Business Server Pages: Programming Model NET200

Techniques for Retaining Data in a Stateless BSP
Application
The program context of a stateless BSP application is not retained
on the SAP Web Application Server beyond a single HTTP request
/response cycle. To avoid repeated database reads (which adversely affect
performance), you can implement alternative techniques. The following
techniques are available:

� Hidden fields for invisible storage of data in a BSP
� Use of cookies (client and server-side).

A form can have hidden fields that are not displayed in the browser, but
are sent back to the HTTP server as part of the query string when the next
HTTP request is sent. This allows the HTTP server to hide information on
the HTML page. It then uses this information to identify the user when the
next request is sent.

<input type="hidden" name="counter" value="5">

Figure 37: Passing Hidden Fields

88 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

The disadvantages of this techniques are:

� The data hidden on the page is stored as a string, that is, not in a
defined data type.

� The values of the hidden fields must be elementary or character-type.
If the latter, all the fields must be character-type. In particular, you
cannot use nested structures or internal tables as values for HIDDEN
FIELDS. For example, you cannot use:

<input type="hidden"
name="Table"
value="<%= itab %>">

� The hidden information (such as state recognition) is part of the
HTML page. Thus, this information is sent to the server only if the
user triggers the next HTTP request using an element on the page
that contains the hidden fields. For example, if a user fills a basket
in an online store, then navigates to another page while the Web
application is being processed, and does not use the browser�s Back to
return to the online shop, the items added to the basket are not saved.

Cookies are a general technique that can be implemented by an HTTP
server to send and receive information. An HTTP server can send a cookie
that is saved by the HTTP client (Web browser). The cookie contains the
information to be saved and a description of valid URLs. At the next HTTP
client request to an HTTP server whose URL is in the cookie�s validity area,
the cookie is sent to the server along with the request.

Cookies are used in Web applications to store user-related information and
other data. The information in cookies makes it possible to address a user
personally each time he or she repeatedly accesses a page or to manage the
status of a shopping basket.

Another way of saving information for later in a stateless BSP is to buffer
it on the server (using a server-side cookie). For clarity, the cookies sent
from the HTTP server to the HTTP client are referred to as client-side
cookies in the following sections.

06-10-2004 © 2004 SAP AG. All rights reserved. 89

Unit 2: Business Server Pages: Programming Model NET200

Figure 38: Client-Side Cookies

Client-Side Cookies in a BSP Application

The Internet Communication Framework (ICF) provides methods using
the IF_HTTP_ENTITY interface for sending and receiving client-side
cookies. This interface is implement in the classes CL_HTTP_REQUEST
and CL_HTTP_RESPONSE (among others) from which the global objects
REQUEST and RESPONSE are derived. You use these methods to define
client-side cookies and to read cookies sent with the HTTP request.

You can control the lifetime of a client-side cookie. If you do not specify
a valid expiration date, the client-side cookie is retained in memory and
deleted when the browser is closed (temporary client-side cookie). If
you wish to store the cookie on the client beyond a browser session, you
must provide the cookie with a corresponding expiration date in the
SET_COOKIE method. The cookie is then stored on the client hard drive
(persistent client-side cookie). A cookie whose expiration date has passed
will not be sent to the server.

From the SAP Web Application Server, you can delete a client-side cookie.
To do so, you use the method DELETE_COOKIE_AT_CLIENT belonging to
the global object RESPONSE.

90 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 39: Setting a Temporary Client-Side Cookie: Example

Figure 40: Setting Persistent Client-Side Cookies

06-10-2004 © 2004 SAP AG. All rights reserved. 91

Unit 2: Business Server Pages: Programming Model NET200

Caution: You must set the expiry date in the format Day,
DD-Mon-YYYY HH:MM:SS GMT. For more information, refer to
the specifications for HTTP cookies.

Hint: In the BSP environment, temporary client-side cookies are
used as follows:

If a BSP application is executed statefully, the BSP runtime
environment automtically creats a temporary cookie with which
the session ID for this BSP applicaiton is exchanged. With this
information, the program context buffered on the applicaiton
server can be assigned to the client.

For statelessly and statefully executed BSP applications, the BSP
runtime environment automtically creates a temporary cookie with
which the system can identify whether a new browser session was
started at the client. Whenever the user closes the browser session
and starts a new one, the BSP runtime sends the cookie to the
client with new contents. From within the application, you can
ascertain the session ID of the browser session using the attribute
runtime->session_id.

Server-Side Cookies in a BSP Application

The CL_BSP_SERVER_SIDE_COOKIE class provides methods for working
with server-side cookies. Server-side cookies are a form of persistent data
- that is, they are stored in the database in the form of data clusters in
the buffered table SSCOOKIE. A single cookie can be a data object of any
complexity (such as a field, a structure, or a table).

Every server-side cookie can be identified by its name. You can also
identify a cookie using the name of the BSP application, the name of the
package containing the BSP, the session ID of the browser session (not to
be confused with the session on the application server), the user name, or a
combination of the above. The appropriate interface parameters must be
filled when the method is called. However, if interface parameters are not
necessary, they can be filled with dummy values.

92 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 41: Saving Server-Side Cookies

Figure 42: Reading Server-Side Cookies

06-10-2004 © 2004 SAP AG. All rights reserved. 93

Unit 2: Business Server Pages: Programming Model NET200

Server-side cookies offer the following advantages over client-side cookies:

� There is no limit to the number of cookies. (Web browsers can manage
a maxiumum of 300 cookies, and only 20 in each domain.)

� There is no limit to the quantity of data that can be sent. (Client-side
cookies can store a maximum of 4 KB of data.)

� Complex data can be stored according to type.

It is best to store sensitive data (such as customer data) as a server-side
cookie.

A commonly used technique is the combination of a client-side cookie and
a server-side cookie. In the server-side cookie, you store sensitive data (for
example, customer information data, contents of shopping baskets); in the
client-side cookie on the other hand, you store identification information
(such as the session ID of the browser session) so that the server can find
the appropriate server-side cookie again.

If you use a server-side cookie and do not repeatedly read the application
data from the database, this generally improves the performance of the
application (the table SSCOOKIE is buffered on the application server).
The application data is usually compiled from several database tables
through complex SELECT statements. However, if you store the read
data to the database in the form of a server-side cookie (data cluster), the
access is:

� Limited to the required data quantity
� Displayed in a simple, fully-specified access
� Buffered on the application server (single record buffering)

You can display the server-side cookies using the standard program
BSP_SHOW_SERVER_COOKIES. In addition, the standard program
BSP_CLEAN_UP_SERVER_COOKIES deletes the expired cookies.
However, cookies whose expiration date has passed are not deleted
automatically. Therefore, you should plan to execute the program
BSP_CLEAN_UP_SERVER_COOKIES regularly.

Hint: To check whether the expiration date has passed in the
standard program BSP_CLEAN_UP_SERVER_COOKIES, compare
the expiration date with the current system date. If you want to
compare the expiration time in hours and minutes, you must do so
in the logic of the BSP application. Unfortunately, this check is not
performed automatically by the method GET_SERVER_COOKIE.

94 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Figure 43: Global Objects and Session Handling

06-10-2004 © 2004 SAP AG. All rights reserved. 95

Unit 2: Business Server Pages: Programming Model NET200

96 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Exercise 4: Session Handling

Exercise Objectives
After completing this exercise, you will be able to:
� Use hidden fields
� Use server-side cookies

Business Example
The travel agency number that was processed up to now as a constant
(�00000110�) should now be transferred from the first page to the following
pages as a hidden name/value pair. In addition, the last-minute table
should be saved using a server-side cookie to reduce unnecessary database
accesses.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_03 or the BSP application NET200_S_03, giving it the name
ZNET200_##_04, where ## stands for your group number. Adhere to the
names given and always enter single-digit group numbers with a leading
zero, 0#. Sample solution for this exercise is NET200_S_04.

1. The first three BSPs (public/start.htm, public/flights.htm, and
public/details.htm) require the travel agency number when reading
database table entries. It is thus appropriate to define this value on
the first of the three pages and then pass it to the subsequent pages.
Because the BSP application is stateless, you should implement this
as a hidden (form) field.

On the BSPs public/start.htm and public/flights.htm, create the page
attribute travel_ag of the type STRING. Verify that the page attribute is
already defined in the BSP public/details.htm.

At the appropriate event, assign the value 00000110 to the page
attribute travel_ag on the BSP public/start.htm. Create a page
fragment. Give it the name hidden.htm, define a hidden form
field on it with the name travel_ag and assign it the value of the
identically-named page attribute. Insert this page fragment in the
pages public/start.htm and public/flights.htm. Replace the text literal
with the page attribute wherever it appears on the first three pages
where the travel agency number was previously hard-coded. Make
sure that the name/value pair travel_ag=00000110 is passed from

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 97

Unit 2: Business Server Pages: Programming Model NET200

the page public/start.htm to public/flights.htm when the user navigates
to it. Which of the page attributes defined in this exercise must be
of type AUTO?

2. The table of last-minute offers should not be filled by complex select
statements every time the application starts. Instead, save it as a
server-side cookie after it has been read for the first time. Do this so
that a separate server-side cookie is generated for each application.
This cookie is then used for the next 24 hours, independent of the
user or the session. After a complete day has passed, the current
last-minute offers must be reread from the database and the old
cookie replaced by a new one.

Use the static methods CL_BSP_SERVER_SIDE_COOKIE
=>get_server_cookie and CL_BSP_SERVER_SIDE_COOKIE
=>set_server_cookie.

Give the cookie a group-specific name (for example,
LAST_MINUTE_##). After the cookie has been read, check that it is
still valid.

Check whether the cookie has been set. To do this, use the
BSP_SHOW_SERVER_COOKIES program.

98 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Solution 4: Session Handling
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_03 or the BSP application NET200_S_03, giving it the name
ZNET200_##_04, where ## stands for your group number. Adhere to the
names given and always enter single-digit group numbers with a leading
zero, 0#. Sample solution for this exercise is NET200_S_04.

1. The first three BSPs (public/start.htm, public/flights.htm, and
public/details.htm) require the travel agency number when reading
database table entries. It is thus appropriate to define this value on
the first of the three pages and then pass it to the subsequent pages.
Because the BSP application is stateless, you should implement this
as a hidden (form) field.

On the BSPs public/start.htm and public/flights.htm, create the page
attribute travel_ag of the type STRING. Verify that the page attribute is
already defined in the BSP public/details.htm.

At the appropriate event, assign the value 00000110 to the page
attribute travel_ag on the BSP public/start.htm. Create a page
fragment. Give it the name hidden.htm, define a hidden form
field on it with the name travel_ag and assign it the value of the
identically-named page attribute. Insert this page fragment in the
pages public/start.htm and public/flights.htm. Replace the text literal
with the page attribute wherever it appears on the first three pages
where the travel agency number was previously hard-coded. Make
sure that the name/value pair travel_ag=00000110 is passed from
the page public/start.htm to public/flights.htm when the user navigates
to it. Which of the page attributes defined in this exercise must be
of type AUTO?

a)

BSP Attribute
name

Type Auto

public/start.htm travel_ag STRING
public/flights.htm travel_ag STRING X
public/details.htm travel_ag STRING X

hidden.htm - LAYOUT

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 99

Unit 2: Business Server Pages: Programming Model NET200

<%@page language="abap" %>

<input type="hidden"

name="travel_ag"

value="<%=travel_ag%>">

public/start.htm - OnInitialization

* Hidden Fields

travel_ag = ’00000110’.

...

* Data Retrieval for Last Minutes Offers

CALL METHOD application->get_last_minute_flights

EXPORTING

i_range = 21

i_max_rows = 5

i_travelagency = travel_ag

IMPORTING

e_flights = it_last_minute.

...

public/start.htm - OnInputProcessing

CASE event_id.

WHEN ’flights’.

* Setting attributes for the next page

* (Form fields entries)

navigation->set_parameter(name = ’travel_ag’).

...

* Navigation to the next page

navigation->goto_page(’FLIGHTS.HTM’).

ENDCASE.

Continued on next page

100 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

public/start.htm - LAYOUT

<!---- begin of form------ -->

<form>

<%@ include file = "hidden.htm" %>

...

</form>

<!---- end of form------ -->

public/flights.htm - OnInitialization

...

**.

* BAPI Call via Application class method

**

CALL METHOD application->get_flight_list

EXPORTING

travelagency = travel_ag

* AIRLINE =

destination_from = dest_from

destination_to = dest_to

* MAX_ROWS =

CHANGING

date_range = it_date

flight_connection_list = it_con_dat.

public/flights.htm - LAYOUT

...

<tbody>

<!-------------------------------------->

<!-- Scripting -->

<!------------------ ------------------>

<% data: wa_con_dat type BAPISCODAT.

loop at it_con_dat into wa_con_dat. %>

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 101

Unit 2: Business Server Pages: Programming Model NET200

<tr>

<td>

<!-- Travel agency number is now given -->

<!-- by the value of the page attribute -->

<!-- travel_ag -->

<!-- NO LINE BREAK IN HREF !!!!!!!!!!!! -->

<a href="Details.htm?

travel_ag=<%=travel_ag%>&

connid=<%=wa_con_dat-flightconn%>&

fldate=<%=wa_con_dat-flightdate%>">

<%= wa_con_dat-flightconn %>

</td>

...

</tr>

<% endloop. %>

</tbody>

...

public/details.htm - LAYOUT

<!---- begin of form------ -->

<form>

<%@ include file = "hidden.htm" %>

...

</form>

<!---- end of form------ -->

2. The table of last-minute offers should not be filled by complex select
statements every time the application starts. Instead, save it as a
server-side cookie after it has been read for the first time. Do this so
that a separate server-side cookie is generated for each application.
This cookie is then used for the next 24 hours, independent of the
user or the session. After a complete day has passed, the current
last-minute offers must be reread from the database and the old
cookie replaced by a new one.

Continued on next page

102 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Use the static methods CL_BSP_SERVER_SIDE_COOKIE
=>get_server_cookie and CL_BSP_SERVER_SIDE_COOKIE
=>set_server_cookie.

Give the cookie a group-specific name (for example,
LAST_MINUTE_##). After the cookie has been read, check that it is
still valid.

Check whether the cookie has been set. To do this, use the
BSP_SHOW_SERVER_COOKIES program.

a)

public/start.htm - OnInitialization

* event handler for data retrieval

* set number of travel agency to ’00000110’

travel_ag = ’00000110’.

**

* Check, whether last minute offers have allready

* been read and stored as server side cookie

**

DATA: dummy TYPE string VALUE ’NONE’,

exp_date TYPE d,

exp_time TYPE t.

CALL METHOD cl_bsp_server_side_cookie=>get_server_cookie

EXPORTING

name = ’NET200_COOKIE’

application_name = dummy

application_namespace = dummy

username = dummy

session_id = dummy

data_name = dummy

IMPORTING

expiry_date = exp_date

expiry_time = exp_time

CHANGING

data_value = it_last_minute.

**

* Check, if cookie has expired or if cookie has

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 103

Unit 2: Business Server Pages: Programming Model NET200

* not yet been created

**

IF exp_date < sy-datum OR

exp_date = sy-datum AND exp_time < sy-uzeit.

* Data Retrieval for Last Minutes Offers

CALL METHOD application->get_last_minute_flights

EXPORTING

i_range = 21

i_max_rows = 5

i_travelagency = travel_ag

IMPORTING

e_flights = it_last_minute.

* Create Cookie, to avoid complicated database

* operations

CALL METHOD cl_bsp_server_side_cookie

=>set_server_cookie

EXPORTING

name = ’NET200_COOKIE’

application_name = dummy

application_namespace = dummy

username = dummy

session_id = dummy

data_value = it_last_minute

data_name = dummy

* EXPIRY_TIME_ABS =

* EXPIRY_DATE_ABS =

* EXPIRY_TIME_REL =

expiry_date_rel = 1.

ENDIF.

104 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Session Handling

Lesson Summary

You should now be able to:
� List criteria for deciding to use stateful or stateless programming
� Implement techniques for retaining data in a stateless BSP application

06-10-2004 © 2004 SAP AG. All rights reserved. 105

Unit Summary NET200

Unit Summary
You should now be able to:
� Describe the components of a BSP application
� Create BSP applications
� Create Business Server Pages
� Edit the layout of a Business Server Page
� Describe the components that make up a BSP and the tasks that each

of them has
� Describe the event concept for BSPs with flow logic
� List the various options, and define and use the types and data objects

in BSPs with flow logic
� Enable users to enter information
� Define static navigation between BSPs
� Define dynamic navigation between BSPs
� Enable data transfer between BSPs
� React to errors in transmitted data
� Work with global objects
� List criteria for deciding to use stateful or stateless programming
� Implement techniques for retaining data in a stateless BSP application

106 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Test Your Knowledge

Test Your Knowledge

1. You design the HTML page in the layout.
Determine whether this statement is true or false.
□ True
□ False

2. You specify the chronological flow of a BSP using the processing
sequence of the event handlers.
Determine whether this statement is true or false.
□ True
□ False

3. You can add more events to a BSP by creating new events in the
application class.
Determine whether this statement is true or false.
□ True
□ False

4. The processing sequence of the event handlers can be influenced
using client-side scripting.
Determine whether this statement is true or false.
□ True
□ False

5. In a BSP, you can include links to other BSPs in the same application.
Determine whether this statement is true or false.
□ True
□ False

6. In a BSP, you can insert links to other BSPs in other applications.
Determine whether this statement is true or false.
□ True
□ False

06-10-2004 © 2004 SAP AG. All rights reserved. 107

Test Your Knowledge NET200

7. In the ACTION attribute of an HTML form (FORM tag), you can store
the names of several BSPs to be executed.
Determine whether this statement is true or false.
□ True
□ False

8. The OnInputProcessing event of a BSP is always processed.
Determine whether this statement is true or false.
□ True
□ False

9. The global object NAVIGATION is available for every event in a BSP.
Determine whether this statement is true or false.
□ True
□ False

108 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Test Your Knowledge

Answers

1. You design the HTML page in the layout.

Answer: True

In the BSP layout, you should store only the page�s appearance in
HTML, and the dynamic page elements in ABAP or JavaScript. In
particular, do not include any of the business logic in the layout.

2. You specify the chronological flow of a BSP using the processing
sequence of the event handlers.

Answer: True

The event handlers are executed in a predefined sequence.

3. You can add more events to a BSP by creating new events in the
application class.

Answer: False

You cannot define other events apart from the predefined events.

4. The processing sequence of the event handlers can be influenced
using client-side scripting.

Answer: False

The processing sequence of the event handlers is always fixed. All
you can do is influence whether the events OnCreate, OnDestroy, and
OnInputProcessing are to be executed.

5. In a BSP, you can include links to other BSPs in the same application.

Answer: True

All you need to do is to enter the name of the appropriate BSP in
the HREF attribute of a hyperlink or in the ACTION attribute of the
FORM tag.

06-10-2004 © 2004 SAP AG. All rights reserved. 109

Test Your Knowledge NET200

6. In a BSP, you can insert links to other BSPs in other applications.

Answer: True

However, you must specify the name of the BSP application in the
URL. You cannot simply supply the name of the BSP because the
system will search only in the current application.

7. In the ACTION attribute of an HTML form (FORM tag), you can store
the names of several BSPs to be executed.

Answer: False

You can store the name of only one BSP that is to be executed.

8. The OnInputProcessing event of a BSP is always processed.

Answer: False

The OnInputProcessing event will be processed if the name
OnInputProcessing appears in the query string. This event can be
initiated by the user clickng the Send button or clicking a link, or
implemented using JavaScript functions.

9. The global object NAVIGATION is available for every event in a BSP.

Answer: False

The global object NAVIGATION is only available for OnRequest,
OnInitialization, and OnInputProcessing events. You specify the next
page with the available methods, goto_page and next_page.

110 © 2004 SAP AG. All rights reserved. 06-10-2004

Unit 3
Layout and Language

Unit Overview
In this unit, you will learn how MIME objects are used in BSP applications.
In addition, you will learn how you can adjust the layout of a BSP
application by assigning a Theme and without making modifications.
Finally, you will learn how a BSP application can be presented to the
Internet user in more than one language.

Unit Objectives
After completing this unit, you will be able to:

� Import MIME objects into the MIME Repository
� Include MIME objects in BSP applications
� Adapt a BSP application without making modifications
� Enable translation of text literals in Business Server Pages

Unit Contents
Lesson: Including MIME Objects112

Procedure: How to Import and Include MIME Objects114
Exercise 5: Including MIME Objects117

Lesson: Adjusting the Layout .121
Exercise 6: Adjusting the Layout .. .125

Lesson: Internationalization129
Exercise 7: Internationalization .. .135

06-10-2004 © 2004 SAP AG. All rights reserved. 111

Unit 3: Layout and Language NET200

Lesson: Including MIME Objects

Lesson Overview
In this lesson you will be shown how MIME objects can be managed
in the SAP Web Application Server and used in the layout of Business
Server Pages.

Lesson Objectives
After completing this lesson, you will be able to:

� Import MIME objects into the MIME Repository
� Include MIME objects in BSP applications

Business Example
The layout of a BSP application for the Web is to be improved by adding
graphics.

The MIME Repository
TheMIME Repository serves as a storage repository for all MIMEs (style
sheets, graphics, icons) in the SAP system. MIMEs are created as objects in
the SAP database and can be referenced on pages of the BSP applications.
MIME objects use the SAP development infrastructure; in particular,
changes in the MIME Repository, such as importing new MIMEs, are
written to a transport request.

The MIME Repository is visible through a browser. Here all the MIME
objects are arranged hierarchically in directories in a tree diagram. When
you start the browser, it overlaps the entire left navigation area in the
Object Navigator. For each BSP application, a folder with the same name
is created automatically in the MIME Repository. The BSP application
folder is used as a storage area for all application-specific MIMEs. This
particular folder cannot be deleted explicitly and is therefore part of
the MIME Repository as long as the BSP application exists. However,
as soon as the BSP application is deleted, the respective folder with all
the MIMEs contained in it is deleted automatically as well. In addition
to application-specific MIMEs, cross-application MIMEs for each BSP
application are available in the Public folder.

When a BSP application is transported, the respective application folder in
the MIME Repository is not automatically transported as well. Both the
application folder and the MIME objects that are to be transported, and
possibly also its subdirectories, must be assigned explicitly to a transport

112 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Including MIME Objects

request. All the MIME Repository objects are assigned to one namespace.
If there are customer developments, the corresponding directories in the
customer namespace are accessed.

You can import any MIME objects you like into the SAP Web Application
Server. For a detailed list of the formats supported, refer to the online
documentation under the entry �Supported MIME Categories.� During
import, the MIME objects are stored in database tables (SMIM* tables).
To embed a MIME object in a Business Server Page, use the Drag&Drop
function to drag the URL from the MIME Repository into the page layout.
Then, all you need to do is enclose the URL within the appropriate HTML
tag (for example,).

Hint: The directory structure sap/<path>/<mime>
displayed in the MIME Repository represents a part of
the complete URL for the corresponding MIME object
http://<host>:<port>/sap/bc/bsp/sap/<path>/<mime>.

06-10-2004 © 2004 SAP AG. All rights reserved. 113

Unit 3: Layout and Language NET200

How to Import and Include MIME Objects

1. Switch to change mode in the page layout of the Business Server Page
into which the MIME object is to be included.

2. Start the MIME Repository and select the node with the name of your
BSP application.

3. In the context menu (right mouse-click), choose the menu path Import
-> MIME Objects. aus. The file manager of your computer is started
automatically and you can select the respective MIME object in the
file system.

4. Complete the MIME properties and save your entries. Because the
import into the SAP system occurs now, the dialog box for entering
the object catalog appears. Assign a package to the MIME object and
save your entries.

5. Drag the MIME object to the required position in the page layout. The
URL is copied to the source text.

6. Enclose the URL with the appropriate HTML tag:

7. Test the Business Server Page.

Caution: When you copy BSP applications, the folders, but not
their contents, are copied to the MIME Repository. To do this, the
objects need to be explicitly assigned to a transport request (right
mouse-click, then choose Additional Functions -> Write Transport
Request).

