
Creating a BSP using the Model View Controller (MVC) technique

Tutorial 1 - Creating the View & the controller (htm page & events)

Step 1 - Create new BSP Application

Using SE80 create BSP Application (I.e. Zbsp_usingmvc).

Step 2 - Create new Controller (main.do)

Right click on BSP application name and select create->controller.
Enter name main.do or your own

name + description. Press the green tick to continue

Step 3 – Populate controller class (zcl_controller_01)

Enter the name of your controller class i.e. zcl_controller_01. We
also need to create this class

so double click on the name. Yes.

Step 4 – Creating controller class

Once you have double clicked on the controller class name and pressed
yes you will need to check the

properties tab and ensure its super class is CL_BSP_CONTROLLER2

Step 5 – Redefine Methods

You will have inherited a number of methods from the superclass. As
these methods work in much the

same way as events do within classic BSPs and ABAP you will now need
to redefine a number of these

methods. These are DO_INIT and DO_REQUEST

Step 6 – Redefine DO_INIT

Ensure you have this method available for change by pressing the
pencil button. Place your cursor

on the method called DO_INIT and press the redefine button.

For this current example you dont have to do anything in this method
but for a follow on exercise

you will be creating the MODEL instance in the DO_INIT method.

Step 7 – Redefine DO_REQUEST(call a layout of type VIEW)

Ensure you have this method available for change (done in previous
step). Place your cursor

on the method called DO_REQUEST and press the redefine button. In the
DO_request we will

call a layout(View). We create a reference variable referencing the
page and then call the method

create_view and pass it the actual view (not yet created). We then
call the view. Enter the

following code:

* Create reference variable from the interface if_bsp_page

 DATA: r_view TYPE REF TO if_bsp_page.

* Create object r_view with view_name main1.htm

* Layout is provided by view main1.htm

 r_view = create_view(view_name = 'main1.htm').

* Process view-> response