114 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Including MIME Objects

Figure 44: Including MIME Objects

The MIME Repository allows you to create new MIME objects also and
to assign them directly to a folder in the MIME Repository. To do this, go
to the context menu (right mouse-click) and choose the menu path Create
-> MIME Object. You can choose from the MIME types maintained in the
system (database table SDOKFEXT). To process the source code of the

06-10-2004 © 2004 SAP AG. All rights reserved. 115

Unit 3: Layout and Language NET200

MIME object, you can start the editor from the dialog box. To do this, you
must first define the editor by choosing the menu path Utilities -> Settings
-> Business Server Pages -> External HTML Editor.

Hint:

� You can convert MIME objects of the text category ("text/html",
"text/plain", and so on) into dynamic pages of your BSP
application (BSP with flow logic).

� You can create subdirectories for application folders to better
structure the storage, for example, if you have a large set of
MIME objects.

� MIME objects are not marked as relevant for translation in the
standard version. However, if you wish to allow translating
language-specific MIME objects, you only need to change
the appropriate indicator in the development system (right
mouse-click, then choose Properties -> Log.Doc.Properties)..

� If the relative URL to a MIME object is created using
Drag&Drop, the path specification refers to the target object
(Drop). However, if the target object is a page fragment,
which is in turn included in other BSPs using the INCLUDE
directive, the relative path specification may be incorrect. This
is always the case if the page fragment and the including BSP
are assigned to different directory levels.

116 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Including MIME Objects

Exercise 5: Including MIME Objects

Exercise Objectives
After completing this exercise, you will be able to:
� Include MIME Objects in BSP applications

Business Example
You wish to include graphics (MIME objects) in the page fragment
header.htm. In addition, the source code of the page fragment style.htm is
to be copied to a Cascading Style Sheet. Then the CSS is to be referenced in
the BSPs of your application instead of the page fragment.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_04 or the BSP application NET200_S_04, giving it the name
ZNET200_##_05, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_05.

1. You want to make the page header information more interesting
using graphics. To do this, you include images (MIME objects) in the
page fragment header.htm. You have two options:

1) Either you use MIME objects from the PUBLIC/NET200 node in the
MIME Repository (recommended) or

2) You export the MIME objects from the MIME Repository node
PUBLIC/NET200 and import them into the MIME node of your BSP
application.

2. Create a new MIME object of the type text/css (Cascading Style Sheet).
Give the MIME object the name styles.css and copy the source code
of the page fragment styles.htm. In the MIME Repository, assign
this object to your application. Delete the Include directive for
including the page fragment styles.htm in the layout of all BSPs of
your application. Instead, reference the respective MIME object from
the <head>...</head> part of the pages.

06-10-2004 © 2004 SAP AG. All rights reserved. 117

Unit 3: Layout and Language NET200

Solution 5: Including MIME Objects
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_04 or the BSP application NET200_S_04, giving it the name
ZNET200_##_05, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_05.

1. You want to make the page header information more interesting
using graphics. To do this, you include images (MIME objects) in the
page fragment header.htm. You have two options:

1) Either you use MIME objects from the PUBLIC/NET200 node in the
MIME Repository (recommended) or

2) You export the MIME objects from the MIME Repository node
PUBLIC/NET200 and import them into the MIME node of your BSP
application.

a) Regarding 1):

Start the Object Navigator (transaction SE80) and switch to
change mode of the page fragment header.htm. In the object tree,
choose the MIME Repository. Navigate to the node PUBLIC →
NET200. Drag the required MIME object into the layout of the
page fragment header.htm (Drag&Drop).

b) Regarding 2):

Start the Object Navigator (transaction SE80) and switch to
change mode of the page fragment header.htm. In the object
tree, choose the MIME Repository. Navigate to the node
PUBLIC→ NET200. Export a MIME object to your front end by
right-clicking the function Export. Switch to the MIME node of
your BSP application and import the MIME object. Drag the
required MIME object into the layout of the page fragment
header.htm.

c) To include MIME objects, implement the following source code:
<img src=″<PATH>″>

Hint: The path specification <PATH> generated using
Drag&Drop is a relative path specification. Since your
pages are located in subdirectories (public or protected),
this relative specification must be adjusted accordingly.

Continued on next page

118 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Including MIME Objects

2. Create a new MIME object of the type text/css (Cascading Style Sheet).
Give the MIME object the name styles.css and copy the source code
of the page fragment styles.htm. In the MIME Repository, assign
this object to your application. Delete the Include directive for
including the page fragment styles.htm in the layout of all BSPs of
your application. Instead, reference the respective MIME object from
the <head>...</head> part of the pages.

a) Navigate to the layout of the page fragment styles.htm. Copy the
entire source code into the clipboard (Ctrl + C). Make sure that
the notepad is used as a local HTML editor. To do this, navigate
to the respective dialog box using the menu path Utilities →
Settings→ Business Server Pages. Then enter Notepad in the field
provided. Now start the MIME Repository. Navigate to the
node of your application. Create a new MIME object by clicking
the right mouse key on the function Create → MIME Object .
As MIME type, choose text/css, and as object name styles.css.
Start the editor by pressing the corresponding pushbutton or F8.
Enter the contents of the clipboard (Ctrl + V). Save the file.

One after the other, open the layout of the BSPs of your
application and delete the Include directive for the page fragment
styles.htm. Instead, fill in the line <link rel=stylesheet
href="<PATH>"> in the section <head>...</head>.

06-10-2004 © 2004 SAP AG. All rights reserved. 119

Unit 3: Layout and Language NET200

Lesson Summary

You should now be able to:
� Import MIME objects into the MIME Repository
� Include MIME objects in BSP applications

120 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Adjusting the Layout

Lesson: Adjusting the Layout

Lesson Overview
In this lesson you will learn how to change the design of BSPs whose
layout is structured with classic HTML, not with BSP extensions, without
making modifications. For this purpose, this lesson also explains the use of
cascading style sheets (CSS) and themes.

Lesson Objectives
After completing this lesson, you will be able to:

� Adapt a BSP application without making modifications

Business Example
You have a BSP application whose layout you wish to adapt to the
respective requirements, without making modifications.

Cascading Style Sheets (CSS)
A company�s Web applications should all have a uniform appearance,
if possible. This means that style elements such as colors, script types,
and logos should always be implemented in the same way so that the
user can find his or her way through the respective pages and also always
recognize the product and its producer. Ensuring this uniform appearance
over several pages involves much effort if the formatting information is
maintained for each page or even for each tag. Therefore, it is common to
separate the layout from the Web page functions and to store the layout
data (such as the background color of a page) in a separate file. We call
these files Cascading Style Sheets, or CSS for short. You can link a CSS
with an HTML page using the LINK tag.

<LINK REL =STYLESHEET
HREF="http://www.myserver.com/mysheets.css">

Style definitions are cascading, which means they can be defined by
including a style sheet, but they can be overwritten with a new definition
in the case of certain page objects - either locally for a page or locally for a
tag. A hierarchy defines exactly which definition element determines the
final layout of a page object. To find out which language elements are
available in a CSS and how to use the style sheets appropriately, refer to
the respective special documentation.

06-10-2004 © 2004 SAP AG. All rights reserved. 121

Unit 3: Layout and Language NET200

Figure 45: Styles in HTML Pages

The Theme Concept
To be able to adapt the layout of a BSP application to your own
requirements, you use themes. Themes are independent Repository
objects that are maintained in the Repository Browser (SE80). They
represent a kind of replacement matrix. You use themes to specify for
which MIME object a new version is created. When the theme is used, not
the original version of the MIME object is used, but instead the version of
the object defined with the theme.

You can assign the theme to one or more BSP applications by Customizing.
In this way, the original design can be converted to the company-specific
design, without having to modify the BSP application. However, this
depends on whether the URLs to the MIME objects are correctly structured
in the layout of the BSPs:

Each MIME object is requested by the browser in a new HTTP request.
The URL to the MIME object must make clear which version of this object
is to be returned. Therefore, when the BSP application is started, the
BSP runtime environment changes the URL for the first BSP by adding a
parenthetical expression containing the logon language and the theme in
encrypted form. This parenthetical expression is called the cache key. It
comes after the first directory name in the URL (usually /sap(...)). The URL

122 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Adjusting the Layout

for the MIME objects to be included must now be structured in a way that
the cache key comes after the first directory node. The simplest way of
doing this is to use relative path specifications.

Hint: The same logon language and the same theme will always
result in the same cache key.

Figure 46: Theme Concept

After you have created the theme, the MIME objects, for which another
version is to be created, are assigned to the theme via Drag&Drop (from
the MIME Repository). Using the context menu for the MIME object
("Files" tab of the theme), you can then change the MIME object or import
a new version from the file system.

06-10-2004 © 2004 SAP AG. All rights reserved. 123

Unit 3: Layout and Language NET200

To have the browser display a MIME object in its most recent form after a
change has been made, you need to perform these steps:

� The browser must request the MIME object again when displaying
the corresponding HTML page (into which the MIME object is
incorporated). However, if the browser already displayed the MIME
earlier, the object is reloaded from the browser cache for renewed
display. To prevent this, the user needs to request the object again
(REFRESH). Alternatively, you can set up the browser so that it does
not use its cache.

� If the browser requests the object again, it sends its request to the
SAP Web Application Server. The SAP Web Application Server
also buffers objects that are stored in the MIME Repository and
have already been requested. Each object in the server cache has an
expiration date. Before this time period runs out, all the requests for
this object are loaded from the server cache. Therefore, changes to
an object that has already been buffered require that you remove
the object from the server cache. To do this, you can use transaction
SMICM. Choose the menu path Goto -> HTTP Server Cache -> Display
to display all buffered objects.

124 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Adjusting the Layout

Exercise 6: Adjusting the Layout

Exercise Objectives
After completing this exercise, you will be able to:
� Adapt the design of a BSP application to your needs by assigning a

theme

Business Example
The layout of your BSP application is to be adapted to the corporate design
and brand of the company.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_05 or the BSP application NET200_S_05, giving it the name
ZNET200_##_06, where ## stands for your group number. Adhere to the
names given and always enter single-digit group numbers that begin
with a leading zero as in 0#. The model solution for this exercise is
NET200_S_06.

1. The graphic used in the page header is to be replaced using the theme
concept. First create a theme for this and name it ZNET200_##.
Assign the graphic included in your page fragment header.htm to the
theme. In the MIME Repository, select an object from the existing
graphics that you want to appear in the page header from now on.
Export this graphic to the temporary file on your computer. Go back
to editing the theme. Overwrite the content of the graphic displayed
in the page header with the screen you exported in the last step. Save
the theme. Assign the theme to your application byCustomizing.

2. Change the content of the file style.css in the same way as described
in the first part of this exercise.

06-10-2004 © 2004 SAP AG. All rights reserved. 125

Unit 3: Layout and Language NET200

Solution 6: Adjusting the Layout
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_05 or the BSP application NET200_S_05, giving it the name
ZNET200_##_06, where ## stands for your group number. Adhere to the
names given and always enter single-digit group numbers that begin
with a leading zero as in 0#. The model solution for this exercise is
NET200_S_06.

1. The graphic used in the page header is to be replaced using the theme
concept. First create a theme for this and name it ZNET200_##.
Assign the graphic included in your page fragment header.htm to the
theme. In the MIME Repository, select an object from the existing
graphics that you want to appear in the page header from now on.
Export this graphic to the temporary file on your computer. Go back
to editing the theme. Overwrite the content of the graphic displayed
in the page header with the screen you exported in the last step. Save
the theme. Assign the theme to your application byCustomizing.

a) In the Object Navigator, open the Repository Browser. Navigate
to your package. Create the theme ZNET200_##. To do this,
choose Create -> Web Objects -> Theme from the context menu
(right mouse-click). Now start the MIME Repository in the
navigation area. Navigate to the node of the application that is
assigned to the graphic that has appeared until now in the page
header of your application. Drag the graphic to the object list
of your theme. Now look for another graphic in your MIME
Repository. Export the graphic to the file C:\temp on your front
end (right mouse-click Export/Import -> Export as copy). Now
focus on the node of your theme having the name of the graphic
to be replaced and import the new graphic (right mouse-click
Import). Save the theme. Assign the theme to your application.
To do this, use the correponding pushbutton (Shift + F8) that
appears in the application toolbar above the theme. Start your
BSP application.

Hint: If you wish to change the composite definition of
the graphic again, you must remove the graphic from the
server cache so that the changed version is reloaded.

Continued on next page

126 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Adjusting the Layout

2. Change the content of the file style.css in the same way as described
in the first part of this exercise.

a) Proceed as described in the first part of this exercise. Use the
notepad as an external editor to change the source code of the
CSS.

06-10-2004 © 2004 SAP AG. All rights reserved. 127

Unit 3: Layout and Language NET200

Lesson Summary

You should now be able to:
� Adapt a BSP application without making modifications

128 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

Lesson: Internationalization

Lesson Overview
In this lesson, you will learn how to manage multilanguage texts in
Business Server Pages.

Lesson Objectives
After completing this lesson, you will be able to:

� Enable translation of text literals in Business Server Pages

Business Example
A BSP application is to be provided in different languages.

Internationalization Using the Online Text Repository
(OTR)
The Online Text Repository (OTR) is a central storage area for texts and
provides services for processing these texts. The Online Text Repository
supports the entry and translation of texts and can be used for BSP
applications. OTR directives for entry and translation of text can be used
in the layout of a Business Server Page. Here a distinction is made between
alias texts and long texts.

Alias texts are reusable text literals with a length of less than 255 characters.
For identification purposes, an alias name is assigned to each text literal.
With this name, the text from BSP applications can be addressed through
the directive <%=OTR(AliasName)%>.

Long texts can be any length. Relevant text passages are enclosed by the
tags <OTR> ... </OTR> and can thus be translated.

The decision whether to create a text literal as an alias text or as a long text
is not based solely on the length of the text stored. A more important
distinguishing feature is the frequency of use of a text: If a text appears
only once in a BSP application of the package, this text is stored as a long
text in the OTR. However, if a text is used frequently, the text is stored
as a short text in the Online Text Repository under its alias name. With
this alias name, the text can be addressed and used again. The text needs
to be translated only once. When it is created, a OTR text that is not
assigned to a local or private package is included in a transportable change
request. This ensures that new or changed texts are also available in the
subsequent systems. The connection to the Change & Transport System
is thus guaranteed.

Creating Long Texts

06-10-2004 © 2004 SAP AG. All rights reserved. 129

Unit 3: Layout and Language NET200

You create a long text by entering the text between the opening and closing
OTR tags in the layout of the Business Server Page and by activating the
page. When you activate the page, the texts are passed to the Online Text
Repository.

Figure 47: Including OTR Long Texts

Creating Alias Texts

You can create and use alias texts in one of three ways:

1. In the layout, you can use the OTR directive with an alias name that
does not exist and then double-click the alias name. This takes you to
a screen where you can maintain the alias name, the maximum text
length, and the text. The alias name always starts with the name of
the package to which the alias text is assigned. If you have forgotten
the package name in the OTR directive, it will be added automatically.
To prevent redundancies in the Online Text Repository, when you
save the text, the system searches for similar alias texts that may be
in use already and displays these alias texts.

2. You can first create the alias text and then refer to it afterwards.
To do this, navigate out of BSP processing into the OTR browser
(through the menu Goto -> OTR Browser). All the alias texts that
already exist in the package (to which the currently processed BSP
belongs) are displayed. In addition, all the texts belonging to the
package SOTR_VOCABULARY_BASIC are displayed. This package
contains alias texts that can be used for all packages. The alias texts
are copied from the OTR browser using Drag&Drop.

3. You can create alias texts using the transaction SOTR_EDIT. First you
need to select the language (original language) in which you want to
create the alias text.

130 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

Alias texts that are stored in the OTR can be addressed not only in the
layout of the BSP, but also from the event handlers. Here you use the
method GET_OTR_TEXT belonging to the global object RUNTIME.

Figure 48: Creating Alias Text Using Forward Navigation

Hint: The Online Text Repository not only stores the texts, but also
manages a context for each OTR object. The person who created
the text, the other languages, and so on, are stored in the context.

Providing Multilanguage BSP Applications
To make a BSP application available in several languages, you should
specify all translation-relevant texts as OTR texts (alias or long texts). The
texts can be translated using transaction SE63.

When you start a BSP application, it is possible for the logon language to
be determined by the corresponding setting in the Web browser (Tools
-> General -> Languages) - as of SAP Web AS Release 6.20. The language
stored in the Web browser is transmitted at the time of the first request
in the HTTP header (accept language field in the header) to the SAP Web
Application Server. When the HTML pages are generated from the BSPs,
the language-dependent texts are inserted accordingly. This ensures that
the statically stored language preferences of the client are automatically
considered.

06-10-2004 © 2004 SAP AG. All rights reserved. 131

Unit 3: Layout and Language NET200

However, it is often desirable to be able to select a logon language for the
SAP Web Application Server that is different from the standard language
in the browser (for example, if this standard language is not provided
on the SAP Web Application Server). To allow the selection of another
language, the language must be communicated to the system when the
BSP application is started. There are several options for this:

1. For each logon language, you can create an alias for the service you
wish to start using transaction SICF. The logon language is stored as
an attribute of the alias. A URL is assigned to the individual aliases
according to their position in the SICF tree. Possible logon languages
are therefore represented by a selection of different services pointing
to a single BSP application. The selected language is passed to the
following page through a field in the HTTP header (accept language
field). In addition, the language is stored in the cache key in coded
form. The cache key is incorporated in the URL (string in brackets)
and serves to identify language and topic-dependent MIME objects in
the HTTP server cache. This URL, and therefore also the cache key, is
returned with the next request in the HTTP header to the server and
is automatically evaluated by the server.

Caution: When using an alias, you may have to adjust
the relative path specifications for the MIME objects to be
included, since they refer to the alias URL of the BSP. When
structuring the URL to the MIMEs, you must ensure that the
cache key is not lost, since it is used to identify the correct
(langauge and theme-specific) version of the MIME object.

If the Logon Data Required flag is set for the alias, the language stored
for the alias cannot be changed.

2. You can extend the URL for calling the first page of a BSP application
to include the query string SAP-LANGUAGE=<LANGUAGE>.
This setting is also passed to the next page in the case of stateless
applications. This parameter is evaluated only if the logon data for
this service is not marked as required.

3. If the logon language is not defined either by a query string, the alias
settings, or the language setting stored in the browser, the logon takes
place in the language assigned to the user (fixed values) or in the
default language of the system.

132 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

Figure 49: Selection of Logon Language (1)

Figure 50: Selection of Logon Language (2)

To offer the user a simple selection of possible languages, you can transmit
a start page before the actual BSP application. This page contains a
hyperlink for each language.

06-10-2004 © 2004 SAP AG. All rights reserved. 133

Unit 3: Layout and Language NET200

Figure 51: Depiction of Language Dependency

134 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

Exercise 7: Internationalization

Exercise Objectives
After completing this exercise, you will be able to:
� Make translation-relevant texts translatable in the layout of BSPs
� Translate long texts and alias texts
� Provide a selection for the language in which the pages of a BSP

application are to be displayed

Business Example
Your online flight-booking application is to be offered internationally. The
default language for starting the BSP application should be the language
stored in the browser. Using appropriate links on the start page, it should
be possible to start the application in other provided languages.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_06 or the BSP application NET200_S_06, giving it the name
ZNET200_##_07. ## stands for your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is: NET200_S_07.

1. On the first three pages of your application, identify all the
translation-relevant texts and replace these with alias texts or long
texts. Decide, on the basis of the frequency of a text, which type of
translation ability you want to choose. Use the tag browser to create
the OTR directive in the layout for alias texts. First make all the texts
on a BSP translatable.

After activating the page, copy the OTR directives for texts already
translated by dragging them from the OTR browser to the other BSPs.

2. Use transaction SE63 to translate the long text and alias texts you have
created into another language.

3. Insert hyperlinks on the start page to make it possible to start the BSP
application in the original language and in the language you selected
in the second part of the task. Use either a text or a graphic from the
MIME repository for the hyperlinks.

06-10-2004 © 2004 SAP AG. All rights reserved. 135

Unit 3: Layout and Language NET200

Solution 7: Internationalization
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_06 or the BSP application NET200_S_06, giving it the name
ZNET200_##_07. ## stands for your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is: NET200_S_07.

1. On the first three pages of your application, identify all the
translation-relevant texts and replace these with alias texts or long
texts. Decide, on the basis of the frequency of a text, which type of
translation ability you want to choose. Use the tag browser to create
the OTR directive in the layout for alias texts. First make all the texts
on a BSP translatable.

After activating the page, copy the OTR directives for texts already
translated by dragging them from the OTR browser to the other BSPs.

a) Open the initial page of your application in the Web Application
Builder. Set all the texts that are used on this page only between
OTR tags (<otr>...</otr>). For column headings, use alias
texts because they can also be used on the subsequent pages or
in other applications. To do this, replace the translation-relevant
texts with an OTR directive (<%=otr(znet200_##/...)>).
The directive can be created in the layout using the tag browser
(copy by dragging and dropping). After you double-click the
directive, a dialog box appears. Here you can enter the text
and the maximum length (relevant for translation). Save your
entries. Activate your BSP.

Proceed in the same way for the other two pages of your
application. If you wish to include an alias text that was already
created, copy this text from the Online Text Repository. To do
this, start the OTR browser using the menu path Goto -> Online
Text Repository Browser. You might need to refresh the browser to
display the alias texts that you just created.

Test your application. All texts will appear in your logon
language. However, if you start the application in a
different language (for example, by adding the query string
?sap-language=<lan>, where <lan> is the language
abbreviation of the logon language), no texts will appear.

Continued on next page

136 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

2. Use transaction SE63 to translate the long text and alias texts you have
created into another language.

a) Translation -> OTR -> Short Texts / Long Texts

3. Insert hyperlinks on the start page to make it possible to start the BSP
application in the original language and in the language you selected
in the second part of the task. Use either a text or a graphic from the
MIME repository for the hyperlinks.

a)

public/start.htm - Layout

...

<body>

<!-->

<!-- Page Fragment with the page header -->

<!-->

<%@include file="Header.htm" %>

<!-->

<!-- Last Minute Offers -->

<!-->

<table class=noborder>

<tr>

<td class=noborder>

<h3><otr>Last-Minute Angebote</otr></h3>

</td>

<td class=corner>

</td>

</tr>

</table>

...

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 137

Unit 3: Layout and Language NET200

style.css (Example)

body {background-color:rgb(204,204,255);

font-family :Arial}

table {border:solid;

border-collapse:collapse;

empty-cells:show;

width:100%}

thead {font:bold}

tr {border:solid}

td {border:solid;

border-width:1px;

padding:3px;

background-color:rgb(204,204,204)}

hr {height:5;

background-color:rgb(0,0,0)}

.noborder {border:none;

background-color:rgb(204,204,255)}

.corner {border:none;

background-color:rgb(204,204,255);

text-align:right;

vertical-align:top}

138 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Internationalization

Lesson Summary

You should now be able to:
� Enable translation of text literals in Business Server Pages

06-10-2004 © 2004 SAP AG. All rights reserved. 139

Unit Summary NET200

Unit Summary
You should now be able to:
� Import MIME objects into the MIME Repository
� Include MIME objects in BSP applications
� Adapt a BSP application without making modifications
� Enable translation of text literals in Business Server Pages

140 © 2004 SAP AG. All rights reserved. 06-10-2004

Unit 4
BSP Extensions

Unit Overview
The BSP programming model, which is based on server pages technology,
offers developers great freedom with regard to the HTML code they can
create, beginning with an empty page to complex applications. However,
the repeated creation of complex HTML code is a tedious process,
especially if your goal is to design a uniform layout for a larger application.

Here an abstraction technique allows you to simply express the syntax and
semantics of specific HTML code sections. This technology is known as
BSP extensions. A BSP extension contains a collection of BSP elements.
SAP provides an infrastructure that allows developers to include BSP
extensions in their BSP applications.

SAP delivers a range of predefined extensions (for example, HTML
Business for BSP (HTMLB)), which are available for use in any SAP Web
Application Server 6.20 system. You can also define your own extensions
to suit specific requirements. You can define your own extensions in the
BSP environment using an editor that is included in the development
environment (transaction SE80).

Furthermore, in the BSP environment, it is now also possible to develop
applications on the basis of a programming model known across
programming languages as the Model View Controller (MVC) concept.
It enables the separation of the interface, flow logic, and business logic -
that is, better modularization. Therefore, the development of reusable
components is supported.

Unit Objectives
After completing this unit, you will be able to:

� Use elements of the BSP extension HTMLB to design the layout of
Business Server Pages

� Process user input made using BSP elements
� Extract data from a query string
� Adapt the design of a BSP application based on the BSP extension

HTMLB

06-10-2004 © 2004 SAP AG. All rights reserved. 141

Unit 4: BSP Extensions NET200

� Render complex pages, consisting of several subpages, on the server
side

� Create a new BSP extension
� Create new BSP elements
� Describe the class hierarchy for a BSP element
� Encapsulate combinations of different existing BSP elements in a

new BSP element
� Describe the advantages of the MVC programming paradigm over

classic BSP programming
� Create and call controllers, views, and models

Unit Contents
Lesson: BSP Extensions: HTMLB.... .143

Exercise 8: BSP Extension HTMLB.... .157
Lesson: Composite Elements .. .182
Lesson: Model View Controller for BSPs192

142 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Lesson: BSP Extensions: HTMLB

Lesson Overview
In this lesson, you will learn how to use elements of the BSP extension
HTMLB to design the layout of Business Server Pages.

Lesson Objectives
After completing this lesson, you will be able to:

� Use elements of the BSP extension HTMLB to design the layout of
Business Server Pages

� Process user input made using BSP elements
� Extract data from a query string
� Adapt the design of a BSP application based on the BSP extension

HTMLB
� Render complex pages, consisting of several subpages, on the server

side

Business Example
BSP elements are used to design the layout of a Business Server Page.
For this purpose, SAP provides a range of libraries (HTMLB, XHTMLB,
PHTMLB) that contain elements for implementing various screen elements.
The classic HTMLB elements are stored in the in the HTMLB library. The
application developer must learn how to use all available BSP elements.

BSP Extensions and BSP Elements
A BSP extension is a collection of BSP elements. BSP extensions represent
an individual Repository object type. BSP elements are subobjects of this
type. In transaction SE80, you can use the Tag Browser to see an overview
of the existing BSP extensions. BSP elements appear as subobjects of the
individual BSP extensions and can be copied to the layout of a BSP by
dragging them to the layout. You can use the elements of several BSP
extensions on one BSP. For this purpose, the names of the relevant BSP
extensions are made known at the beginning of the layout of a BSP using
an appropriate directive.

06-10-2004 © 2004 SAP AG. All rights reserved. 143

Unit 4: BSP Extensions NET200

Figure 52: Layout Design Using BSP Elements

In the BSP context, each element is assigned an ABAP class to represent
the element function. If the BSP layout is now interpreted by the BSP
compiler, pseudo-code is generated and executed every time the BSP
element is called. In each case, one object of the corresponding ABAP
class is instantiated and its methods are executed in a fixed sequence.
Parameters that are listed in the BSP tag are assigned to appropriate
attributes of this object. The function of the element defines the HTML
output, which can also be browser-specific.

Using BSP elements offers the following advantages:

� BSP elements form an abstraction layer. This enables uniform page
layout for different HTTP client classes.

� The code included in the ABAP classes for the BSP elements must
be developed only once.

� The layout can be parsed and searched for syntax errors because it
was designed using BSP elements, not HTML elements, which satisfy
the XML standard.

� Achieving a uniform layout, especially for large Web applications,
is simplified because the generated code contains appropriate
references to style sheets.

144 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

The BSP Extension HTMLB
With the SAP Web Application Server Release 6.20, SAP provides many
BSP extensions that can be used to design the layout. The BSP extension
HTMLB contains a range of BSP elements that can be used to create typical
screen elements, such as input fields, send buttons, tables, and so on. The
BSP extension HTMLB is assigned to the package SBSPEXT_HTMLB. This
package also contains example Web applications for testing the individual
BSP elements and their numerous parameters.

To use the BSP elements for the layout of a BSP, you open the Tag Browser
in the navigation area of transaction SE80. The entry HTMLB is listed
under the transportable BSP extensions. When you click HTMLB, the
system displays a list of the BSP elements that are assigned to the BSP
extension HTMLB. You can see the attributes for any BSP element by
clicking it. Double-clicking an element opens the documentation for it in a
new window. You can copy an element by dragging it from the list to the
layout of a BSP. Similarly, you can also copy the parameters by dragging
them to the element tag.

There are certain dependencies you should consider when you use BSP
elements. For example, if you want to use the tag to generate an input
field, the field must be within a tag for generating a form. Every page has
an essential basic structure.

Figure 53: Basic Structure of a BSP Based on BSP Elements

06-10-2004 © 2004 SAP AG. All rights reserved. 145

Unit 4: BSP Extensions NET200

At runtime, the system creates the basic structure of an HTML page from
the BSP elements.

<%@extension name="htmlb" prefix="net200" %>
This directive enables you to use elements of the BSP extension
HTMLB in the corresponding layout. You can choose any prefix you
wish and, for identification purposes, it must precede the element
name for all elements of this extension (the reason for this is that you
can work with several BSP extensions simultaneously and these may
contain elements with identical names).

<net200:content ... design="...">...</net200:content>
The topmost element in the hierarchy. The design parameter
defines which style sheets are referenced. Permitted values are
CLASSIC, DESIGN2002, and DESIGN2003 (as of SAP Web AS 6.20,
SAP_BASIS/SAP_ABA SP34).

<net200:document>...</net200:document>
Is converted to the tag pair <html> ... </html>.

<net200:documentHead ...>...</net200:documentHead>
Generates the header of the HTML page. You can insert additional
HTML code (for example, JavaScript functions, style definitions).

<net200:documentBody ...>...</net200:documentBody>
Creates the HTML body.

Hint: Instead of the elements <document>, <documentHead>,
and<documentBody>, you can also use the element <page>. You
can then insert additional code into the HTML header using the
<headInclude> element.

When using <documentHead>, you can insert additional code
directly between the opening and closing tags. After generating
the page, the relevant source code segment appears before
the automatically generated source code of the HTML header.
If you want to swap the order, you can also use the element
<headInclude> here.

The HTML body is constructed using the other elements. The elements of
the BSP extension HTMLB can be split into three groups:

The first group of elements is converted to HTML source code at runtime.
This code prevents the user from filling in any fields or sending HTTP
requests (triggering server-side events). User actions are restricted to the
triggering of user-defined JavaScript functions. One example of an element
of this group is a simple text (<textView>).

146 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

The second group of elements allows you to trigger HTTP requests. The
requests are usually handled by the event handler OnInputProcessing for
that same page. A framework is provided that enables you to extract the
attributes that are related to these elements.

Example: By pressing a send button that is created using the HTMLB
element <button .../>, you can trigger an HTTP request. An HTML
table created using the element <tableView ...> even provides several
different ways of creating an HTTP request (for example, by selecting
a row, clicking on a column header, or scrolling through the rows or
columns of the dataset).

An HTTP request is created when the user clicks on the corresponding
element. This action is caught using JavaScript, a corresponding query
string is created, and the request is �fired�. The mouse click is also
referred to as an event. We differentiate between server events, which are
predefined by the implementation of the element and usually lead to an
HTTP request to the same page, and client events, for which the user
defines the JavaScript function to be executed.

If an element supports the triggering of server events, this means that
information connected to the event is automatically passed with the query
string. For example, if the user selects a row in an HTML table, created
using the element <tableView ...>, and thus triggers a server event,
the row numbers of the selected rows are automatically passed to the
server. Accessing these attributes from within the source code is supported
by a corresponding framework (event handling).

The third group of elements allows the user to enter data. With the next
HTTP request, this data is sent back to the server in the query string. You
can usually use auto page attributes to extract the information. However,
the data extraction can also be object-oriented (in some cases, it must be).
This usually occurs at the time of OnInputProcessing (data extraction).

Example: You can use the <textEdit ...> element to create an area for
inputting several lines of text. If the entered text is to be sent back to the
server, this is usually done after a Send button is clicked.

Hint: Some elements can trigger events and receive user input.

Example: In the case of a checkbox, the developer can decide
whether checking the checkbox triggers an event or the information
is only sent to the server after a send button has been pressed.

The following lists all the elements that do not permit interaction and
hence belong to the first of the above groups:

06-10-2004 © 2004 SAP AG. All rights reserved. 147

Unit 4: BSP Extensions NET200

HTMLB Elements that Neither Trigger Server Events nor Permit User
Input
HTMLB element Dependent elements
content document

page
document documentHead

documentBody
page headInclude

form
All other elements for the HTML body.

documentHead headInclude
documentBody form

All other elements for the HTML body.
form All other elements for the HTML body.

chart
gridLayout gridLayoutCell
group groupHeader

groupBody
itemList listItem
label
textView

Event Handling
There are two ways of analyzing the incoming events:

� The source code for the event handling is stored directly in the event
handler OnInputProcessing

� The request data is passed to a specially created event handler class
and handled there.

The following takes a closer look at the first technique.

148 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Figure 54: Event Handling: OnInputProcessing (1)

If the HTMLB element can trigger server events itself, the field event_id is
filled with the value htmlb. Therefore, the event handling usually starts
with the system checking whether the event_id field has this value. If
the field does have the value, the system next ascertains which element
or user action triggered the event. For this, all attributes connected with
the HTMLB element creating the event must be extracted from the query
string. Different attributes are returned for each attribute, but there are
four attributes that all elements have. These are:

server_event
Value assigned to the parameter responsible for triggering server
events (for example, onClick=my_click).

id
Value assigned to the id parameter of the HTMLB element (for
example, id=net200_button).

name
Type of HTMLB element that triggered the event (for example,
button).

event_type
Type of server event (for example, Click).

06-10-2004 © 2004 SAP AG. All rights reserved. 149

Unit 4: BSP Extensions NET200

The server_event attribute can, for example, be used to group objects
that are to be linked with the same subsequent action (send buttons or
hyperlinks that are in different positions on the page but are to have the
same result).

To be able to read the element-specific attributes, an object of the
corresponding handler class is then instantiated. Such a class exists for
every HTMLB element that can trigger server events and returns special
attributes. This class enables access to the special attributes.

From a technical point of view, the BSP runtime environment returns the
address of a handler object on your request. This handler object generally
enables access to all attributes of the element creating the event. The
reference variable (to which the address is assigned) must merely be typed
according to the correct handler class, but this information is usually
not known until runtime. However, there is one common superclass for
all handler classes. If the reference variable is typed according to this
superclass, no error can occur when assigning the address to the handler
object. Using the superclass, you can analyze the four common attributes
and, based on this, create a further reference variable with the type of the
correct handler class. The address of the generic reference variable is then
assigned to the correctly typed reference variable (Widening Cast).

Figure 55: Event Handling: OnInputProcessing (2)

150 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

The following table provides an overview of all HTMLB elements that
support the triggering of server events. The name of each HTMLB element
is identical to the generic attribute name. The second column contains
the server events that can be triggered (the name of the parameter of the
HTMLB element and the value of the event_type attribute, which it sets).
Finally, the third column contains the names of the corresponding handler
classes, which enable you to access the element-specific attributes.

HTMLB elements that support the triggering of server events
HTMLB element

/ name
Parameter ->event_type event_handler

CL_HTMLB_EVENT_..
breadCrumb onClick -> click BREADCRUMB
breadCrumbItem - -
button onClick -> click BUTTON
checkBoxGroup - -
checkbox onClick -> click CHECKBOX
dateNavigator onDayClick -> dayClick DATENAVIGATOR

onMonthClick ->
monthClick
onWeekClick ->
weekClick
onNavigate -> previous /
next

days - -
week - -
month - -
dropdownListBox onSelect -> select SELECTION
image onClick -> click -
link onClick -> click LINK
radioButtonGroup - -
radioButton onClick -> click RADIOBUTTON
tabStrip - -
tabStripItem onSelect -> select TABSTRIP
tabStripHeader - -
tabStripBody - -
tableView onFilter -> filter TABLEVIEW

06-10-2004 © 2004 SAP AG. All rights reserved. 151

Unit 4: BSP Extensions NET200

HTMLB element
/ name

Parameter ->event_type event_handler
CL_HTMLB_EVENT_..

onHeaderClick ->
headerClick
onNavigate -> navigate
onRowSelection ->
rowSelection

tableViewColumns - -
tableViewColumn onCellClick -> cellClick TABLEVIEW

onItemClick -> itemClick
tray onCollapse -> collapse TRAY

onEdit -> edit
onExpand -> expand
onRemove -> remove

trayBody - -
tree onTreeClick -> click TREE
treeNode onNodeClick -> click TREE

Data Extraction
If the user can make entries using the HTMLB element, this raises the
question of how the data can be transferred from the query string to page
attributes of the BSP. In most cases, an auto page attribute can be used,
whose name matches the ID of the relevant HTMLB element. However,
this is not possible in some cases. Example: Information sent by the user to
the server using the fileUpload element (application data, size of object,
file type).

Therefore, a concept exists for all elements the user can use to make entries
that enables the extraction of the relevant data from the query string.

Similarly to event handling, the user can request the address of an object
from the BSP runtime, which generally enables access to all data in the
query string. The restriction to data of a specific form field is achieved by
passing the type and ID of the element with the relevant method call using
the interface. The returned address is assigned to a reference variable
that must be correctly typed (to suit the HTMLB element whose data is
to be extracted).

Example: Using a fileUpload element, the user can select a file to be loaded
to the server with the next HTTP request. However, this element does not
support the triggering of server events. Therefore, the form is sent using

152 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

an HTMLB button. The static method GET_DATA of the HTMLB Manager
is used to extract the data of the fileUpload. The address is assigned to a
reference variable of the type CL_HTMLB_FILEUPLOAD. This reference
variable can then be used to access all the attributes of this object.

Figure 56: Data Extraction: OnInputProcessing

HTMLB elements for which data extraction is supported
HTMLB element

/ name
Element class
(CL_HTMLB_..)

Extractable attributes
/ also using auto page

attribute
checkBox CHECKBOX checked / X
dropdownListBox DROPDOWNLIST-

BOX
selection / X

fileUpload FILEUPLOAD file_name /
file_content /
file_length /
file_content_type /

inputField INPUTFIELD value / X
listBox LISTBOX selections / +

06-10-2004 © 2004 SAP AG. All rights reserved. 153

Unit 4: BSP Extensions NET200

HTMLB element
/ name

Element class
(CL_HTMLB_..)

Extractable attributes
/ also using auto page

attribute
radioButtonGroup RADIOBUTTON-

GROUP
selection / X

tabStrip TABSTRIP selection / X
textEdit TEXTEDIT text / X
tray TRAY iscollapsed /

+ If only one entry is selected from the list box, it can also be extracted using an auto page attribute. If several

entries are selected, the data extraction concept is required.

If the data extraction is executed as described above, you do not need
automatic page attributes. Instead, the data is read directly from the HTTP
request.

Adjusting the Design
The theme concept is not used for adjusting the design in the HTMLB
environment. Instead, the path specification for the included style sheets
is influenced by specifying the parameter themeRoot of the content tag.
Proceed as follows:

1. For each desing design_1 ... design_n, you must first copy the original
SAP style sheets and the graphics and icons referenced in them in the
MIME Repository.

To do this, you must first create a directory designs in the MIME
Repository as a subfolder of the node of any BSP application
bsp_app. Then define a further subnode for each design (design_1
... design_n).
The original objects are in the folders sap/public/bc/htmlb
and sap/public/bc/xhtmlb. Copy these two directories with
all their contents (subdirectories and MIME objects) to the
target node created in the last step (bsp_app/design/design_1 ...
bsp_app/design/design_n).

2. To reference the copied style sheets, extend the parameter themeRoot
of the content tag in the layout of the BSP as follows (here for the
design design_1):

<htmlb:content design = "design2002"
themeRoot = "/sap/bc/bsp/sap/bsp_app/

designs/design_1">

154 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Specifying the design parameter affects which of the style sheets
stored in the node /sap/bc/bsp/sap/bsp_app/designs/design_1 is
referenced. The tag processing is also influenced: Depending on the
value of the design parameter, different class references are generated
in the resulting HTML source code.

3. Finally, the copied style sheets, images, and icons in the new designs
must be adjusted. To do this, you must first ascertain the names of the
style sheets in the HTML source code and then navigate to them in
the MIME Repository. Using the right mouse button, you can open
and edit the CSS.

In the HTML source code, you must now determine the names of the
classes that are responsible for the design of specific HTML elements.
The classes are defined in one of the opened CSS. After adjusting
the relevant style sheet attributes and saving the CSS in the MIME
Repository, you can check the changes by restarting the application
(in the stateless case, refreshing the page is suffient). To do this, you
must remove any buffered versions of the edited objects from the
client cache and the server cache.

Demos, Documentation, and Notes
More information on the topics covered in this lesson is available from
the following sources:

The Web Application Builder (SE80 -> Tag Browser -> BSP
Extensions -> Transportable) features extensive documentation on the
BSP extensions HTMLB, XHTMLB, and PHTMLB. XHTMLB and
PHTMLB are extensions that provide further useful elements for
structuring Web pages.
The online documentation contains detailed documentation on the
SAP Web Application Server and BSP applications. This is accessed
in the SAP Help Portal as follows: http://help.sap.com -> SAP
NetWeaver -> Release �04 -> SAP NetWeaver -> Application Platform
-> ABAP Technology -> UI Technology -> WEB UI Technology ->
Business Server Pages
As of Release 6.20, the SAP Web AS features the BSP applications
HTMLB_SAMPLES (HTMLB), SBSPEXT_XHTMLB (XHTMLB),
and SBSPEXT_PHTMLB (PHTMLB). These allow you to edit the
parameters of the individual BSP elements and directly test the effect
on element generation.
In the Software Developer Network (SDN), there is a discussion
forum for current BSP topics. Individual questions are partly dealt
with by the BSP development team. The forum is accessed via:
http://sdn.sap.com -> menu entry Forums -> Forums -> SDN Forums
-> Web Application Server -> Business Server Pages.

06-10-2004 © 2004 SAP AG. All rights reserved. 155

http://help.sap.com
http://sdn.sap.com

Unit 4: BSP Extensions NET200

In the OSS, you can create problem messages and find notes under
the area BC-BSP.

156 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Exercise 8: BSP Extension HTMLB

Exercise Objectives
After completing this exercise, you will be able to:
� Use the BSP extension HTMLB to define the layout of BSPs

Business Example
In a number of steps, you will define the layout of individual pages of a
BSP application using elements of the BSP extension HTMLB.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_07 or the BSP application NET200_S_07, giving it the name
ZNET200_##_13, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers that begin with a
leading zero as in 0#. Model solutions for this exercise: NET200_S_08
(exercise 1) ... NET200_S_13 (exercise 6 with optional parts).

1. Create the first page of your BSP application using elements of the
BSP extension HTMLB. Proceed as follows:

Copy the start page public/start.htm to the page public/start_htmlb.htm.
The following specifications refer to the newly created page. Delete
the layout. First, define the frame of the page using the elements
content, document, documentHead, and documentBody. Choose
DESIGN2002 as the design for the page. Copy the title from the
<head>...</head> section of the page public/start.htm. Activate
and test the new page.

Hint: To be translatable, texts must be created as alias texts.
OTR long texts cannot be used with BSP extensions.

2. Output elements:

Convert the pure output elements using HTMLB elements. Start
with the page header. Copy the page header.htm to the page
header_htmlb.htm. Delete the layout on the target page. Create the
layout (graphic with adjacent text) using the elements image and
textView. A horizontal line or rule across the page should appear
below these elements. To align the graphic, the text, and the line,
you can use the elements gridLayout and gridLayoutCell. Activate the
new page header.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 157

Unit 4: BSP Extensions NET200

Now include the page header in the page public/start_htmlb.htm. Use
HTMLB elements to include the following HTML elements on the
start page: The text �Last Minute Flights:� and links to the same page
in different languages should appear below the page header. Refer to
the model solutionNET200_S_09. Use the HTMLB elements textView,
link, and (if the links are to appear as images) image to design the
layout of the page. To align the elements, you can use the elements
gridLayout and gridLayoutCell.

Hint: If an image is to be used as a hyperlink, you cannot use
the text attribute of the link element. The HTMLB element
image must be within the opening and closing tags of the
HTMLB element link.

3. Form:

On the page public/start_htmlb.htm, define a form with input fields for
the departure city (depa) and destination city (dest). Define two more
input fields for a date interval (date_low and date_high). Define a date
interval for these fields. Limit the length of the date fields to that
required for entering a date. Include an input help option for the date
fields that allows the user to select dates from a calendar. All fields
should be preceded by language-specific field labels.

Include the hidden field travel_ag, which is inserted using a page
fragment, using HTMLB elements. Copy the page fragment
hidden.htm to the page fragment hidden_htmlb.htm. Delete the layout
of the new page. Define a hidden form field for the attribute travel_ag
using the BSP extension HTMLB. Now activate the page fragment
and include it in the form of the page public/start_htmlb.htm.

Hint: Use the HTMLB elements form, label, and inputField to
align the elements gridLayout and gridLayoutCell.

Hint: Do not define a Send button here.

4. Event handling:

Define a button in the form of the page public/start_htmlb.htm. Make
the button text translatable. Pushing the button is to trigger the server
event click.

Navigate to the event handler OnInputProcessing. Find out which
action is responsible for the execution of the event handler. To do so,
examine the contents of the event_id field. If the field value shows

Continued on next page

158 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

that an HTMLB element triggered the event, find out what type of
element it was. It is not necessary to examine the attributes connected
with the event, because only one button exists on the page. If you are
certain that the button on the form triggered the processing of the
event handler, navigate to the subsequent page. The name of the next
page is public/flights_htmlb.htm. Pass on the departure city, destination
city, and the date interval in the HTTP redirect. For this purpose,
adapt the methods navigation->set_parameter for the date information.

Copy the page public/flights.htm to the page public/flights_htmlb.htm.
Adapt the page attributes to receive the date information. Navigate
to the event handler OnInitialization. Previously, the function
module FIT_IN_BAPI_FLCONN_GETLIST was used here for format
conversion. Since the data is now no longer split into day, month, and
year, but is a value instead, the format conversion must be adapted.
Use the function module FIT_IN_BAPI_FLCONN_GETLIST2 for this.
Finally, ensure that the BSP public/start_htmlb.htm reappears if the
user presses the send button to navigate back.

5. Tables:

Now create the table of last-minute flights on the page
public/start_htmlb.htm using the BSP extension HTMLB. Display all
columns and set the width of the table to 100% of the page width.
Hide the footer with the scroll buttons.

Hint: Use the HTMLB element tableView.

If you have the time, use HTMLB elements to also create the table in
the layout of the BSP public/flights_htmlb.htm. For this purpose you
must convert the entire layout of the page to HTMLB elements. Set
the table width to 100% of the page width. Restrict the number of
simultaneously displayed table rows to 10 and make it possible for
the user to scroll through the rows. Only display the columns that
were previously displayed. Make it possible for the user to sort the
table by flight date, departure city, and destination city.

Hint: Use the HTMLB elements tableView, tableViewColumns,
and tableViewColumn.

Hint: To allow the user to sort the table, you must, amongst
other things, enable the triggering of the server event
headerClick.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 159

Unit 4: BSP Extensions NET200

To ensure that you can still use the connection number to navigate to
the next page, you must add a column to the corresponding internal
table. This column must contain the relevant URL for navigating to
the next page. Proceed as follows:

Create an additional table type that contains all the previous columns
(line type BAPISCODAT) and another column of the type STRING for
the URL. The name of this additional column is URL.

Hint: To copy the fields of a row type t_wa2 in a row type
t_wa1, use the following statements:

TYPES: BEGIN OF t_wa1,

... .

INCLUDE TYPE t_wa2.

TYPES:

END OF t_wa1.

Create an additional page attribute for this extended table type.
Navigate to the event handlerOnInitialization. Extend the source code:
The flight connection data, which was read using the application
class GET_FLIGHT_LIST, must be transferred to the extended
internal table. In the URL column, store the character string that
was previously defined as the target for the link in the layout of the
public/flights.htm page. Construct the corresponding query string
using the ABAP statement CONCATENATE.

Navigate to the page layout. Set the type of the column FLIGHTCONN
to the value LINK and assign the name of the column that contains
the URL (URL) to the attribute linkColumnKey.

To eventually return to the start page by pressing the send button, you
must adjust the source code in the event handler OnInputProcessing
accordingly. To do this, refer to the last part of the exercise.

6. If you have the time to, create another layout.

Using elements of the BSP extension HTMLB, also create the layout
of the details page. Copy the page public/details.htm to the page
public/details_htmlb.htm. Delete the layout on the new page and create
the layout using the BSP extension HTMLB. You must also adapt
the source code of the event handler OnInputProcessing. Ensure that
the links on the page public/flights_htmlb.htm now take you to the
page public/details_htmlb.htm. Refer to the relevant page in the model
solution NET200_S_13.

160 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Solution 8: BSP Extension HTMLB
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_07 or the BSP application NET200_S_07, giving it the name
ZNET200_##_13, where ## is your group number. Adhere to the names
given and always enter single-digit group numbers that begin with a
leading zero as in 0#. Model solutions for this exercise: NET200_S_08
(exercise 1) ... NET200_S_13 (exercise 6 with optional parts).

1. Create the first page of your BSP application using elements of the
BSP extension HTMLB. Proceed as follows:

Copy the start page public/start.htm to the page public/start_htmlb.htm.
The following specifications refer to the newly created page. Delete
the layout. First, define the frame of the page using the elements
content, document, documentHead, and documentBody. Choose

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 161

Unit 4: BSP Extensions NET200

DESIGN2002 as the design for the page. Copy the title from the
<head>...</head> section of the page public/start.htm. Activate
and test the new page.

Hint: To be translatable, texts must be created as alias texts.
OTR long texts cannot be used with BSP extensions.

a) The BSP elements and their attributes are copied from the Tag
Browser using Drag&Drop. The attribute values are added
manually. If you double-click a BSP element, a dialog box
appears that describes the element and the attributes. The model
solution for this section is NET200_S_08.

public/start_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="DESIGN2002" >

<htmlb:document>

<htmlb:documentHead title="<%=otr(NET200/HEADERTEXT)%>" >

</htmlb:documentHead>

<htmlb:documentBody>

</htmlb:documentBody>

</htmlb:document>

</htmlb:content>

2. Output elements:

Convert the pure output elements using HTMLB elements. Start
with the page header. Copy the page header.htm to the page
header_htmlb.htm. Delete the layout on the target page. Create the
layout (graphic with adjacent text) using the elements image and
textView. A horizontal line or rule across the page should appear
below these elements. To align the graphic, the text, and the line,
you can use the elements gridLayout and gridLayoutCell. Activate the
new page header.

Now include the page header in the page public/start_htmlb.htm. Use
HTMLB elements to include the following HTML elements on the
start page: The text �Last Minute Flights:� and links to the same page
in different languages should appear below the page header. Refer to
the model solutionNET200_S_09. Use the HTMLB elements textView,

Continued on next page

162 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

link, and (if the links are to appear as images) image to design the
layout of the page. To align the elements, you can use the elements
gridLayout and gridLayoutCell.

Hint: If an image is to be used as a hyperlink, you cannot use
the text attribute of the link element. The HTMLB element
image must be within the opening and closing tags of the
HTMLB element link.

a) The BSP elements and their attributes are copied from the Tag
Browser using Drag&Drop. The attribute values are added
manually. If you double-click a BSP element, a dialog box
appears that describes the element and the attributes. The model
solution for this section is NET200_S_09.

header_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

<%-- Alignment of elements --%>

<htmlb:gridLayout columnSize = "2"

rowSize = "2"

cellSpacing = "10"

width = "100%"

style = "TRANSPARENT" >

<%-- Cell 1 in Row 1 --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "1" >

<%-- Display image --%>

<htmlb:image src="../../PUBLIC/NET200/Reisen01.jpg" />

</htmlb:gridLayoutCell>

<%-- Cell 2 in Row 1 --%>

<htmlb:gridLayoutCell columnIndex = "2"

rowIndex = "1"

verticalAlignment = "MIDDLE" >

<%-- Display text --%>

<htmlb:textView text = "<%= otr(net200/headertext) %>"

layout = "native"

design = "header1" />

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 163

Unit 4: BSP Extensions NET200

</htmlb:gridLayoutCell>

<%-- Horizontal ruler in Row 2 --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "2"

colSpan = "2" >

<hr>

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

public/start_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

...

<%-- Begin of BODY section --%>

<htmlb:documentBody>

<%-- Include header file --%>

<%@include file="header_htmlb.htm" %>

<%-- Element alignment --%>

<htmlb:gridLayout columnSize = "4"

rowSize = "1"

width = "100%"

cellSpacing = "10" >

<%-- Element 1 in row --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "1" >

<htmlb:textView text = "<%= otr(NET200/LASTMINUTE) %>"

design = "header2" />

</htmlb:gridLayoutCell>

<%-- Element 2 in row --%>

<htmlb:gridLayoutCell columnIndex = "2"

rowIndex = "1"

horizontalAlignment = "RIGHT"

width = "35" >

<htmlb:link id = "link1"

Continued on next page

164 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

reference = "?sap-language=en" >

<htmlb:image src="../../public/net200/gb.gif" />

</htmlb:link>

</htmlb:gridLayoutCell>

<%-- Element 3 in row --%>

<htmlb:gridLayoutCell columnIndex = "3"

rowIndex = "1"

horizontalAlignment = "RIGHT"

width = "35" >

<htmlb:link id = "link1"

reference = "?sap-language=fr" >

<htmlb:image src="../../public/net200/fr.gif" />

</htmlb:link>

</htmlb:gridLayoutCell>

<%-- Element 4 in row --%>

<htmlb:gridLayoutCell columnIndex = "4"

rowIndex = "1"

horizontalAlignment = "RIGHT"

width = "35" >

<htmlb:link id = "link1"

reference = "?sap-language=de" >

<htmlb:image src="../../public/net200/de.gif" />

</htmlb:link>

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:documentBody>

...

3. Form:

On the page public/start_htmlb.htm, define a form with input fields for
the departure city (depa) and destination city (dest). Define two more
input fields for a date interval (date_low and date_high). Define a date
interval for these fields. Limit the length of the date fields to that
required for entering a date. Include an input help option for the date
fields that allows the user to select dates from a calendar. All fields
should be preceded by language-specific field labels.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 165

Unit 4: BSP Extensions NET200

Include the hidden field travel_ag, which is inserted using a page
fragment, using HTMLB elements. Copy the page fragment
hidden.htm to the page fragment hidden_htmlb.htm. Delete the layout
of the new page. Define a hidden form field for the attribute travel_ag
using the BSP extension HTMLB. Now activate the page fragment
and include it in the form of the page public/start_htmlb.htm.

Hint: Use the HTMLB elements form, label, and inputField to
align the elements gridLayout and gridLayoutCell.

Hint: Do not define a Send button here.

a) The BSP elements and their attributes are copied from the Tag
Browser using Drag&Drop. The attribute values are added
manually. If you double-click a BSP element, a dialog box
appears that describes the element and the attributes. Using
Drag&Drop, copy the new page fragment from the navigation
window to the layout of the page public/start_htmlb.htm. The
model solution for this section is NET200_S_10.

public/start_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

...

<htmlb:documentBody>

...

<%-- Begin of HTML form --%>

<htmlb:form>

<%-- Inclusion of hidden fields --%>

<%@ include file = "hidden_htmlb.htm" %>

<%-- Element alignment --%>

<htmlb:gridLayout columnSize = "4"

rowSize = "3"

width = "100%"

cellSpacing = "10" >

<%-- first row: departure city --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "1" >

<htmlb:label for = "depa"

Continued on next page

166 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

text = "<%= otr(net200/cityfrom) %>" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "2"

rowIndex = "1"

colSpan = "3" >

<htmlb:inputField id="depa" />

</htmlb:gridLayoutCell>

<%-- second row: destination city --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "2" >

<htmlb:label for = "dest"

text = "<%= otr(net200/cityto) %>" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "2"

rowIndex = "2"

colSpan = "3" >

<htmlb:inputField id="dest" />

</htmlb:gridLayoutCell>

<%-- third row: date range selection --%>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "3" >

<htmlb:textView text="<%= otr(net200/flightdate) %>" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "2"

rowIndex = "3" >

<htmlb:inputField id = "date_low"

type = "DATE"

showHelp = "TRUE"

size = "10"

value = "20030101" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "3"

rowIndex = "3" >

<htmlb:textView text="<%= otr(net200/to) %>" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "4"

rowIndex = "3" >

<htmlb:inputField id = "date_high"

type = "DATE"

showHelp = "TRUE"

size = "10"

value = "20040101"/>

</htmlb:gridLayoutCell>

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 167

Unit 4: BSP Extensions NET200

</htmlb:gridLayout>

</htmlb:form>

</htmlb:documentBody>

...

hidden_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:inputField visible = " "

id = "travel_ag"

value = "<%= travel_ag %>" />...

4. Event handling:

Define a button in the form of the page public/start_htmlb.htm. Make
the button text translatable. Pushing the button is to trigger the server
event click.

Navigate to the event handler OnInputProcessing. Find out which
action is responsible for the execution of the event handler. To do so,
examine the contents of the event_id field. If the field value shows
that an HTMLB element triggered the event, find out what type of
element it was. It is not necessary to examine the attributes connected
with the event, because only one button exists on the page. If you are
certain that the button on the form triggered the processing of the
event handler, navigate to the subsequent page. The name of the next
page is public/flights_htmlb.htm. Pass on the departure city, destination
city, and the date interval in the HTTP redirect. For this purpose,
adapt the methods navigation->set_parameter for the date information.

Copy the page public/flights.htm to the page public/flights_htmlb.htm.
Adapt the page attributes to receive the date information. Navigate
to the event handler OnInitialization. Previously, the function
module FIT_IN_BAPI_FLCONN_GETLIST was used here for format
conversion. Since the data is now no longer split into day, month, and
year, but is a value instead, the format conversion must be adapted.
Use the function module FIT_IN_BAPI_FLCONN_GETLIST2 for this.
Finally, ensure that the BSP public/start_htmlb.htm reappears if the
user presses the send button to navigate back.

Continued on next page

168 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

a) The BSP elements and their attributes are copied from the Tag
Browser using Drag&Drop. The attribute values are added
manually. If you double-click a BSP element, a dialog box
appears that describes the element and the attributes. The model
solution for this section is NET200_S_11.

public/start_htmlb.htm - Layout

...

<%-- Element alignment --%>

<htmlb:gridLayout columnSize = "4"

rowSize = "4"

width = "100%"

cellSpacing = "10" >

...

<htmlb:inputField id = "date_high"

type = "DATE"

showHelp = "TRUE"

size = "10"

value = "20040101" />

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "4"

colSpan = "4" >

<%-- Submit button --%>

<htmlb:button text = "<%= otr(net200/display_flights) %>"

onClick = "flights" />

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:form>

...

public/start_htmlb.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

* Is event triggerd by HTMLB element?

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 169

Unit 4: BSP Extensions NET200

IF event_id = cl_htmlb_manager=>event_id.

* What kind of element did trigger event

DATA: event TYPE REF TO cl_htmlb_event.

event = cl_htmlb_manager=>get_event(runtime->server->request).

IF event->name = ’button’ AND event->server_event = ’flights’.

* No further investigation of event related attributes

* DATA: button_event TYPE REF TO cl_htmlb_event_button.

* button_event ?= event.

* Setting attributes for the next page (Form fields entries)

navigation->set_parameter(name = ’depa’).

navigation->set_parameter(name = ’dest’).

navigation->set_parameter(name = ’date_low’).

navigation->set_parameter(name = ’date_high’).

navigation->set_parameter(name = ’travel_ag’).

* Navigation to the next page

navigation->goto_page(’FLIGHTS_HTMLB.HTM’).

ENDIF.

ENDIF.

public/flights_htmlb.htm - PAGE ATTRIBUTES

The following page attributes that are no longer required
Attribute Auto Type Reference

type
Description

day_low X TYPE String from: day
day_high X TYPE String to: day
month_low X TYPE String from: month
month_high X TYPE String to: month
year_low X TYPE String from: year
year_high X TYPE String to: year

Continued on next page

170 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

New page attributes
Attribute Auto Type Reference

type
Description

date_low X TYPE D from: date
date_high X TYPE D to: date

public/flights_htmlb.htm - OnInitialization

* event handler for data retrieval

**

* Prepare the form fields for the BAPI Interface

**

DATA: dest_from TYPE bapiscodst,

dest_to TYPE bapiscodst,

it_date TYPE TABLE OF bapiscodra.

* Data Conversion for Method Call

CALL FUNCTION ’FIT_IN_BAPI_FLCONN_GETLIST2’

EXPORTING

start = depa

end = dest

date_low = date_low

date_high = date_high

IMPORTING

dest_from = dest_from

dest_to = dest_to

TABLES

date = it_date.

...

public/flights_htmlb.htm - OnInputProcessing

CASE event_id.

WHEN ’back’.

* Navigation to the previous page

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 171

Unit 4: BSP Extensions NET200

navigation->goto_page(’START_HTMLB.HTM’).

ENDCASE.

5. Tables:

Now create the table of last-minute flights on the page
public/start_htmlb.htm using the BSP extension HTMLB. Display all
columns and set the width of the table to 100% of the page width.
Hide the footer with the scroll buttons.

Hint: Use the HTMLB element tableView.

If you have the time, use HTMLB elements to also create the table in
the layout of the BSP public/flights_htmlb.htm. For this purpose you
must convert the entire layout of the page to HTMLB elements. Set
the table width to 100% of the page width. Restrict the number of
simultaneously displayed table rows to 10 and make it possible for
the user to scroll through the rows. Only display the columns that
were previously displayed. Make it possible for the user to sort the
table by flight date, departure city, and destination city.

Hint: Use the HTMLB elements tableView, tableViewColumns,
and tableViewColumn.

Hint: To allow the user to sort the table, you must, amongst
other things, enable the triggering of the server event
headerClick.

To ensure that you can still use the connection number to navigate to
the next page, you must add a column to the corresponding internal
table. This column must contain the relevant URL for navigating to
the next page. Proceed as follows:

Create an additional table type that contains all the previous columns
(line type BAPISCODAT) and another column of the type STRING for
the URL. The name of this additional column is URL.

Hint: To copy the fields of a row type t_wa2 in a row type
t_wa1, use the following statements:

TYPES: BEGIN OF t_wa1,

... .

Continued on next page

172 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

INCLUDE TYPE t_wa2.

TYPES:

END OF t_wa1.

Create an additional page attribute for this extended table type.
Navigate to the event handlerOnInitialization. Extend the source code:
The flight connection data, which was read using the application
class GET_FLIGHT_LIST, must be transferred to the extended
internal table. In the URL column, store the character string that
was previously defined as the target for the link in the layout of the
public/flights.htm page. Construct the corresponding query string
using the ABAP statement CONCATENATE.

Navigate to the page layout. Set the type of the column FLIGHTCONN
to the value LINK and assign the name of the column that contains
the URL (URL) to the attribute linkColumnKey.

To eventually return to the start page by pressing the send button, you
must adjust the source code in the event handler OnInputProcessing
accordingly. To do this, refer to the last part of the exercise.

a) The BSP elements and their attributes are copied from the Tag
Browser using Drag&Drop. The attribute values are added
manually. If you double-click a BSP element, a dialog box
appears that describes the element and the attributes. The model
solution for this section is NET200_S_12.

public/start_htmlb.htm - LAYOUT

<htmlb:documentBody>

...

<htmlb:form>

<htmlb:gridLayout columnSize = "4"

rowSize = "5"

cellSpacing = "10"

width = "100%" >

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "1"

colSpan = "4" >

<%-- LAST MINUTE OFFERS --%>

<htmlb:tableView id = "last_minute"

table = "<%= it_last_minute %>"

width = "100%"

footerVisible = "FALSE" >

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 173

Unit 4: BSP Extensions NET200

</htmlb:tableView>

<hr>

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "2" >

<htmlb:label for = "depa"

text = "<%= otr(net200/cityfrom) %>" />

...

</htmlb:form>

</htmlb:documentBody>

public/flights_htmlb.htm - Type Definition

* Line Type

types: begin of bapiscodat_ext.

include type bapiscodat.

types: url type string,

end of bapiscodat_ext,

* Table Type

tab_bapiscodat_ext type table of bapiscodat_ext.

public/flights_htmlb.htm - Page Attributes (Changes)

Attribute Auto Type Reference
Type

Description

it_con_dat_ext TYPE tab_bapis-
codat_ext

Table with
additional
column for URL

public/flights_htmlb.htm - OnInitialization

**.

* BAPI Call via Application class method

**

CALL METHOD application->get_flight_list

EXPORTING

Continued on next page

174 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

travelagency = travel_ag

* AIRLINE =

destination_from = dest_from

destination_to = dest_to

* MAX_ROWS =

CHANGING

date_range = it_date

flight_connection_list = it_con_dat.

...

DATA: wa1 LIKE LINE OF it_con_dat,

wa2 LIKE LINE OF it_con_dat_ext.

LOOP AT it_con_dat INTO wa1.

MOVE-CORRESPONDING wa1 TO wa2.

CONCATENATE ’Details.htm?travel_ag=’

travel_ag

’&connid=’

wa2-flightconn

’&fldate=’

wa2-flightdate

INTO wa2-url.

APPEND wa2 TO it_con_dat_ext.

ENDLOOP.

public/flights_htmlb.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

IF event_id = cl_htmlb_manager=>event_id.

DATA: event TYPE REF TO cl_htmlb_event.

event = cl_htmlb_manager=>get_event(runtime->server->request).

IF event->name = ’button’ AND event->server_event = ’back’.

navigation->goto_page(’START_HTMLB.HTM’).

ENDIF.

ENDIF.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 175

Unit 4: BSP Extensions NET200

public/flights_htmlb.htm - LAYOUT

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="DESIGN2002" >

<htmlb:document>

<htmlb:documentHead

title="<%= otr(net200/flightconnections) %>" >

</htmlb:documentHead>

<htmlb:documentBody>

<%@include file="Header_htmlb.htm" %>

<htmlb:form>

<htmlb:gridLayout columnSize = "1"

rowSize = "2"

cellSpacing = "10"

width = "100%">

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "1" >

<htmlb:button

text = "<%= otr(SOTR_VOCABULARY_BASIC/BACK) %>"

onClick = "back"/>

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "2" >

<htmlb:tableView

id = "flight_table"

table = "<%= it_con_dat_ext %>"

width = "100%"

sort = "SERVER"

onHeaderClick = "sort"

visibleRowCount = "15"

navigationMode = "BYLINE" >

<htmlb:tableViewColumns>

<htmlb:tableViewColumn

columnName = "flightconn"

width = "200"

type = "LINK"

linkColumnKey = "url" >

</htmlb:tableViewColumn>

<htmlb:tableViewColumn columnName = "flightdate"

sort = "TRUE" />

<htmlb:tableViewColumn columnName="airportfr" />

<htmlb:tableViewColumn columnName = "cityfrom"

sort = "TRUE" />

<htmlb:tableViewColumn columnName="deptime" />

Continued on next page

176 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

<htmlb:tableViewColumn columnName="airportto" />

<htmlb:tableViewColumn columnName = "cityto"

sort = "TRUE" />

<htmlb:tableViewColumn columnName="arrtime" />

</htmlb:tableViewColumns>

</htmlb:tableView>

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:form>

</htmlb:documentBody>

</htmlb:document>

</htmlb:content>

6. If you have the time to, create another layout.

Using elements of the BSP extension HTMLB, also create the layout
of the details page. Copy the page public/details.htm to the page
public/details_htmlb.htm. Delete the layout on the new page and create
the layout using the BSP extension HTMLB. You must also adapt
the source code of the event handler OnInputProcessing. Ensure that
the links on the page public/flights_htmlb.htm now take you to the
page public/details_htmlb.htm. Refer to the relevant page in the model
solution NET200_S_13.

a)

public/details_htmlb.htm - LAYOUT

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="DESIGN2002" >

<htmlb:document>

<htmlb:documentHead

title="<%= otr(net200/flightconnections) %>" >

</htmlb:documentHead>

<htmlb:documentBody>

<%@include file="Header_htmlb.htm" %>

<htmlb:form>

<%@include file="hidden_htmlb.htm" %>

<htmlb:gridLayout columnSize = "1"

rowSize = "3"

width = "100%"

cellSpacing = "10" >

<htmlb:gridLayoutCell columnIndex = "1"

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 177

Unit 4: BSP Extensions NET200

rowIndex = "1" >

<htmlb:textView

text = "<%= otr(net200/Einzelverbindungen) %>"

design = "HEADER2" />

<htmlb:tableView

id = "flight_hop_list"

table = "<%= it_flight_hop_list %>"

width = "100%"

footerVisible = "FALSE" >

<htmlb:tableViewColumns>

<htmlb:tableViewColumn columnName="hop" />

<htmlb:tableViewColumn columnName="airlineid" />

<htmlb:tableViewColumn columnName="connectid" />

<htmlb:tableViewColumn columnName="cityfrom" />

<htmlb:tableViewColumn columnName="cityto" />

<htmlb:tableViewColumn columnName="deptime" />

</htmlb:tableViewColumns>

</htmlb:tableView>

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "2" >

<htmlb:textView

text = "<%= otr(net200/Verfuegbarkeit) %>"

design = "HEADER2" />

<htmlb:tableView

id = "flight_availibility_list"

table = "<%= it_availibility %>"

width = "100%"

footerVisible = "FALSE" >

<htmlb:tableViewColumns>

<htmlb:tableViewColumn columnName="hop" />

<htmlb:tableViewColumn columnName="firstfree" />

<htmlb:tableViewColumn columnName="businfree" />

<htmlb:tableViewColumn columnName="econofree" />

</htmlb:tableViewColumns>

</htmlb:tableView>

</htmlb:gridLayoutCell>

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "3" >

<htmlb:button text = "<%= otr(NET200/FIRSTFREE) %>"

onClick = "first_book" />

<htmlb:button text = "<%= otr(NET200/BUSINFREE) %>"

onClick = "busi_book" />

<htmlb:button text = "<%= otr(NET200/ECONOFREE) %>"

onClick = "econ_book" />

Continued on next page

178 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:form>

</htmlb:documentBody>

</htmlb:document>

</htmlb:content>

public/details_HTMLB.htm - OnInputProcessing

IF event_id = cl_htmlb_manager=>event_id.

DATA: event TYPE REF TO cl_htmlb_event.

event = cl_htmlb_manager=>get_event(runtime->server->request).

CASE event->server_event.

WHEN ’back’.

...

WHEN ’busi_book’.

...

WHEN ’econ_book’.

...

ENDCASE.

navigation->goto_page(’../protected/customer.htm’).

ENDIF.

public/flights_htmlb.htm - OnInitialization

...

LOOP AT it_con_dat INTO wa1.

MOVE-CORRESPONDING wa1 TO wa2.

CONCATENATE ’Details_htmlb.htm?travel_ag=’

travel_ag

’&connid=’

wa2-flightconn

’&fldate=’

wa2-flightdate

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 179

Unit 4: BSP Extensions NET200

INTO wa2-url.

APPEND wa2 TO it_con_dat_ext.

ENDLOOP.

180 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: BSP Extensions: HTMLB

Lesson Summary

You should now be able to:
� Use elements of the BSP extension HTMLB to design the layout of

Business Server Pages
� Process user input made using BSP elements
� Extract data from a query string
� Adapt the design of a BSP application based on the BSP extension

HTMLB
� Render complex pages, consisting of several subpages, on the server

side

06-10-2004 © 2004 SAP AG. All rights reserved. 181

Unit 4: BSP Extensions NET200

Lesson: Composite Elements

Lesson Overview
When you create BSP applications with BSP extensions, it can happen that
using BSP elements, which are generally easy, is not as trivial as you think.
To generate the required layouts, you often need a number of special
elements, and for each element possibly also a number of parameters.
In such cases, to simplify handling the many special elements and to
minimize the development effort involved for the creator of the BSP
application or its layouts, you can create what are known as composite BSP
elements. These elements implicitly call functions of several BSP elements
that already exist and thus represent a type of shell for using a certain
combination of other elements.

Lesson Objectives
After completing this lesson, you will be able to:

� Create a new BSP extension
� Create new BSP elements
� Describe the class hierarchy for a BSP element
� Encapsulate combinations of different existing BSP elements in a

new BSP element

Business Example
When you create different BSP applications, forms need to be created again
and again. These consist of a series of input/output fields, corresponding
field labels, and a range of pushbuttons. Here the aim is to have a uniform
design - that is, in the different forms, the spacing, colors, fonts, and so
on, should be identical. Therefore, it is a good idea to define a new BSP
element that encapsulates these functions using existing BSP elements.

Creating BSP Elements
As a rule, the functions of BSP elements are implemented by calling the
elements (by using the appropriate tag) in the layout of a page. You are
not interested at this point in what happens at runtime when the layout is
processed. The situation is quite different, however, if you wish to use the
functions of a BSP element explicitly from within the ABAP source code.
This is the case whenever new BSP elements are created that re-use the
functions of existing BSP elements.

182 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Composite Elements

In this lesson, we will focus on creating composite elements. Here, the
functions of existing BSP elements are used from within the functions of
the newly created elements. From an organizational point of view, BSP
elements are assigned to a BSP extension.

You will find the option of creating a new BSP extension - for example - in
the context menu of the package (submenu Web objects) in the navigation
area of the ABAP workbench (SE80). The BSP extension represents a
container for an arbitrary number of individual BSP elements. When
creating the extension, you can assign a default prefix. This is used in the
extension directive and, in the tags for the BSP elements, it is usually placed
directly in front of the element name, separated by a colon. In addition,
it is possible to assign a BSP element basis class. This is then used as a
superclass for all BSP elements. If no BSP element basis class is explicitly
assigned, the class CL_BSP_ELEMENT will be used as superclass.

BSP elements can be created as subobjects of a BSP extension. When you
create an element, both the element name and the name of the element
handler class must be specified (customer namespace). This contains the
entire range of element functions and thus represents the BSP element at
the technical level. The element handler class is automatically created
when you generate the BSP element. It has the following relationship to
the BSP element basis class:

On the basis of the properties and attributes of the BSP element, a
class is generated to which the BSP element basis class is assigned
as a superclass. The functions of the BSP element basis class are
thus enhanced by the attributes of the BSP element and the four
methods CONSTRUCTOR, CLASS_CONSTRUCTOR, FACTORY,
and FACTORY_CLEAR. These methods are automatically filled with
source code, depending on the properties of the element. The name of
the generated basis class is ZCLG_<extension>_<element> , whereby
<extension> is the name of the BSP extension and <element> is the name
of the BSP element.
The BSP handler class is derived from the generated basis class
ZCLG_<extension>_<element>. In this way, it is ensured that manual
changes to the element handler class will not be lost when the element
properties and attributes are changed and there is thus the need to
generate the basis class again.

06-10-2004 © 2004 SAP AG. All rights reserved. 183

Unit 4: BSP Extensions NET200

Figure 57: Class Hierarchy for BSP Elements

After the BSP element has been created, you need to define the properties
and attributes of the element. Through the attributes, it is possible to
pass information to the BSP element - information needed for element
processing. These attributes therefore form the interface to the caller and
are visible when used in the layout as element parameters.

You can make the following settings through the properties of the BSP
element:

Element content:
- The element has no content - that is, between the opening and the
closing tag, no content is allowed. Example: <htmlb:button/>
- Element contains solely other BSP elements. Example:
<htmlb:tableView> ... </htmlb:tableView>
- Element can contain HTML source code in addition to BSP elements.
Example: <htmlb:form> ... </htmlb:form>

User-defined validation
With the methods COMPILE_TIME_IS_VALID and
RUNTIME_IS_VALID in the element handler class, user-defined
validation of the element content can be performed at compilation
time and/or runtime, provided this setting is activated. Example:
<htmlb:inputField>

184 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Composite Elements

Iteration through element content
If a source text section is to be run through several times, you
can have this done by setting this parameter. In this case, the
method DO_AT_ITERATION of the element handler class is
processed so often until the return parameter RC is set to the value
CO_ELEMENT_DONE.

Manipulation of element content
By setting this parameter, you make it possible to subsequently
change the HTML source code generated in the element. The source
code generated in such an element must be explicitly passed to the
surrounding element. For this purpose, you need to implement the
method DO_AT_END. If this does not happen, the source code will
be discarded. Example: <htmlb:gridLayoutCell> passes the content to
the element <htmlb:gridLayout>.

�Page Done� is not returned at end of BSP element.
After the BSP element has been processed, other BSP elements are
processed. This is the standard setting.

BSP Elements: Functionality
The element handler class of a BSP element contains a range of methods
that are inherited from the element basis class and are called by the
BSP runtime in certain circumstances and in a certain sequence. The
developer�s task is to assign the element-specific source code to the BSP
element by redefining the appropriate methods. The following methods
can be redefined:

COMPILE_TIME_IS_VALID
This method can be used to recognize incorrect transfers to the
attributes of the BSP element. This takes place during the syntax
check. Prerequisite for having this method processed: The user-defined
validation setting is activated.

RUNTIME_IS_VALID
This method can be used to recognize incorrect transfers to the
attributes of the BSP element at runtime. Prerequisite for having this
method processed: The user-defined validation setting is activated.

DO_AT_BEGINNING
Encapsulates the source code that is to be processed when the
opening tag (layout) for the BSP element is to be processed.

DO_AT_END
Encapsulates the source code that is to be processed when the closing
tag (layout) for the BSP element is to be processed.

06-10-2004 © 2004 SAP AG. All rights reserved. 185

Unit 4: BSP Extensions NET200

DO_AT_ITERATION
Encapsulates the source code for the BSP element that is to be run
through several times in a loop.

Figure 58: Processing BSP Elements

186 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Composite Elements

The following rules apply to method processing:

1. At the end of the method DO_AT_BEGINNING , further processing
is influenced by the return parameter RC, which can accept the values
CO_ELEMENT_DONE (RC=0) and CO_ELEMENT_CONTINUE
(RC=1). This determines whether the element content is processed
(RC=1) or not (RC=0).

Example: If the list of the texts to be displayed is passed as table
to the BSP element <htmlb:breadCrumb>, the element content is not
evaluated. If the individual texts, on the other hand, are defined
statically through the element <htmlb:breadCrumbItem>, the element
content is evaluated.

2. At the end of the method DO_AT_ITERATION , further processing is
influenced by the return parameter RC, which can accept the values
CO_ELEMENT_DONE (RC=0) and CO_ELEMENT_CONTINUE
(RC=1). This determines whether the element content is processed
(RC=1) or not (RC=0) again.

3. At the end of the method DO_AT_END , further processing is
influenced by the return parameter RC, which can accept the values
CO_PAGE_DONE (RC=0) and CO_PAGE_CONTINUE (RC=1). Page
processing for RC=CO_PAGE_DONE ends only when the parameter
No return of �Page Done� at the end of the BSP element is not set for the
element properties.

4. To create the HTML source code from the above mentioned methods,
the source code must be passed to what are known as bodywriters.
The bodywriter of the current element must, in this case, pass the
content to the bodywriter of the surrounding element. In this way,
the outputs of all elements are accumulated. You need to distinguish
between two techniques, depending on whether the parameter
Manipulation of Element Content is set or not:

Parameter is not set: Using the methodME->PRINT_STRING(
<string>) , you can pass a previously created string to the
surrounding bodywriter. Example: <htmlb:button>
Parameter is set: In the method DO_AT_END , the bodywriter
of the current element must be explicitly passed to the
bodywriter of the surrounding element. There is a reference
to the current bodywriter available through the attribute
M_OUT (however, only if the parameterManipulation of Element
Content is set!). Access to the bodywriter of the surrounding
element can be shown using the example of the element
<htmlb:tabStripItemHeader>.

06-10-2004 © 2004 SAP AG. All rights reserved. 187

Unit 4: BSP Extensions NET200

Composite Elements
The content of the new BSP elements cannot be created solely through
direct definition of the HTML source code in the corresponding element
handler class, but also through processing of existing BSP elements. For
this purpose, the methods of the element handler classes of existing BSP
elements must be processed from within the methods of the element
handler class of the new BSP element. Many actions that run automatically
when a BSP element is processed from within the layout must, however,
be programmed here. To do this, proceed as follows:

For each BSP element that is to be processed, an appropriate object
(obj) must first be instantiated. The respective element handler class
serves as a reference class.
The attributes of this object must be filled explicitly. Reminder: The
attributes of the object correspond to the parameters of the BSP
element when called from within the layout.
The correct methods of the object obj are processed by the following
call:
m_page_context->element_process(element = me->obj).

The methodM_PAGE_CONTEXT->ELEMENT_PROCESS(...) decides
independently, depending on the call time and the properties of the
element to be processed, which method(s) need to be processed.

Figure 59: Processing Existing BSP Elements

188 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Composite Elements

If element processing is started from within the method
DO_AT_BEGINNING, the methodsDO_AT_ITERATION andDO_AT_END
of the element to be processed, however, are not run by default. Depending
on the implementation of the already existing BSP element, it can be
necessary to have these methods run as well before the next BSP element
is processed.

Example: If a BSP element is to be processed without element content
(<htmlb:inputField>, <htmlb:label> ...), all the methods of this object must be
run before another element can be processed.

To achieve this, the methodM_PAGE_CONTEXT->ELEMENT_PROCESS(
...) is run as often as it takes to cover all the methods of the element to
be processed. For this purpose, you can analyze the return value of the
functional methodM_PAGE_CONTEXT->ELEMENT_PROCESS(...). This
gives you information on whether element processing is completed (return
value = 0). In particular, with this type of call, the caller does not need any
knowledge of the exact implementation of the BSP element to be processed.

Figure 60: Complete Processing of Existing BSP Elements

As soon as all the methods of the object obj are processed, the object cannot
be processed a second time. If this is necessary, the object must first be
instantiated a second time. Explicit deletion of the reference variableobj is
not necessary before the renewed instantiation of the object.

06-10-2004 © 2004 SAP AG. All rights reserved. 189

Unit 4: BSP Extensions NET200

Figure 61: Multiple Processing of Existing BSP Elements

190 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Composite Elements

Lesson Summary

You should now be able to:
� Create a new BSP extension
� Create new BSP elements
� Describe the class hierarchy for a BSP element
� Encapsulate combinations of different existing BSP elements in a

new BSP element

06-10-2004 © 2004 SAP AG. All rights reserved. 191

Unit 4: BSP Extensions NET200

Lesson: Model View Controller for BSPs

Lesson Overview
This lesson describes the advantages of using the Model View Controller
(MVC) and the implementation of this programming paradigm.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe the advantages of the MVC programming paradigm over
classic BSP programming

� Create and call controllers, views, and models

Business Example
You must create a BSP application based on the Model View Controller
(MVC) programming paradigm.

MVC Design Pattern
TheModel View Controller (MVC) design pattern clearly distinguishes
between process control, the data model, and the display of data on the
user interface. The formal separation of these three areas is realized with
the three objectsmodel, view, and controller. You can thus simply divide
complex Web applications into logical units.

192 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 62: Classic BSP Application - MVC Design Pattern

The model serves as an application object for managing the application
data. The model responds to both information requests regarding its
status, which usually come from the view, and instructions on changing
state, which usually come from the controller. In this way, the model
serves the sole purpose of internal data processing, without referring to
the application and its user interface. A model can have different views,
which are implemented using different view sets.

The view handles the graphical and textual output on the user interface
and hence displays the input and output data in the relevant interface
elements. These can be buttons, menus, or dialog fields, for example. The
view therefore takes care of the visualization. To display the state, the
view requests information from the model, or the model informs the view
about any changes of state.

The controller interprets and checks the user�s mouse and keyboard input
and ensures the model or view layer changes if required. Input data is
passed on and changes to the model data are initiated. The controller uses
the methods of the model to change the internal state and then informs the
view. The controller thus defines the reactions to user inputs and controls
the processing.

The view and the controller form the user interface. Since the model does
not know the views or the controllers, the internal data processing is
separated from the user interface. Therefore, changes to the user interface
do not affect the internal processing of the data and the data structure.

06-10-2004 © 2004 SAP AG. All rights reserved. 193

Unit 4: BSP Extensions NET200

However, this makes it possible to display the data in different formats
simultaneously; for example, you can display the numeric percentage
results of a vote as a table, bar chart, or pie chart.

Uses

The BSP programming model allows you to control the flow logic, event
handling, and navigation using redirects. Using the MVC design pattern
offers various advantages, so you should consider using MVC in the
following cases:

� If your pages (BSPs) are made up of several parts (components)
dynamically:

A controller can construct a page that consists of several views. This
allows you to split the layout into components.

� If the input processing is so complex that it should be subdivided into
different methods.

A controller offers a great level of flexibility, particularly with input
processing, because you can create and call new methods

� If only the input processing can decide which page is next, we
recommend that you let the controller branch to different views.

� If navigation using HTTP redirects causes performance problems
(for example, slow connection).

� If the display logic is relatively complex, you can clearly separate the
logic from the layout using Model View Controller.

� If the layout and the display logic are edited by different people.
� If parts of the layout are to be created using programs - for example,

using a generator or XSLT processor.

Combining MVC with Existing BSPs

You can combine the techniques of the BSP programming model with the
newly integrated MVC design pattern: A BSP application can contain
pages with flow logic as well as controllers and views. The views can be
called only by the controllers. Transitions from pages to controllers and
back can take place using redirects with the navigation methods. In the
page layouts, you can call a controller using the <bsp:call> element
or the <bsp:goto> element. However, you cannot use these elements
to call views.

Architecture Examples
The following figures illustrate how you can use controllers, views, and
models to redesign a classic BSP application (without the MVC design
pattern) consisting of three BSPs. Which of the models is used depends

194 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

on the complexity of the flow logic, the business logic, and the desired
display (all information on one HTML page or spread out over several
HTML pages).

Figure 63: Classic BSP Application with Three BSPs

06-10-2004 © 2004 SAP AG. All rights reserved. 195

Unit 4: BSP Extensions NET200

Figure 64: Replacing Classic BSPs with Models, Views, and Controllers

Figure 65: Calling Different Views from One Controller

196 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 66: Calling Different Controllers from One View

Figure 67: Calling Several Controllers from One View Simultaneously

06-10-2004 © 2004 SAP AG. All rights reserved. 197

Unit 4: BSP Extensions NET200

Figure 68: Using One Model for an Entire BSP Application (No Application
Class Required)

Model, View, and Controller: Definition and Properties
A view is created as a subobject of a BSP application in the Web
Application Builder. The layout is usually edited using the BSP extension
HTMLB. Page attributes represent the interface with the controller that
calls the view. Because both objects must know the types of these page
attributes, the types are assigned in the Data Dictionary. Therefore, views
do not have a tab for creating types, which could be used for specifying
types of page attributes.

A model is also created using the Object Navigator, in the Class Builder.
As a class, the model class is an independent Repository object and is not
assigned to a BSP application as a subobject. To simplify programming
with the MVC design pattern, the framework provides a basis class
CL_BSP_MODEL for the model of an application. The model class can
then be derived from this basis class. The model class represents the data
context of the application and hence contains a copy (or reference to) the
data from the database model that is relevant to the view.

198 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

The model class provides the following:

� The data used for the views with the relevant type and Data
Dictionary information

� Input conversions
� Information about which data had input errors

Data binding is especially useful for the value transfer of input and output
data. For this purpose, the data required by the view is added to the
model class as attributes. These attributes are visible to the public and
can be any of the following:

� Simple variables
� Structures
� Tables

In the simplest case, the model class has only these attributes and can
therefore be easily used for data binding in a BSP application. A simple
model class like this offers the following functions:

� The controller can create a model instance and initialize the attributes
because they are public attributes.

� The controller passes a reference pointing to the model instance to
the view.

� In the view, the data binding to the model is expressed as a path (//...)
for each view element.

Example: A BSP application has an input field that was inserted using
HTMLB; the user can make entries in this input field. The reference
variable model is defined as a page attribute. In the model, there is
an attribute io_field that corresponds to the input field. You can then
write the following for the input field: <htmlb:input_field ...
value="//model/io_field"/>. As a result, the contents of value are
passed to the relevant attribute in the model class. The process flow is
now as follows:

� Using the statement above, the content of the attribute is assigned the
value of the input field.

� The ID is generated from the model.
� Additional properties are also generated, for example, whether input

help (F4) is available or fixed values exist.
� With the next request, the user input is transferred to the model class.
� Data conversions, including those using the Data Dictionary (for

example, conversion exits) are automatically executed by the basis
model class.

06-10-2004 © 2004 SAP AG. All rights reserved. 199

Unit 4: BSP Extensions NET200

If a conversion exit exists for a field in the Data Dictionary, this conversion
exit is called by default. All data in the Data Dictionary structure for the
field is available. If necessary, you can also add your own methods to your
model class for further processing of the attributes.

Views and Controllers: Creating and Using
The following describes how to create and use the components view, and
controller.

A controller is created as a subcomponent of a BSP application in the Web
Application Builder. Controllers have the file extension .do. The controller
class is the most important attribute to specify.

The controller class is always a subclass of the class CL_BSP_CON-
TROLLER2 delivered with the SAP Standard. If the controller class has not
been created (which is the default case), you can still enter the class name
in the relevant field and create the controller class by forward navigation.

The controller class inherits a number of attributes and methods from the
super class CL_BSP_CONTROLLER2. These attributes and methods are
used when processing user input or connecting to models, for example.
You can add other attributes to the controller class, depending on the
created BSP application. Additional attributes are one way of passing data
to the controller when it is called. The programmer will also redefine a
range of methods to intialize attributes (which may be required), handle
events, or process form data. Just as the event handlers are processed in a
predefined sequence in a classic BSP with a processing block, a range of
methods in the controller class is also processed in a predefined order.

200 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 69: Comparison: Event Handlers in BSPs with Flow Logic and
Methods of the Controller Class

Calling a View from a Controller

To call a view from within a controller, you must first create an interface
reference variable of the type IF_BSP_PAGE. Using the CREATE_VIEW
method, a view instance is then created and the address is passed back to
the interface reference variable. When creating the view instance, the name
of the assigned view is also passed.

Attributes that were previously set in the controller (for example, in the
method DO_INIT or DO_INITATTRIBUTES) can be passed to the view
instance using the method SET_ATTRIBUTE(...). Values of attributes or
references to objects are passed the interface parameters of the view.

Finally, the view is called and hence the layout is processed.

06-10-2004 © 2004 SAP AG. All rights reserved. 201

Unit 4: BSP Extensions NET200

Figure 70: Calling a View from a Controller and Passing Attributes

Receiving User Input

After the user has sent a form, the information is passed to the main
controller as a query string. Calling the DISPATCH_INPUT() method
within the controller method DO_REQUEST() ensures that, in the
case of a non-empty query string, the methods DO_HANDLE_DATA,
DO_HANDLE_EVENT, and DO_FINISH_INPUT are processed.

The user input is processed in the DO_HANDLE_DATA method. The
BSP runtime fills a two-column internal table, in which the name/value
pairs of the query string are stored. The name of this internal table is
FORM_FIELDS . If the form fields are not bound to attributes of a model,
the individual values must be read from the table, checked for type errors,
and passed to attributes of the controller.

Hint: The user entries are stored unformatted in the internal table
FORM_FIELDS. Any required conversion to the internal format
must be programmed (for example, for a date, user input would be
13/12/2003; internal format would be 20031213).

202 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 71: Reading the Form Data in the Event Handler DO_HANDLE_DATA

Event Handling

If the user triggers an HTMLB event in the Web browser (for example, by
pressing the send button), this information is passed to the main controller
as part of the query string (name/value pair oninputprocessing=htmlb).
After the user entries have been processed (DO_HANDLE_DATA), the
DO_HANDLE_EVENT method is started.

Unlike event handling for BSPs with flow logic, the runtime environment
here creates a suitable handler object depending on the triggering HTMLB
element - therefore, you do not have to ascertain the event type using
the HTMLB Manager.

06-10-2004 © 2004 SAP AG. All rights reserved. 203

Unit 4: BSP Extensions NET200

Figure 72: Handling Server Events using the Event Han-
dlerDO_HANDLE_EVENT

Method DO_FINISH_INPUT

In same cases, the user entries have to be processed and the event handling
has to be executed before the boudary conditions for selecting data from
the database are defined.

Example: In a form, the user can select a data record in a table. Via two
send buttons, the user can either navigate to the previous page or to the
next page, where the details for the selected data record are displayed.
Therefore, before the detail data is read, the system must first check
whether details are to be displayed (DO_HANDLE_EVENT) and, if so, for
which of the displayed data records (DO_HANDLE_DATA). Therefore,
after DO_HANDLE_EVENT, a further method (DO_FINISH_INPUT) is
processed, in which the corresponding subsequent action can be defined.

Main Controller and Subcontroller
The main controller and subcontrollers are used for structuring the
functions in large applications. For example, you can define components
that can be combined with other components in large applications.
Of course, the individual components can be assigned to different
applications.

204 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

If the main controller and subcontroller are to be used, the main controller
is always the object requested from the browser using the URL. Therefore,
the corresponding instance to the controller class of the main controller is
created from within the BSP runtime environment.

Subcontrollers, on the other hand, are instances of controller classes
generated from within the source code of the main controller
instance. Subcontrollers are therefore attributes of the main controller.
Subcontrollers can be created in two ways:

1. The subcontrollers are created explicitly before the main view is
processed.

There are different possibilities for this: The methods DO_INIT,
DO_INITATTRIBUTES, and DO_REQUEST. If the application is
executed statefully, the event handler DO_INIT would be best, since
this source code is only processed once. However, if the conditions,
which indicate which subcontroller is to be created, are not known
till later, a later time could be more suitable.

2. The subcontrollers are created implicitly when the main view is
processed. This represents the latest possible time.

Explicit Creation of Subcontrollers

Using the CREATE_CONTROLLER (...) method, you can create an instance
of a subcontroller class from the source code of the higher-level controller.
Each subcontroller is assigned an ID (CONTROLLER_ID).

When you create a subcontroller, only its method DO_INIT is executed.

The subcontroller can be processed from the source code of the main
controller using the CALL_CONTROLLER(...) method. In this case,
only the DO_REQUEST method of the subcontroller is processed, but
DO_INITATTRIBUTES is not (irrespective of what event handler of the
main controller is used to call the subcontroller).

06-10-2004 © 2004 SAP AG. All rights reserved. 205

Unit 4: BSP Extensions NET200

Figure 73: Creating the Subcontroller Explicitly and Calling it from the
Main Controller

From within the source code of a view, a subcontroller is called using the
BSP element <bsp:goto ...> or <bsp:call ...>; the controller ID
is used to identify the controller to be processed. These elements are part
of the BSP extension BSP, which must already have been included in the
page. If you use <bsp:goto ...>, any output processed up to this point
is discarded. The HTML page will then only contain what was created
after you started using this language element. In contrast, <bsp:call
...> allows you to combine several views. In this way, you can construct
HTML pages that are composed of several areas whose contents are
defined using corresponding views.

Hint: For the main controller and subcontroller, the relevant view
is usually called in the DO_REQUEST method. As a result of the
type of call, the results of the view processing are nested in one
another. Therefore, you must ensure that the nested processing of
the views results in a valid HTML page.

206 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 74: Creating the Subcontroller Explicitly and Calling it from the Main
View

Implicit Creation of Subcontrollers

When calling a subcontroller using the <bsp:call> tag or the <bsp:goto> tag,
and this subcontroller has not yet been created, it is created implicitly at
this point. For this, the parameter urlmust also be specified along with the
parameter comp_id. The former specifies the name of the subcontroller and
the path to the subcontroller (if the subcontroller is assigned to a different
BSP application, for example).

06-10-2004 © 2004 SAP AG. All rights reserved. 207

Unit 4: BSP Extensions NET200

Figure 75: Creating the Subcontroller Implicitly when Calling it from the
Main View

Program Flow when Processing User Entries

When using a main controller with a main view and subcontroller with
corresponding views, the resulting HTML page consists of a combination
of the processed views. Example: Each view of a subcontroller defines a
part of a complex form. The individual form sections are joined together
by the view of the main controller. If the user now fills in the form fields
and sends the form, each controller must contain the data connected to
its view. Furthermore, one of the controllers must take care of the event
handling. Which controller this is depends on which view contains the
HTML element that triggered the event. This view was called by the
controller for which event handling is now started. Therefore, the handling
of the query string proceeds as follows:

In the main controller, the DISPATCH_INPUT()method must be called to
pass the data of the query string to the individual controllers for handling.
Which data is to be passed to which controller depends on the names
of the relevant name/value pairs in the query string: Each controller is
assigned an ID (CONTROLLER_ID) when it is created. This ID, followed
by an underscore, must be the start of the name in a name/value pair, for
that pair to be passed on to the relevant controller. Name/value pairs that
cannot be assigned to a subcontroller are passed on to the main controller
for processing. Therefore, when creating a form, ensure that all field

208 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

names have an appropriate prefix so that this assignment is possible. If
you use elements of the BSP extensions HTMLB, XHTMLB, and PHTMLB,
this is done automatically.

Hint: The CONTROLLER_ID cannot contain an underscore, since
this is interpreted as a separator between the CONTROLLER_ID
and the form field.

After the incoming data has been passed on to the individual controllers,
their methods are processed as follows:

Figure 76: Query string handling for a main controller and two
subcontrollers. The HTTP request is triggered using an element assigned to
the view of subcontroller U2.

First, the DO_HANDLE_DATA methods of the individual
subcontrollers are called. Then the DO_HANDLE_DATA method
of the main controller is called. Each controller is assigned its form
data using the table form_fields.
After this, the DO_HANDLE_EVENTmethod is called for one of the
subcontrollers or for the main controller. Which controller this is,
depends on which view the event was triggered.
Finally, the DO_FINISH_INPUT method is called first for all the
subcontrollers and then for the main controller.

06-10-2004 © 2004 SAP AG. All rights reserved. 209

Unit 4: BSP Extensions NET200

Processing of the DO_REQUEST method of the main controller is
then continued directly after the DISPATCH_INPUT() call.

Accessing the Data of a Controller

When working with main controllers and subcontrollers, you often have to
access the data of one subcontroller from within another. To be able to do
this, the main controller must provide you with a reference to the desired
subcontroller, so that you can then use the reference variable to access the
public attributes and methods of the relevant subcontroller. The main
controller holds a table containing the references to all subcontrollers,
the contents of which can be ascertained using the GET_CONTROLLER
method of the main controller. In this case, you must also pass the
CONTROLLER_ID. The address of the main controller is known to every
subcontroller (private attribute m_parent).

Figure 77: Ascertaining the Address of a Subcontroller

210 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 78: Accessing the Attributes of One Subcontroller from Within
Another

Models
Creating and Using a Model

Using one central model for each BSP application offers great advantages
over the data storage for each controller:

� The model serves as a central container for all attributes of the
application.

� When transferring data, the controller and the view must exchange
only the reference pointing to the model. This means that there is one
generic interface for all attributes.

� The model attributes can be addressed from all controllers in the
same way.

� Data binding is implemented between the fields of a form that is
assigned to a view and the attributes of the model: The user entries
are converted to the internal format using the conversion exits defined
in the Data Dictionary, a type check is executed, the system checks for
fixed values, and the input data is passed to the model attributes.

06-10-2004 © 2004 SAP AG. All rights reserved. 211

Unit 4: BSP Extensions NET200

To make use of these advantages, proceed as follows:

1. First, the model class must be created as a global class (Class Builder).
The superclass is CL_BSP_MODEL .

2. All attributes that are connected with the business logic must be
added to the model. Additionally, you must add the desired methods
to the model, which work with the attributes previously created
(for example, a method for filling an internal table, which is then
displayed in a view).

3. You must create an object of the model class in the main controller
of the application. As is the case when creating a subcontroller, a
MODEL_ID is assigned when you create a model.

4. To ensure that the subcontrollers can access the attributes of the
model created in the main controller, you must ascertain the reference
to the model object in all controllers. This can be done in theDO_INIT
method. Store the reference to the model as an instance attribute of
the class. The model address is ascertained in the same way as the
address of a controller. However, the GET_MODELmethod is used
instead of the GET_CONTROLLER method.

5. If data binding between the attributes of the model and the form
fields of a view is desired, you must pass a reference pointing to the
model object to the view. The values of the form fields must refer to
the (public) attributes of the model.

Figure 79: Creating a Model Object

212 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Figure 80: Ascertaining the Reference to the Model Object of the Main
Controller in a Subcontroller

Figure 81: Transferring the Reference to the Model Object to a View and
Data Binding

06-10-2004 © 2004 SAP AG. All rights reserved. 213

Unit 4: BSP Extensions NET200

Error Handling
Errors that occur during the processing of the source text of a controller
can be managed using a message object, as when using the classical BSP
programming model. For this purpose, every controller has the attribute
messages.

When you areworkingwithout amodel, all errors - including the errors that
occur when the user entries are passed to the controller attributes - must be
handled manually. In the event handler DO_HANDLE_DATA, you can use
the methodMESSAGES->ADD_MESSAGE to add a new error message to
the message object of the controller. The message can then be displayed in
the view conditionally (PAGE->MESSAGES->ASSERT_MESSAGE(...)). For
this purpose, the reference to the message object of the controller must be
passed to the view.

The main controller and subcontrollers always work with the same
message object - that is, all errors that occur in a component are managed
by one message object. Since an identically-named form field can appear
multiple times on different views of the component, you must, when
collecting the messages, ensure that these can be uniquely identified (for
example, the field condition should contain the field name with a controller
prefix).

If the form fields are bound to a model, then the check for the appropriate
type of the input takes place in the model (where it is carried out by
GETTER methods). If a type error occurs, the corresponding error message
is managed by the model (private attribute errors). In the relevant
controller, the global message object is also assigned an error message,
which indicates the general problem (problem during data transfer).
Additional errors, resulting from the business logic, can be added from the
methods of the model using the method call ERRORS->ADD_MESSAGE.

If the main controller and subcontroller share a model, the error messages
are managed centrally by this model. If each controller works with its
own model instance, the error messages are separated according to the
controller via the model instances.

To be enable you to reuse the models, you can proceed as follows:

By calling the GET_ERRORS method of the model, you can set the
reference to the message object of the model. With this reference, you
can obtain the individual error messages using the GET_MESSAGE
method. If the error messages are to be displayed conditionally, do not use
the ASSERT_MESSAGES method. Instead, you should call the method
IF_BSP_MODEL_BINDING~IS_ATTRIBUE_VALID of the model. This
method returns whether there was an error message for the relevant
attribute of the model (is_valid = 0). If the message object of the model
contains an error message for the relevant attribute, this message is also
returned.

214 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Model View Controller for BSPs

Demos, Documentation, and Notes
More information on the topics covered in this lesson is available from
the following sources:

The online documentation contains detailed documentation on the
SAP Web Application Server and BSP applications. This is accessed
in the SAP Help Portal as follows: http://help.sap.com -> SAP
NetWeaver -> Release �04 -> SAP NetWeaver -> Application Platform
-> ABAP Technology -> UI Technology -> WEB UI Technology ->
Business Server Pages
As of Release 6.20, the SAP Web AS features the BSP application
BSP_MODEL. It shows the data binding for the different UI elements.
It also shows the error handling in the context of input and output
fields.
In the Software Developer Network (SDN), there is a discussion
forum for current BSP topics. Individual questions are partly dealt
with by the BSP development team. The forum is accessed via:
http://sdn.sap.com -> menu entry Forums -> Forums -> SDN Forums
-> Web Application Server -> Business Server Pages.
In the OSS, you can create problem messages and find notes under
the area BC-BSP.

06-10-2004 © 2004 SAP AG. All rights reserved. 215

http://help.sap.com
http://sdn.sap.com

Unit 4: BSP Extensions NET200

Lesson Summary

You should now be able to:
� Describe the advantages of the MVC programming paradigm over

classic BSP programming
� Create and call controllers, views, and models

216 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Unit Summary

Unit Summary
You should now be able to:
� Use elements of the BSP extension HTMLB to design the layout of

Business Server Pages
� Process user input made using BSP elements
� Extract data from a query string
� Adapt the design of a BSP application based on the BSP extension

HTMLB
� Render complex pages, consisting of several subpages, on the server

side
� Create a new BSP extension
� Create new BSP elements
� Describe the class hierarchy for a BSP element
� Encapsulate combinations of different existing BSP elements in a

new BSP element
� Describe the advantages of the MVC programming paradigm over

classic BSP programming
� Create and call controllers, views, and models

06-10-2004 © 2004 SAP AG. All rights reserved. 217

Unit Summary NET200

218 © 2004 SAP AG. All rights reserved. 06-10-2004

Unit 5
Special Topics

Unit Overview
In this unit you will learn about the options for authentication in the
SAP Web Application Server. You will also learn how to search for and
use BAPIs to acquire data from other SAP systems. This unit also covers
using external editors to adjust the layout. Finally, this unit introduces
applications for Smart Forms, sending e-mails from BSP applications,
mobile business, and the client functions of the SAP Web Application
Server.

Unit Objectives
After completing this unit, you will be able to:

� Describe different logon procedures
� Define services in transaction SICF and there set the logon procedure

to be used
� Create anonymous users for a service
� Set up applications with public and protected areas
� Create Internet users dynamically
� Give an overview of RFC and BAPIs
� Give an overview of the important tools in the RFC/BAPI environment
� Call a BAPI in an SAP R/3 back-end system
� Implement utilities, such as external tools, to efficiently develop BSP

applications
� Describe which steps are required to send mails from BSP

applications, integrate SAP Smart Form documents into BSP
applications, and create Web application for mobile devices.

Unit Contents
Lesson: User Concepts and Logon Procedures .. .221

Exercise 9: Security .231
Lesson: Connecting to SAP Systems Through RFC... .241

Exercise 10: Connections Using RFC247

06-10-2004 © 2004 SAP AG. All rights reserved. 219

Unit 5: Special Topics NET200

Lesson: Utilities for Creating BSP Applications256
Lesson: Other Topics... .261

Procedure: Sending a Mail from a BSP Application270

220 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

Lesson: User Concepts and Logon Procedures

Lesson Overview
The SAP Web Application Server supports a range of different logon
procedures. Which of the procedures is used depends on the service in
question. Furthermore, it is possible to change the user context at runtime.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe different logon procedures
� Define services in transaction SICF and there set the logon procedure

to be used
� Create anonymous users for a service
� Set up applications with public and protected areas
� Create Internet users dynamically

Business Example
Certain parts of an Internet application (for example, catalogs) are usually
available for all users, whereas a logon is required for other parts (for
example, purchase orders).

Support for Different Logon Procedures
The SAP Web Application Server supports different logon procedures:

� The user does not need to log on, that is, the application is accessible.
For this purpose, you must preset a user for the appropriate service
in transaction SICF.

� The user is queried for his or her user ID and password in a dialog
box in the browser. The language and client can be preset or they
can be defined at runtime.

� In an accessible page, the HTTP fields sap-language, sap-client,
sap-user or sap-alias, and sap-password are filled.

� The users are identified through Single Sign-On (SSO) logon
procedures or X 509 client certificates.

If you are using SSO, your users should protect their PCs, when leaving
their workplace, against access by other users.

06-10-2004 © 2004 SAP AG. All rights reserved. 221

Unit 5: Special Topics NET200

The sequence in which the above mentioned logon procedures are used by
the system is preset by the system itself.

� First, the system checks in the corresponding service in SICF whether
one of the flags Logon Data Required or Security Requirements: Client
Certificate with SSL is selected. In this case, the logon takes place using
the logon data stored, or a logon using the logon with client certificate
is expected. Other logon procedures will not be attempted.

� If none of the above mentioned logon procedures is preset, the system
will then check whether the fields sap-client, sap-language, sap-user
and/or sap-password are evaluated as part of the query string. If all
the information is provided, the logon takes place using this data.
If the BSP application is executed stateful, a temporary cookie is
transmitted after successful logon. This cookie contains the session
ID. It is used for authentication, unless one of the above procedures
is automatically forced. Renewed logon is required only if the Web
application is again executed stateless, or the session is terminated
explicitly.

� Then the system checks whether an SSO cookie is sent with the
request. The released BSP application System can be used to create
this cookie.

� Afterwards, the system checks whether the user has already
authenticated himself using Basic Authentication. If so, a new logon
takes place with this information. The logon information is kept in
the HTTP header. This logon data can only be discarded if you close
all your browser sessions. For information on how to log on using
Basic Authentication, refer to the last item below.

� Finally, the system checks whether the user has got a client certificate
and executes the logon using this.

� As a last option, error HTTP 401 is transmitted as an HTTP response
to the browser. This means that the browser shows a dialog box in
which the user can enter his or her name and password. Specification
of the language and client, however, is not possible here.

222 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

Figure 82: Determining the Logon Procedure (1)

06-10-2004 © 2004 SAP AG. All rights reserved. 223

Unit 5: Special Topics NET200

Figure 83: Determining the Logon Procedure (2)

Hint: The procedure described above applies to the logon fields
Client, User, and Password. The definition of the language also
depends on browser settings, user defaults, and the system default
language.

Hint: Since SAP Web Application Server Release 6.20, the selected
client is kept through a temporary cookie. If the logon procedure
Basic Authentication is selected, the client no longer needs to be
stored "hard-coded" in the service in SICF, but can be transmitted
in the query string (sap-client=<client>) at the first call of a BSP
application. This is especially important if one and the same BSP
application is to be made available in more than one client.

Service Options
The services are structured hierarchically (tree structures). As of SAP
Web Application Server Release 6.20, an appropriate service is created
automatically for each BSP application. Not only does the service enable
you to enter logon information and to choose a logon procedure, it
also provides service-specific authorization. An administrator sets this
authorization for the authorization object S_ICF in the SERVICE field

224 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

(for example, S_ICF-ICF_FIELD = �SERVICE� and S_ICF-ICF_VALUE =
�CHECK�) if CHECK is defined as authorization in the service. Of course,
further authorization checks can also be executed in the application itself.

Defining an Anonymous User for a Service
If the logon information for client, user, and password are stored in the
service, logon can take place at the system without explicit authentication
requirements. The user stored in the service is thus also referred to as
an anonymous user.

� For this reason, there should be a user set in transaction SU01 as a
service user and used solely for this purpose. Only then is it possible
to change the user context (user switch) when switching to a protected
area where explicit authentication is required.

� Assign to the anonymous user only authorizations that are absolutely
necessary.

� So that the user cannot log on with a user different from the preset
one, the logon data should be marked as required.

Hint: Logon data is not copied to other systems during data
transfer, but must be maintained subsequently in each case.

Hint: If you wish to have cascading style sheets, screens, and so
on accessible, you must also define an anonymous user for the
corresponding services, to which you then assign these MIME
objects.

Applications with Public and Protected Areas
One way of splitting up an application into a public and a protected area
consists of implementing the application as two BSP applications. The
corresponding service for the first BSP application is configured with an
anonymous user, while the service for the second BSP application requires
a logon.

The second way of splitting up an application into a public and a protected
area is to store the BSPs of the application in two subtrees; one branch is
public and the other is protected through logon. To do this, you create
a subservice for the public area in the appropriate service for the BSP
application and store an anonymous user there. Whether or not a subnode
needs to be created for the protected area depends on the choice of logon
procedure.

06-10-2004 © 2004 SAP AG. All rights reserved. 225

Unit 5: Special Topics NET200

One option is to choose the logon procedure Basic Authentication. For this
you do not need to create a further node in SICF. As a result, when a page
of the protected area is called, a dialog box (HTTP error 404) appears.
Here the user enters his or her user name and password. The data is then
kept using HTTP header fields. To log on again, all the browser windows
need to be closed.

It is also possible to perform logon using SSO cookies. To create
SSO cookies, you can use the BSP application SYSTEM. To do
this, you create a node for the protected area of your own BSP
application. Under the tab Error Pages -> Logon Errors, mark
Redirect to URL and, in the corresponding field, enter the text
literal /sap/public/bsp/sap/system/login.htm?sap-
url=<%=PATHTRANS%>. The result is that, when a BSP assigned to the
protected area is called for the first time, an HTTP Redirect to the BSP
login.htm of BSP application SYSTEM will take place. The user, password,
and client are queried through a form and, after this data is transmitted, a
corresponding SSO cookie is created and passed to the client. Afterwards,
through a further HTTP Redirect, the page that was originally requested is
called. If more protected pages are called, the system checks whether the
SSO cookie is also sent. In this case, a further explicit authentication is not
required. Deleting the cookies and, therefore, explicit logoff is possible by
using the page sessionexit.htm in the BSP application System.

Figure 84: Logon with SSO Cookies

226 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

Figure 85: SSO Cookies: Logoff

An alternative is provided by calling a separate logon dialog at
the appropriate place and defining the user using the module
SUSR_INTERNET_USERSWITCH. Possible errors (user blocked, user
invalid in time period, logon data invalid, and so on) are checked and
caught by this module.

06-10-2004 © 2004 SAP AG. All rights reserved. 227

Unit 5: Special Topics NET200

Figure 86: Changing the User Context

Hint: Changing the user context can only take place between a
user of the type Service (anonymous user) and a user of the type
Dialog or Service. Switching the user context between two dialog
users not allowed.

In the case of the last two options, it must be ensured on all protected
pages that the system checks whether the user change has taken place
so that no cross-entry through direct entry of a URL is possible. So that
renewed authentication is not necessary for every page of the protected
area, the application should be executed stateful after the user switch has
taken place.

Creating Internet Users
To get to the protected area of an application, the user must authenticate
himself/herself. The corresponding system user, also called Internet user,
only exists if it has been created in the Internet beforehand by the system
administrator (SU01). If this is not the case, the Internet user must be
created at runtime by the external user of the application himself/herself
(for example, applicant scenario or online shop). To do this, the function
module SUSR_USER_INTERNET_CREATE is used. Only few personal
data items are entered in this case. The authorizations are assigned
through a reference user and are just enough to use the Web application.
For more details on this topic, refer to the function module documentation.

228 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

For various classes of Internet users, you may require different reference
users with different authorizations respectively (for example, customers
versus suppliers).

Links Between Internet Users and Master Data
Internet users can be assigned to their respective master data (applicant,
customer, vendor) either by the administrator using the transaction
SU01 (Button References) or through supplying the respective interface
parameters when the function module SUSR_USER_INTERNET_CREATE
is called. Generally, the Internet scenario is set up so that after input of
personal data in a form, a master record (applicant, customer...) is first
created in the corresponding database table (typical name of the function
module: BAPI_<Business-Object>_CREATEFROMDATA). Afterwards, the
Internet user is created - whereby the key information of the master record
(for example, client + applicant number / customer number) is passed on.

Several references to business objects can be assigned to an Internet user.
This reflects the fact that the user can assume different roles (applicant and
customer), but can be managed with a single Internet user.

Additional function modules for changing the password, blocking an
Internet user, assigning more business objects, and so on, all begin with
the text literal SUSR_USER or with the text literal BAPI_USER.

Figure 87: Creating Internet Users

06-10-2004 © 2004 SAP AG. All rights reserved. 229

Unit 5: Special Topics NET200

Users in Back-End Systems
In the case of many applications, it is sufficient to have one user preset
for the destination for the back-end system. This user must have the
appropriate authorization for the BAPIs to be called. However, if you wish
to use specific users, then you should consider the use of Single Sign-On
(SSO) to avoid the cumbersome logon procedure for each system. SAP
systems prior to 4.6D must have a certain minimum Support Package
level, and the workplace PlugIn must be installed. For details on this topic,
refer to the documentation. The user IDs (not the passwords) must be
identical in all SSO systems.

Encrypting the Transferred Data
Through the use of the Secure-Socket-Layer-Protocol (SSL protocol),
HTTPS encrypts the data from the client to the server, and vice versa.
The prerequisite for this is that the appropriate software is installed and
configured. For details, refer to the documentation.

230 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

Exercise 9: Security

Exercise Objectives
After completing this exercise, you will be able to:
� Assign pages of a BSP application to protected or public areas
� Create anonymous users for the the public area in SICF
� Use SSO cookies for authentication of pages in the protected area
� Implement explicit logoff when using SSO cookies

Business Example
In the online flight-booking scenario, the user should be able to get
information on flights without logging on, but to carry out a booking, he
or she will have to go through an authentication process at runtime. SSO
cookies should be used to hold the logon information.

Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_13 or the BSP application NET200_S_13, giving it the name
ZNET200_##_14. ## stands for your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_14.

1. In your BSP application, delete the pages of the protected area
(protected/...). Copy the appropriate pages from the template BSP
application NET200_T_14. The pages are available created by
HTML means (protected/customer.htm, protected/confirm.htm), and
are available created with elements of the BSP extension HTMLB
(protected/customer_htmlb.htm, protected/confirm_htmlb.htm). Activate
the BSPs.

2. Start the transaction SICF. Navigate to the node of your BSP
application. Create the subnode for the public area (public) and the
protected area (protected). Assign the Internet user NET200USER
(password test) to the node public of your BSP application. For the
protected area of the application, set up a check for the use of an SSO
cookie. To do this, select the tab Error Pages -> Logon Error, and, in the
field Redirect to URL, enter the text /sap/public/bsp/sap/sys-
tem/login.htm?<%=PATHTRANS%>. Activate your application
and test it.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 231

Unit 5: Special Topics NET200

Surprisingly, a dialog box for entering the user data still appears
when you call a page of the public area. Why? Remove this problem.

Hint: Not only the BSP called, but also the included subobjects
(MIME objects) have to be in a public accessible area.
Therefore, the MIME objects in the MIME Repository must
also be assigned to a public service.

3. Ensure that the user can again log off explicitly from the protected
pages. To do this, create on both pages a transmission button
that calls the page SESSIONEXIT.HTM of the application
SYSTEM. Have the URL for calling this page created using
the class method GET_SESSIONEXIT_URL() of the class
CL_BSP_LOGIN_APPLICATION. Navigation on the page
protected/customer.htm or protected/customer_htmlb.htm should take
place dynamically, that is, the navigation to the logoff page should
take place in the event handler OnInputProcessing. On the page
protected/confirm.htm or protected/confirm_htmlb.htm, however,
navigation should be static. The attribute ACTION of the FORM tag
needs to be extended and set with an appropriate value.

232 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

Solution 9: Security
Task:
Continue to work with your BSP application or copy the model
solution from the last exercise. To do this, copy your BSP application
ZNET200_##_13 or the BSP application NET200_S_13, giving it the name
ZNET200_##_14. ## stands for your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_14.

1. In your BSP application, delete the pages of the protected area
(protected/...). Copy the appropriate pages from the template BSP
application NET200_T_14. The pages are available created by
HTML means (protected/customer.htm, protected/confirm.htm), and
are available created with elements of the BSP extension HTMLB
(protected/customer_htmlb.htm, protected/confirm_htmlb.htm). Activate
the BSPs.

a) In the navigation area, select the pages protected/customer.htm,
protected/confirm.htm of your application. With the right mouse
key, click Delete. Open the BSP application NET200_T_14.
Copy the BSPs protected/customer.htm, protected/confirm.htm or
protected/customer_htmlb.htm, protected/confirm_htmlb.htm (with
the right mouse key, click Copy).

2. Start the transaction SICF. Navigate to the node of your BSP
application. Create the subnode for the public area (public) and the
protected area (protected). Assign the Internet user NET200USER
(password test) to the node public of your BSP application. For the
protected area of the application, set up a check for the use of an SSO
cookie. To do this, select the tab Error Pages -> Logon Error, and, in the
field Redirect to URL, enter the text /sap/public/bsp/sap/sys-
tem/login.htm?<%=PATHTRANS%>. Activate your application
and test it.

Surprisingly, a dialog box for entering the user data still appears
when you call a page of the public area. Why? Remove this problem.

Hint: Not only the BSP called, but also the included subobjects
(MIME objects) have to be in a public accessible area.
Therefore, the MIME objects in the MIME Repository must
also be assigned to a public service.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 233

Unit 5: Special Topics NET200

a) Transaction SICF. Navigate to your service. Expand the node
default_host → sap → bc → bsp → sap → znet200_##_14. Create
two subnodes: With the right mouse key, click New Subelement.

Name: Public or Protected

Type of Service Node: Independent Service

Now open the subnode public. Maintain the description. Enter
the user NET200USER, password test in the appropriate fields.
Set the checkbox Logon Data Required. Leave the fields for client
and language empty. Ignore the information message stating
the user does not exist.

Now navigate to the node protected. Select the tab Error Pages ->
Logon Error, and, in the field Redirect to URL, enter the literal
/sap/public/bsp/sap/system/login.htm?<%=PATH-
TRANS%>. Then select the field Form Fields (Base64) so that the
form data can be encrypted. Save the data.

Activate the node of your BSP application with all subnodes.
Close all the browser windows. Start your BSP application using
the transaction SE80. A user query still appears for the first three
pages of the application (classic HTML means). If the user is not
entered, you will recognize the reason. The included style sheet
(style.css) is not assigned to any public service.

Navigate to the MIME Repository. Open the node
ZNET200_##_14. Create a subnode called public. Copy the MIME
object styles.css using Drag&Drop into this node and delete it
in the node ZNET200_##_14.

Navigate again to SE80. On all pages that were created by
classic HTML means, correct the path specification for including
the CSS in the tag <link rel=stylesheet href="...">.
Activate the pages and test the application. Now, no further
logon dialog appears for the first three pages of the application.
However, when a protected page is displayed for the first time, a
query box for the user data and the creation of an SSO cookie
will appear.

3. Ensure that the user can again log off explicitly from the protected
pages. To do this, create on both pages a transmission button
that calls the page SESSIONEXIT.HTM of the application
SYSTEM. Have the URL for calling this page created using
the class method GET_SESSIONEXIT_URL() of the class
CL_BSP_LOGIN_APPLICATION. Navigation on the page
protected/customer.htm or protected/customer_htmlb.htm should take
place dynamically, that is, the navigation to the logoff page should

Continued on next page

234 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

take place in the event handler OnInputProcessing. On the page
protected/confirm.htm or protected/confirm_htmlb.htm, however,
navigation should be static. The attribute ACTION of the FORM tag
needs to be extended and set with an appropriate value.

a) For the source code, see below. Save and test the BSP application.
After you have triggered the transmission button, the SSO
cookie will be deleted. A dialog box queries whether the current
browser window is to be closed as well.

protected/customer.htm - Layout

<%@page language="abap" %>

<html>

...

<body>

...

<!-->

<!-- Submit: Customer Info -->

<!-->

<input type="submit"

name="OnInputProcessing(BOOK)"

value="<%=otr(NET200/BOOK)%>">

<input type="submit"

name="OnInputProcessing(GETCUSTOMER)"

value="<%=otr(NET200/GET_SAP_CUSTOMER_DATA)%>">

<input type=submit

name="OnInputProcessing(EXIT)"

value="<%= otr(sotr_vocabulary_basic/exit) %>">

</form>

</body>

</html>

protected/customer.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

...

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 235

Unit 5: Special Topics NET200

CASE event_id.

************************* WHEN BOOK *******************

WHEN ’BOOK’.

...

************************* WHEN GETCUSTOMER ************

WHEN ’GETCUSTOMER’.

************************* WHEN EXIT *******************

WHEN ’EXIT’.

CLASS cl_bsp_login_application DEFINITION LOAD.

DATA: exit_url TYPE string.

exit_url = cl_bsp_login_application=>get_sessionexit_url().

* destroy SSO-cookie and end session in SAP system

navigation->goto_page(exit_url).

ENDCASE.

protected/customer_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="DESIGN2002" >

<htmlb:document>

...

<htmlb:form>

...

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "16"

colSpan = "2">

<htmlb:button

id = "submit1"

text = "<%= otr(net200/Book) %>"

onClick = "book"/>

<htmlb:button

id = "submit2"

text = "<%= otr(net200/Get_SAP_customer_data) %>"

onClick = "getcustomer"/>

<htmlb:button

id = "submit3"

text = "<%= otr(sotr_vocabulary_basic/exit) %>"

onClick = "exit"/>

Continued on next page

236 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:form>

</htmlb:documentBody>

</htmlb:document>

</htmlb:content>

protected/customer.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

...

IF event_id = cl_htmlb_manager=>event_id.

DATA: event TYPE REF TO cl_htmlb_event.

event = cl_htmlb_manager=>get_event(runtime->server->request).

CASE event->server_event.

************************* WHEN BOOK *******************

WHEN ’book’.

...

************************* WHEN GETCUSTOMER ************

WHEN ’getcustomer’.

************************* WHEN EXIT *******************

WHEN ’exit’.

CLASS cl_bsp_login_application DEFINITION LOAD.

DATA: exit_url TYPE string.

exit_url = cl_bsp_login_application=>get_sessionexit_url().

* destroy SSO-cookie and end session in SAP system

navigation->goto_page(exit_url).

ENDCASE.

ENDIF.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 237

Unit 5: Special Topics NET200

protected/confirm.htm - Layout

<%@page language="abap"%>

<html>

...

<body>

...

<%-- static navigation: OnInputProcessing not needed --%>

<form action="<%=exit_url%>">

<input type=submit

name="exit"

value="<%= otr(sotr_vocabulary_basic/exit) %>"

</form>

</body>

</html>

protected/confirm_htmlb.htm - Layout

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="DESIGN2002" >

<htmlb:document>

...

<htmlb:form action="<%= exit_url %>" >

...

<htmlb:gridLayoutCell columnIndex = "1"

rowIndex = "4"

colSpan = "2" >

<htmlb:button

id = "exit"

text = "<%= otr(sotr_vocabulary_basic/exit) %>"

onClick = "exit" />

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:form>

</htmlb:documentBody>

</htmlb:document>

</htmlb:content>

Continued on next page

238 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: User Concepts and Logon Procedures

protected/confirm.htm / protected/confirm_htmlb.htm -
OnInitialization

* event handler for data retrieval

CLASS cl_bsp_login_application DEFINITION LOAD.

exit_url = cl_bsp_login_application=>get_sessionexit_url().

it_book_id = cl_net200s_final=>booking_numbers.

06-10-2004 © 2004 SAP AG. All rights reserved. 239

Unit 5: Special Topics NET200

Lesson Summary

You should now be able to:
� Describe different logon procedures
� Define services in transaction SICF and there set the logon procedure

to be used
� Create anonymous users for a service
� Set up applications with public and protected areas
� Create Internet users dynamically

Related Information

� http://service.sap.com/security

240 © 2004 SAP AG. All rights reserved. 06-10-2004

ttp://service.sap.com/security

NET200 Lesson: Connecting to SAP Systems Through RFC

Lesson: Connecting to SAP Systems Through RFC

Lesson Overview
You can use the functions of SAP R/3 and other SAP components from
within the SAP Web Application Server to create Web applications for
these components.

Lesson Objectives
After completing this lesson, you will be able to:

� Give an overview of RFC and BAPIs
� Give an overview of the important tools in the RFC/BAPI environment
� Call a BAPI in an SAP R/3 back-end system

Business Example
For security reasons, the Web application should not be implemented in
the system where the business data is stored. The BSP application should
be created in an SAP Web Application Server while the business data is
stored in the database of a separate SAP component. Therefore, business
data must be exchanged between the systems.

System Landscape

Figure 88: System Landscape

06-10-2004 © 2004 SAP AG. All rights reserved. 241

Unit 5: Special Topics NET200

Overview of RFC and Tools
All the ABAP function modules (FMs) are managed in the SAP Function
Builder (transaction code SE37). A certain quantity of these FMs are
Remote Function Call-enabled (RFC-enabled) and can thus be addressed
from outside. These RFC-enabled modules are called RFMs (RFC-enabled
function modules). RFMs are subject to additional rules - for example, no
changing parameters can be used in them.

An RFM interface consists of import, export, and table parameters, as
well as defined exceptions. Import and export parameters are usually
either simple fields based on a Dictionary definition (for example,
KNA1-KUNNR) or structures that consist of fields themselves. All
export parameters are optional; import and table parameters can also be
mandatory.

Simple fields are also described as scalar parameters. Optional scalar
import parameters can contain a default value that is used whenever the
caller does not use the parameter.

Within the Function Builder, you can navigate to the respective Dictionary
definitions of all parameters by double-clicking the appropriate area.

The most important attributes here are the data type, the length, the
conversion routine that may have been used, and the allowed value set.

Figure 89: Displaying a Function Module Using Transaction SE37

Overview of BAPIs and Tools
BAPIs (Business Application Programming Interfaces) are a subset of
RFMs. You must develop BAPIs in accordance with the guidelines defined
in the BAPI Programming Guide, and you must define them as methods of
object types in the Business Object Repository (BOR).

242 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

Figure 90: The BAPI Explorer

06-10-2004 © 2004 SAP AG. All rights reserved. 243

Unit 5: Special Topics NET200

Here is a list of the most important BAPI specifications:

� Released BAPIs are the standard interfaces for synchronous access
to SAP.

� Customers can develop their own BAPIs. Attach new BAPIs to a
subclass; do not modify SAP object types.

� BAPIs are usually upwards compatible and well-documented.
� You call BAPIs in ABAP by programming a CALL FUNCTION to

the respective RFM.
� BAPIs generally have no exceptions.
� The BOR object types usually have key fields that are used for

accessing the relevant tables.
� If you have instance-dependent BAPIs, the key fields appear at the

RFC level as import parameters.
� If you have instance-creating BAPIs, the key fields appear at the RFC

level as export parameters.
� Instance-independent BAPIs do not use key fields.
� BAPIs can have different parameter names in BOR than in the

Function Builder.
� Table parameters can also be marked in the BOR as import, export, or

import/export. This has no effect on calling the RFM.
� As of release 4.0, BAPIs that execute database changes should no

longer contain any COMMIT WORK statement. The application must
implement the external Commit using BapiService.TransactionCommit.

� BAPIs mainly use internal data representation. The GUI conversion
routines are not automatically called. SAP provides conversion BAPIs
so that the application can convert between internal and external
formats.

� There are special BAPIs of the help-value object type available for
interpreting keys (for example, country keys) and for providing value
sets for input fields.

Calling a BAPI in a Back-End System
The SAPWeb Application Server does not know the metadata of the BAPIs
in the back-end systems. To avoid manual input, the Object Navigator
(SE80) provides a mini-BAPI browser that can display the metadata for
BAPIs and other RFMs as well as generate an appropriate type definition,
and so on.

244 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

You start the BAPI browser from within the ABAP Editor using the menu
Goto→ BAPI Browser. You can then copy these definitions into your own
application. The mini-BAPI browser works on the basis of RFM names so
that it is best to first ascertain these names in the BAPI browser of the
backend system.

The backend systems used must be defined as RFC destinations
(transaction SM59). Very often, a standard user with sufficient
authorizations is defined here so that not every user of the Web application
needs to be defined in the back-end system.

The destination that you use in the source text should ideally be a logical
one to which you then, as an administrator, assign a corresponding
physical destination.

06-10-2004 © 2004 SAP AG. All rights reserved. 245

Unit 5: Special Topics NET200

246 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

Exercise 10: Connections Using RFC

Exercise Objectives
After completing this exercise, you will be able to:
� Operate the BAPI browser
� Use BAPIs in the back-end system

Business Example
If you wish to develop applications that are to access the application logic
of SAP components, you do so using the RFC connection. As a rule, BAPIs
are called.

In the self-service flight booking application, the user wishes to book
a flight. He or she is already a customer. Using his or her customer
number, the customer can read his or her data in the SAP R/3 system.
The corresponding input fields, such as name, are automatically filled in
the BSP.

Task:
Continue to work with your BSP application or copy the model solution
from the last exercise. For this purpose, copy the NET200_S_14 to the
name ZNET200_##_15; ## is your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_15.

1. After you have entered the customer number in the appropriate field
on the page protected/customer.htmor protected/customer_htmlb.htm and
have clicked the corresponding transmission button, details on this
customer should be read from table KNA1 of the back-end system.
For this, use an appropriate BAPI. Beforehand, convert the customer
number into the internal format (leading zeroes). Proceed as follows:

In the event handler OnInputProcessing, call the function module
BAPI_CONVERSION_EXT2INT1 in the back-end system (destination:
NET200_RFC). Generate the module call using the BAPI browser.
Also copy the required types and data objects from the display in the
BAPI browser. Pass an internal table with the values to be converted
to the interface parameter DATA. Fill a line of this internal table with
the customer number. To do this, create a suitable work area (line type
identical with the internal table) and set the subfield of the work area.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 247

Unit 5: Special Topics NET200

OBJTYPE METHOD PARAMETER FIELD EXT_FOR-
MAT

�KNA1� �Create� �Customer� �Customer� customer_no

After the function module is called, the formatted customer number
is in the column INT_FORMAT of the internal table. Pass this value to
the data field CUSTOMER_NO.

2. In the same way, call the function module that belongs to the BAPI
CUSTOMER.GETDETAIL1 in the back-end system. Here, too, copy
the types and data object definitions from the display in the BAPI
browser.

Hint: Only the interface parameters CUSTOMERNO,
PE_PERSONALDATA, and RETURN are required.

If successful (RETURN-TYPE = �S� or RETURN-TYPE = � �), pass on
the detailed information and the page attributes of the BSP as follows:

PE_PERSONALDATA- Page attribute name
TITLE_P FORM
FIRSTNAME FIRST_NAME
LASTNAME LAST_NAME
POSTL_COD1 POSTAL_NUM
CITY CITY
COUNTRY COUNTRY

If an error occurs while the data is being read, pass on the error
message RETURN-MESSAGE to the page attribute ERR_MSG instead.
Activate the BSPs and test the BSP application.

248 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

Solution 10: Connections Using RFC
Task:
Continue to work with your BSP application or copy the model solution
from the last exercise. For this purpose, copy the NET200_S_14 to the
name ZNET200_##_15; ## is your group number. Adhere to the names
given and always enter single-digit group numbers with 0#. The model
solution for this exercise is NET200_S_15.

1. After you have entered the customer number in the appropriate field
on the page protected/customer.htmor protected/customer_htmlb.htm and
have clicked the corresponding transmission button, details on this
customer should be read from table KNA1 of the back-end system.
For this, use an appropriate BAPI. Beforehand, convert the customer
number into the internal format (leading zeroes). Proceed as follows:

In the event handler OnInputProcessing, call the function module
BAPI_CONVERSION_EXT2INT1 in the back-end system (destination:
NET200_RFC). Generate the module call using the BAPI browser.
Also copy the required types and data objects from the display in the
BAPI browser. Pass an internal table with the values to be converted
to the interface parameter DATA. Fill a line of this internal table with
the customer number. To do this, create a suitable work area (line type
identical with the internal table) and set the subfield of the work area.

OBJTYPE METHOD PARAMETER FIELD EXT_FOR-
MAT

�KNA1� �Create� �Customer� �Customer� customer_no

After the function module is called, the formatted customer number
is in the column INT_FORMAT of the internal table. Pass this value to
the data field CUSTOMER_NO.

a) Have the page protected/customer.htm or protected/cus-
tomer_htmlb.htm displayed in SE80. Edit the event handler
OnInputProcessing. Position the cursor in the case distinction after
the line WHEN ’GETCUSTOMER’ or WHEN ’getcustomer’.
Start a second mode and open any BSP in transaction SE80. Here
you can start the BAPI browser through the menu path Goto
→ BAPI Browser. Search for the entry NET200_RFC and enter
the name of the function module there. You can display types,
data objects, and the call by double-clicking them. Select the
source code and copy this into the source code of your page that
is displayed in the first mode.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 249

Unit 5: Special Topics NET200

The source code is shown below.

protected/customer.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

DATA:

customer_id TYPE s_customer,

book_id TYPE s_book_id,

it_book_id TYPE TABLE OF s_book_id,

wa_hop_list LIKE LINE OF it_flight_hop_list,

counter TYPE s_countnum,

cust_data TYPE bapiscunew,

wa_return TYPE bapiret2,

it_return TYPE TABLE OF bapiret2.

CASE event_id.

************************* WHEN BOOK *******************

WHEN ’BOOK’.

...

************************* WHEN GETCUSTOMER ************

WHEN ’GETCUSTOMER’.

* Fill internal table for data format conversion

DATA: t_data TYPE TABLE OF bapiconvrs.

DATA: wa_data LIKE LINE OF t_data.

DATA: t_return TYPE TABLE OF bapiret2.

wa_data-objtype = ’KNA1’.

wa_data-method = ’Create’.

wa_data-parameter = ’Customer’.

wa_data-field = ’Customer’.

wa_data-ext_format = customer_no.

APPEND wa_data TO t_data.

* Convert Customer Number to internal format

CALL FUNCTION ’BAPI_CONVERSION_EXT2INT1’

DESTINATION ’NET200_RFC’

TABLES

data = t_data

return = t_return.

Continued on next page

250 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

* Write back converted Customer Number to data field

READ TABLE t_data INDEX 1 INTO wa_data.

customer_no = wa_data-int_format.

************************* WHEN EXIT *******************

WHEN ’EXIT’.

...

ENDCASE.

ENDIF.

protected/customer_htmlb.htm - OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

DATA:

customer_id TYPE s_customer,

book_id TYPE s_book_id,

it_book_id TYPE TABLE OF s_book_id,

wa_hop_list LIKE LINE OF it_flight_hop_list,

counter TYPE s_countnum,

cust_data TYPE bapiscunew,

wa_return TYPE bapiret2,

it_return TYPE TABLE OF bapiret2.

IF event_id = cl_htmlb_manager=>event_id.

DATA: event TYPE REF TO cl_htmlb_event.

event = cl_htmlb_manager=>get_event(runtime->server->request).

CASE event->server_event.

************************* WHEN BOOK *******************

WHEN ’book’.

...

************************* WHEN GETCUSTOMER ************

WHEN ’getcustomer’.

* Fill internal table for data format conversion

DATA: t_data TYPE TABLE OF bapiconvrs.

DATA: wa_data LIKE LINE OF t_data.

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 251

Unit 5: Special Topics NET200

DATA: t_return TYPE TABLE OF bapiret2.

wa_data-objtype = ’KNA1’.

wa_data-method = ’Create’.

wa_data-parameter = ’Customer’.

wa_data-field = ’Customer’.

wa_data-ext_format = customer_no.

APPEND wa_data TO t_data.

* Convert Customer Number to internal format

CALL FUNCTION ’BAPI_CONVERSION_EXT2INT1’

DESTINATION ’NET200_RFC’

TABLES

data = t_data

return = t_return.

* Write back converted Customer Number to data field

READ TABLE t_data INDEX 1 INTO wa_data.

customer_no = wa_data-int_format.

************************* WHEN EXIT *******************

WHEN ’exit’.

...

ENDCASE.

ENDIF.

2. In the same way, call the function module that belongs to the BAPI
CUSTOMER.GETDETAIL1 in the back-end system. Here, too, copy
the types and data object definitions from the display in the BAPI
browser.

Hint: Only the interface parameters CUSTOMERNO,
PE_PERSONALDATA, and RETURN are required.

If successful (RETURN-TYPE = �S� or RETURN-TYPE = � �), pass on
the detailed information and the page attributes of the BSP as follows:

PE_PERSONALDATA- Page attribute name
TITLE_P FORM
FIRSTNAME FIRST_NAME

Continued on next page

252 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

LASTNAME LAST_NAME
POSTL_COD1 POSTAL_NUM
CITY CITY
COUNTRY COUNTRY

If an error occurs while the data is being read, pass on the error
message RETURN-MESSAGE to the page attribute ERR_MSG instead.
Activate the BSPs and test the BSP application.

a)

protected/customer.htm / protected/customer_htmlb.htm -
OnInputProcessing

* event handler for checking and processing user input and

* for defining navigation

...

************************* WHEN GETCUSTOMER ************

...

CALL FUNCTION ’BAPI_CONVERSION_EXT2INT1’

DESTINATION ’NET200_RFC’

TABLES

data = t_data

return = t_return.

READ TABLE t_data INDEX 1 INTO wa_data.

customer_no = wa_data-int_format.

* Get Details to selected Customer Number

DATA pe_personaldata TYPE bapikna101_1.

DATA return TYPE bapireturn1.

CALL FUNCTION ’BAPI_CUSTOMER_GETDETAIL1’

DESTINATION ’NET200_RFC’

EXPORTING

customerno = customer_no

IMPORTING

pe_personaldata = pe_personaldata

return = return.

* Transferr details to page attributes

Continued on next page

06-10-2004 © 2004 SAP AG. All rights reserved. 253

Unit 5: Special Topics NET200

IF return-type <> ’ ’ AND return-type <> ’S’.

err_msg = return-message.

ELSE.

err_msg = space.

form = pe_personaldata-title_p.

first_name = pe_personaldata-firstname.

last_name = pe_personaldata-lastname.

postal_num = pe_personaldata-postl_cod1.

city = pe_personaldata-city.

country = pe_personaldata-country.

ENDIF.

254 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Connecting to SAP Systems Through RFC

Lesson Summary

You should now be able to:
� Give an overview of RFC and BAPIs
� Give an overview of the important tools in the RFC/BAPI environment
� Call a BAPI in an SAP R/3 back-end system

06-10-2004 © 2004 SAP AG. All rights reserved. 255

Unit 5: Special Topics NET200

Lesson: Utilities for Creating BSP Applications

Lesson Overview
In this training unit, we will show you how utilities for creating Business
Server Pages (for example, external tools) can be used.

Lesson Objectives
After completing this lesson, you will be able to:

� Implement utilities, such as external tools, to efficiently develop BSP
applications

Business Example
Developing BSPs will be made much more efficient if you use utilities such
as Pretty Printer, Tag Library, or the standard publishing tools.

Web Application Builder
In order to be able to process a BSP application and the Business Server
Pages contained therein, use the toolWeb Application Builder. The Web
Application Builder is integrated in the Object Navigator (Transaction
SE80) and triggered automatically as soon as you commence processing
(creating or changing a BSP application or a Business Server Page).

To process the Business Server Pages, you have an built-in editor at your
disposal. The event handlers, which contain ABAP source code only, have
the full range of ABAP Editor functions - for example, Template or Pretty
Printer. The ABAP Editor functions are only available to a limited degree
for the layout implementation of a page that may contain HTML, ABAP, as
well as JavaScript language elements. For example, there is a syntax check
available for ABAP scripting parts of a page, but there is no syntax check
for other implemented languages (HTML, JavaScript).

As of SAP Web AS 6.20 with Support Package 3, you also have Pretty
Printer available in the layout of pages with flow logic, views, and page
fragments. In this way, the individual page components (ABAP scripting,
JavaScript scripting, static source code, BSP extensions) can be aligned
clearly in relationship to one another.

256 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Utilities for Creating BSP Applications

Figure 91: The Web Application Builder

The Tag Browser enables you to copy HTML tags, BSP directives, WML
tags, or elements from BSP extensions by dragging them to the layout
implementation. By double-clicking the respective BSP element, you can
branch to the documentation. Using the Tag Browser requires that the
user knows the exact meaning of the individual tags and their attributes
because there is no access to documentation for HTML tags, WML tags, or
BSP directives. The Tag Browser is integrated in the Object Navigator.

Using External HTML Editors
To implement the HTML source code, you can also work with local
external HTML editors (for example, MS FrontPage�, Macromedia
Dreamweaver� or Adobe GoLive�). For this purpose, you must execute
two steps in the Web Application Builder:

1. Choose the menu path Utilities→ Setting and enter the path for the
external application in the tab page Business Server Pages.

2. Start the external application under the menu path Edit→ Start Local
HTML Editor.

As soon as you close the external application, the system asks whether the
page is to be reloaded. If you confirm this, the system copies the locally
processed HTML source text into the page layout.

06-10-2004 © 2004 SAP AG. All rights reserved. 257

Unit 5: Special Topics NET200

You can implement a local HTML editor - that is, one that is installed on
your front end - when you are creating the page layout. However, this
means that you can always process and save only one page at a time. First,
you have to log on to the SAP Web Application Server through the SAP
GUI and start the SAP Web Application Builder before the BSP can be
processed in the external editor.

In practice, it will generally be the case that specialized Web designers
design the layout. These people generally have no access to the SAP Web
Application Server, nor should they receive such access.

Using the WebDAV (Distributed Authoring and Versioning) protocol,
which is an enhancement of the HTTP protocol, you can access the layout
of the BSPs stored in the database of the SAP Web Application Server
directly from within a WebDAV client. The SAP Web Application Server
in this case plays the role of the WebDAV server. For this purpose, it
is equipped with an appropriate WebDAV service (BSP_DEV). This is
a special HTTP request handler that implements a remote connection
through the WebDAV protocol. Here the WebDAV service is implemented
through a global ABAP class (CL_O2_HTTP_WEBDAV).

Hint: The delivered services can be found in transaction SICF.
Using this transaction, you can also create new services for yourself.

The following scenarios are possible:

� The WebDAV client is used as an external editor.
� You create the layout with the help of a WebDAV client in the form of

HTML pages.

In the first scenario, the layout of BSPs that have already been created
using the Web Application Builder can be exported with the help of the
WebDAV client, edited in an easy manner, and then saved again to the
database of the SAP Web Application Server.

In the second scenario, the HTML pages are then stored by means of a
mass import (together with graphics, CSS, and so on) in the database
of the SAP Web Application Server. At first, all the imported objects
are interpreted as MIME objects and therefore managed in the MIME
Repository. However, the HTML pages can be easily converted into BSPs
and afterwards processed in the Web Application Builder.

258 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Utilities for Creating BSP Applications

Figure 92: Implementing the WebDAV Service

The WebDAV server is accessed by the WebDAV client in the Windows
environment through a so-called Web folder. This first needs to be defined.

1. Creating a Web folder from the Windows Explorer (usingWeb Folders
or My Network Places).

2. Here you must use the URL of the service in question:

http://<server-URL>:<port>/sap/bc/bsp_dev

Hint: Make sure that the WebDAV service is active and the
client for which the logon is to take place is stored in the
service tree.

06-10-2004 © 2004 SAP AG. All rights reserved. 259

Unit 5: Special Topics NET200

Lesson Summary

You should now be able to:
� Implement utilities, such as external tools, to efficiently develop BSP

applications

260 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

Lesson: Other Topics

Lesson Overview
This lesson provides an overview of special topics such as Mobile Business,
SAP Smart Forms integration in BSP applications, sending mails from
BSP applications, and the use of the SAP Web Application Server as an
HTTP client.

Lesson Objectives
After completing this lesson, you will be able to:

� Describe which steps are required to send mails from BSP
applications, integrate SAP Smart Form documents into BSP
applications, and create Web application for mobile devices.

Business Example
You want to see which other possibilities the BSP programming model
offers.

Mobile Business
It is generally predicted that there will be increasing importance attached
to the use of mobile terminals, such as mobile phones, laptops, or
handheld devices. The current GSM standard (Global Standard for
Mobile Communication) will be replaced by UMTS (Universal Mobile
Telecommunications System) and will enable a much greater data transfer
rate (up to 2 MBits/s). In this way, volume-intensive applications will be
possible.

Mobile terminals are already being used for SAP applications, such as
mySAP CRM and mySAP PLM.

06-10-2004 © 2004 SAP AG. All rights reserved. 261

Unit 5: Special Topics NET200

Figure 93: Overview: Architecture for Mobile Terminals

To write business applications for mobile terminals, you must take factors
such as display size and color assignment into consideration. Likewise,
browser functions that are used on these terminals are standardized.
Therefore, the server used must be able to recognize which client has sent
the request and it must be possible to format the layout accordingly.

Figure 94: Recognizing the Client

262 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

You need to receive information via the client - for example, which
language can be used (HTML,WML), what the size and form of the display
is, whether special micro-browser properties should be considered. All
this information must be available if applications are to function properly
on mobile terminals (and be user-friendly).

Figure 95: Examples of Table Display

Through the IF_CLIENT_INFO interface, the Internet Communication
Framework of the SAPWeb Application Server provides over 100 methods
that can be used to query all the necessary information on the client at
runtime.

� GET_BROWSER_CATEGORY
� GET_BROWSER_NAME
� GET_BROWSER_OS
� GET_CSS_SUPPORTED
� GET_FORM_FACTOR
� GET_JAVA_SUPPORTED
� GET_PAGE_SIZE_MAX
� GET_SOUND_SUPPORTED
� GET_TITLE_SUPPORTED

To use the interface methods, access is done through the global object
RUNTIME.

06-10-2004 © 2004 SAP AG. All rights reserved. 263

Unit 5: Special Topics NET200

data: client_info type ref to if_client_info,
b_name type string.

client_info = runtime->client_info.
client_info->get_browser_name(value = b_name).

All information on a client is kept in the form of an internal table as a
private attribute of the RUNTIME object. This table is empty at first.
When a method of the interface IF_CLIENT_INFO is called for the first
time, the system performs a device recognition query. According to the
device determined, this internal table will be supplied with device-specific
information. The HTTP header field USER-AGENT is analyzed for device
recognition. The value of this field contains the client ID. Possible clients
are maintained in the database table MOB_DEVCFG and are identified
through this table. The properties of each of these clients are stored in the
database table MOB_DEVCAP and are copied from here into the internal
table of the RUNTIME object. In this way, new devices can be easily
identified through new entries in this table. On the other hand, this means
that the database table must first be filled with contents for all clients to
be supported. You can maintain over 100 attributes (screen height, screen
width, color depth, and so on) for each device type.

In the layout of a Business Server Page, you can use the markup language
WML for programming. When you create a WML-based page, choose the
appropriate WML suffix (for example, start.wml). If the system determines
only at runtime whether a WAP mobile phone or a regular Web browser
is serving as a client, do not enter a prefix for the Business Server Page.
Instead, find out - using the GET_HEADER_FIELD(NAME = �ACCEPT�)
method - which language is to be used in the layout.

264 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

Figure 96: Code Example

For further information on the subject �Using Mobile Devices as
Client�, refer to the following links: www.sap.com/mobile and
service.sap.com/mobile.

SAP Smart Forms and SAP Web Forms
With SAP Smart Forms, you have a tool available as of SAP R/3 Release
4.6C. With this tool you can quickly create and design forms for printing
your business documents - for example, invoices or dunning forms. You
can print these using standard SAP programs. Using SAP Smart Forms ,
you can also create your own forms and programs independently of the
SAP standard templates.

06-10-2004 © 2004 SAP AG. All rights reserved. 265

Unit 5: Special Topics NET200

Figure 97: The Maintenance Transaction SMARTFORMS

Using the transaction SMARTFORMS you call the SAP Form Builder for
form maintenance. Here you define the following information:

� The form layout - for example, the positions of the text fields or
graphics

� The interface - that is, which data and which type of data is to be
printed or returned during form processing

� The processing logic - for example, conditions for processing certain
form elements

Then you must activate the form. The system automatically generates a
function module here.

266 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

Figure 98: Principle of Form Printing Using SAP Smart Forms

The process for calling an SAP Smart Form from within an application
is as follows:

1. The application reads all the relevant business data (for example,
from database tables).

2. Then it calls the generated form function module and passes the data
to it through the latter�s interface.

3. A form processor, which is automatically called together with the
function module, takes care of the actual processing.

With the SAP Web Application Server, it is possible to include SAP Smart
Forms (or to be more precise, the function modules generated from them)
in Business Server Pages and to display them in a standard Web browser.
There the user can, if required, make his or her entries and return the SAP
Web Form to the SAP Web Application Server for further processing by
pressing the appropriate button. It is not necessary to create new forms
for Business Server Pages because you can use the same forms as you
use for printing or faxing. Additional elements like submit buttons and
checkboxes can be integrated, if necessary. When printing the form, these
elements are automatically suppressed.

So that SAP Smart Forms can be integrated into the Business Server Pages,
their respective function modules should not return, as standard, the SAP
spool format (OTF = Output Text Format), but HTML format. The output
is made up of the following components: pure data in XSF format (XML
for SAP Smart Forms), information on formatting as CSS (Cascading Style
Sheet), and the data in HTML format. The output is transformed into

06-10-2004 © 2004 SAP AG. All rights reserved. 267

Unit 5: Special Topics NET200

HTML format on the server side by an XSLT program (Extensible Style
Language Transformation). The browser does not need any extensions
for display purposes.

There are two ways of outputting forms in HTML: statically or
dynamically. In the output options for the form, you can set the output
format to "XSF Output + HTML" in the SAP Form Builder or set the
respective switch in the exporting parameter output_options when you
call the generated function module.

Figure 99: Web Form Principle

You typically call forms in the event handlerOnInitialization in a Business
Server Page. For this purpose, the importing parameter job_output_info
must have a variable of the type ssfcrescl , which, after being called, contains
the data and information to be processed. You then evaluate this variable
(after conversion) using the standard methods response->set_header_field
and response->set_data so that an HTTP response can be created.

Evaluation of Form Input:

You can integrate the following input-ready fields into a SAP Smart
Form: checkboxes, radio button groups, submit buttons, list boxes, as
well as text fields. Also, you can mark elements as hidden. To make
fields ready for input, call up the SAP Form Builder and, on the tab page
for Web properties for text elements, mark the required fields with the
respective attributes. All the input-ready fields in a form are displayed
in a single HTML form. So that this form can be sent, for example, to a
Business Server Page, there must be at least one submit pushbutton on the

268 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

form, and the field xsfaction in the function module exporting parameter
output_optionsmust contain the target URL. The next Business Server Page
could then evaluate the inputs using the method request->get_form_fields.

For more information, use the online help for SAP Smart Forms
(component abbreviation: BC-SRV-SSF), Unit �Web Forms for Internet
Applications�.

Sending Mails from BSP Applications
From BSP applications, you can also send mails using global classes
and methods that are provided by the Business Communication Service
(BCS). Here, the following requirements must be fulfilled by the SAP Web
Application Server:

� If mails are to be sent using the SMTP protocol, the SMTP plug-in
must be available and configured in the profile.

In this case, the SMTP node must be configured and activated in
transaction SCOT.

� If mails are to be sent using the SAP Internet Mail Gateway, the IMGW
node must be configured and activated in the transaction SCOT.

� You must have a mail domain assigned to your system.
� In SU01, a mail address of the type INT (communication type e-mail)

must be assigned to the sender (system user).

06-10-2004 © 2004 SAP AG. All rights reserved. 269

Unit 5: Special Topics NET200

Sending a Mail from a BSP Application

1. You must create an object representing the mail request.

This requires the global class CL_BCS and the static method
create_persistent.

DATA: send_request TYPE REF TO cl_bcs.

* create persistent send request

send_request = cl_bcs=>create_persistent().

2. You must create a mail document.

This requires the global class CL_DOCUMENT_BCS and the static
method create_document. The mail text is managed in an internal table.

DATA: document TYPE REF TO cl_document_bcs.

DATA: mail_itab TYPE soli_tab,

textlength TYPE so_obj_len.

The internal table consists of a column of the type character with
length 255. Fill this table with the text you want to send. For example,
this can be a standard text that is stored in the database or you can set
it up individually using text elements.

document = cl_document_bcs=>create_document(

i_type = ’RAW’

i_text = mail_itab

i_length = textlength

i_subject = ’NET200 - test mail’).

Now you assign the document you have created to the mail request.

* add document to send request

send_request->set_document(document).

3. You must define the sender name.

This requires the global class CL_SAPUSER_BCS and the static
method create.

DATA: sender TYPE REF TO cl_sapuser_bcs.

Continued on next page

270 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

* get sender object

sender = cl_sapuser_bcs=>create(sy-uname).

Now you assign the sender you have created to the mail request.

* add sender

send_request->set_sender(sender).

4. You must define the receiver name.

For this you require the global class CL_CAM_ADDRESS_BCS,
the interface IF_RECIPIENT_BCS, and the static method
create_internet_address.

CLASS: cl_cam_address_bcs DEFINITION LOAD.

DATA: address TYPE REF TO if_recipient_bcs.

DATA: c_address TYPE adr6-smtp_addr.

The recipient is created and passed to the mail request.

* create recipient

MOVE recipient TO c_address.

address =

cl_cam_address_bcs=>create_internet_address(c_address).

* add recipient to send request

send_request->add_recipient(

EXPORTING i_recipient = address

i_express = ’ ’

i_copy = ’ ’

i_blind_copy = ’ ’).

5. In the last step, you release the mail request. The mail is sent
asynchronously.

* send document

send_request->send().

COMMIT WORK.

06-10-2004 © 2004 SAP AG. All rights reserved. 271

Unit 5: Special Topics NET200

Using the SAP Web Application Server as a Client
The SAP Web Application Server can also function as a client: It can send
a request to a HTTP server and receive a response. With the help of the
methods of the IF_HTTP_CLIENT interface, the request is set up in an
ABAP program, sent, and the response is received and evaluated. Another
SAP Web Application Server or an arbitrary HTTP server can function as
an HTTP server.

Figure 100: Client Role of the SAP Web Application Server

The client role and server role of the SAP Web AS can also be combined.
You can thus request an object of an HTTP server from within a BSP
application using HTTP. This object can then be processed or added
directly to the HTTP response of the SAP Web AS. As a possible scenario,
you could, within a BSP application, request data from a content server
in form of an XML document; in the BSP application, you could then
transfer this data to ABAP attributes using an XSLT transformation and
then display it in the layout of the BSP.

You must depict all the necessary steps in the ABAP program. So, too, the
evaluation of the response. For this purpose, suitable methods are available
(for example, GET_CDATA in order to get the page content as a string).

For details on this topic, refer to the documentation.

272 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Lesson: Other Topics

Lesson Summary

You should now be able to:
� Describe which steps are required to send mails from BSP

applications, integrate SAP Smart Form documents into BSP
applications, and create Web application for mobile devices.

Related Information

� For more information on SAP Smart Forms and SAP Web Forms,
refer to the online documentation. (Component abbreviation:
BC-SRV-SSF), Unit �Web Forms for Internet Applications�.

� For further information on the topic of using mobile devices as a
client, refer to www.sap.com/mobile and service.sap.com/mobile.

� For more information on the topic of using the SAP Web Application
Server as a client, refer to the online documentation (component
BC-MAS). Test programs for this topic are in the package SHTTP.

06-10-2004 © 2004 SAP AG. All rights reserved. 273

Unit Summary NET200

Unit Summary
You should now be able to:
� Describe different logon procedures
� Define services in transaction SICF and there set the logon procedure

to be used
� Create anonymous users for a service
� Set up applications with public and protected areas
� Create Internet users dynamically
� Give an overview of RFC and BAPIs
� Give an overview of the important tools in the RFC/BAPI environment
� Call a BAPI in an SAP R/3 back-end system
� Implement utilities, such as external tools, to efficiently develop BSP

applications
� Describe which steps are required to send mails from BSP

applications, integrate SAP Smart Form documents into BSP
applications, and create Web application for mobile devices.

274 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Course Summary

Course Summary
You should now be able to:

� Describe the system architecture of the SAP Web Application Server
� Describe the request/response cycle
� Name the components of a Business Server Page and a BSP

application and describe their use
� Develop Web applications based on Business Server Pages
� Implement the layout of Business Server Pages using HTMLB

elements
� Implement language-specific BSP applications
� Explain how to assign a desired corporate identity design without

modification by assigning a topic
� Use data from other SAP systems by calling BAPIs in your BSP

applications

06-10-2004 © 2004 SAP AG. All rights reserved. 275

Course Summary NET200

276 © 2004 SAP AG. All rights reserved. 06-10-2004

Appendix 1
UML Diagrams

SICF: Request Handler

Figure 101: BSP Request Handler and User-Defined Request Handler

06-10-2004 © 2004 SAP AG. All rights reserved. 277

Appendix 1: UML Diagrams NET200

The Internet Communication Framework (ICF)

Figure 102: The ICF Manager (CL_HTTP_SERVER)

278 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Appendix 1: UML Diagrams

Figure 103: Classes CL_HTTP_REQUEST and CL_HTTP_RESPONSE

06-10-2004 © 2004 SAP AG. All rights reserved. 279

Appendix 1: UML Diagrams NET200

Classes and Interfaces in the BSP Programming Model
(Examples)

Figure 104: Class CL_BSP_NAVIGATION

280 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Appendix 1: UML Diagrams

Figure 105: Class CL_BSP_RUNTIME

Figure 106: Class CL_BSP_PAGE

06-10-2004 © 2004 SAP AG. All rights reserved. 281

Appendix 1: UML Diagrams NET200

The BSP Extension Framework

Figure 107: Using the General Basis Class CL_BSP_ELEMENT to Define
Elements A and B of a BSP Extension X

282 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Appendix 1: UML Diagrams

Figure 108: HTMLB: Using the Special Basis Class CL_HTMLB_ELEMENT to
Define Elements

06-10-2004 © 2004 SAP AG. All rights reserved. 283

Appendix 1: UML Diagrams NET200

MVC Design Pattern

Figure 109: Controller Class

284 © 2004 SAP AG. All rights reserved. 06-10-2004

NET200 Appendix 1: UML Diagrams

Figure 110: Model Class

06-10-2004 © 2004 SAP AG. All rights reserved. 285

Appendix 1: UML Diagrams NET200

286 © 2004 SAP AG. All rights reserved. 06-10-2004

Index
B
BAPI browser, 244
BSP application, 15

application class, 19
MIME objects, 19
navigation structure, 19
protected area, 225
public area, 225
theme, 19

BSP element, 143
BSP extension, 143
Business Application
Programming Interface
(BAPI), 242

Business Communication
Service (BCS), 269

Business Server Page, 16
BSP directive, 17
event handler, 27
layout, 16, 27
page attribute, 27, 30
page fragment, 16
properties, 27
server-side scripting, 16
type definitions, 28

C
cascading style sheet, 121
client role, 272
client-side cookie, 90
cookie, client-side, 90
cookie, server-side, 89, 92
E
event handler, 28

OnCreate, 29
OnDestroy, 30
OnInitialization, 29
OnInputProcessing, 30,
46

OnManipulation, 30
OnRequest, 29

external HTML editors, 257
G
global object, 94
H
hidden field, 88
HTML form, 42
HTMLB, 145
HTTP plug-in, 5
HTTP service tree, 8�9
I
interaction model, 7
Internet Communication
Framework, 7

Internet Communication
Manager (ICM), 2

Internet server cache, 6
M
MIME objects, 19
MIME Repository, 112
Mobile Business, 261
Model View Controller
(MVC), 192

MVC
architecture examples,
194

N
navigation

dynamic, 46
static, 45

navigation structure, 19
O
Online Text Repository

OTR alias texts, 130

06-10-2004 © 2004 SAP AG. All rights reserved. 287

Index NET200

OTR long texts, 130
Online Text Repository
(OTR), 129

P
page attribute, 27, 30
page attributes

auto page attributes, 51
R
request/response cycle, 7
S
SAP Smart Forms, 265
SAP system handler, 5
SAP Web Application
Server, 2

SAP Web Forms, 267
sending mails, 269
server-side cookie, 89, 92
service, definition, 8
SICF, 8
stateful, 79
stateless, 80
T
Tag Browser, 257
theme, 19, 122
W
Web Application Builder,
256

WebDAV, 258

288 © 2004 SAP AG. All rights reserved. 06-10-2004

Feedback
SAP AG has made every effort in the preparation of this course to
ensure the accuracy and completeness of the materials. If you have any
corrections or suggestions for improvement, please record them in the
appropriate place in the course evaluation.

06-10-2004 © 2004 SAP AG. All rights reserved. 289

	toc
	Icons in Body Text
	The SAP Web Application Server
	Lesson:
	System Architecture
	The HTTP Plug-In
	Logging handler
	The Internet Server Cache
	Internet Communication Framework
	The HTTP Service Tree

	Business Server Pages: Programming Model
	Lesson:
	BSP Application
	Business Server Pages (BSPs)
	Exercise 1: Creating a BSP Application

	Lesson:
	Components of a Business Server Page
	Properties (A, V, S)
	Event Concept for Business Server Pages
	Executed first
	Executed every time a BSP is accessed
	Is run through after OnRequest
	Executed under certain conditions (after a user dialog)
	Used for manipulating the HTTP data stream according to the layo
	Is the last to be executed
	Data Definition and Visibility Within a Business Server Page
	Exercise 2: Creating a BSP Application

	Lesson:
	Making User Input Possible with HTML Forms
	Specifying the Next Page Statically
	Specifying the Next Page Dynamically
	Data Transfer Between BSPs
	Error Handling
	Global Objects
	Exercise 3: Enabling and Processing User Input and Navigating to

	Lesson:
	Stateful and Stateless BSP Applications
	A large load is created on the SAP Web Application Server: Web a
	Resources on the SAP Web Application Server are used only during
	Data Transfer in Stateful BSP Applications
	Canceling Stateful BSP Applications
	Stateful BSP Applications Without the Use of Cookies
	Techniques for Retaining Data in a Stateless BSP Application
	Exercise 4: Session Handling

	Layout and Language
	Lesson:
	The MIME Repository
	Caution: When you copy BSP applications, the folders, but not th
	Exercise 5: Including MIME Objects

	Lesson:
	Cascading Style Sheets (CSS)
	The Theme Concept
	Exercise 6: Adjusting the Layout

	Lesson:
	Internationalization Using the Online Text Repository (OTR)
	Providing Multilanguage BSP Applications
	Exercise 7: Internationalization

	BSP Extensions
	Lesson:
	BSP Extensions and BSP Elements
	BSP elements form an abstraction layer. This enables uniform pag
	The BSP Extension HTMLB
	Event Handling
	server_event
	Data Extraction
	Adjusting the Design
	Demos, Documentation, and Notes
	Exercise 8: BSP Extension HTMLB

	Lesson:
	Creating BSP Elements
	BSP Elements: Functionality
	Composite Elements

	Lesson:
	MVC Design Pattern
	Architecture Examples
	Model, View, and Controller: Definition and Properties
	Views and Controllers: Creating and Using
	Main Controller and Subcontroller
	Models
	Error Handling
	Demos, Documentation, and Notes

	Special Topics
	Lesson:
	Support for Different Logon Procedures
	The user does not need to log on, that is, the application is ac
	Service Options
	Defining an Anonymous User for a Service
	For this reason, there should be a user set in transaction SU01
	Applications with Public and Protected Areas
	Creating Internet Users
	Links Between Internet Users and Master Data
	Users in Back-End Systems
	Encrypting the Transferred Data
	Exercise 9: Security

	Lesson:
	System Landscape
	Overview of RFC and Tools
	Overview of BAPIs and Tools
	Released BAPIs are the standard interfaces for synchronous acces
	Calling a BAPI in a Back-End System
	Exercise 10: Connections Using RFC

	Lesson:
	Web Application Builder
	Using External HTML Editors

	Lesson:
	Mobile Business
	GET_BROWSER_CATEGORY
	SAP Smart Forms and SAP Web Forms
	Sending Mails from BSP Applications
	Using the SAP Web Application Server as a Client

	SICF: Request Handler
	The Internet Communication Framework (ICF)
	Classes and Interfaces in the BSP Programming Model (Examples)
	The BSP Extension Framework
	MVC Design Pattern

	tables
	Important Elements in HTML Forms
	Attributes Used to Process Forms
	Input fields on the first page
	Input fields on the first page
	HTMLB Elements that Neither Trigger Server Events nor Permit Use
	HTMLB elements that support the triggering of server events
	HTMLB elements for which data extraction is supported
	The following page attributes that are no longer required
	New page attributes

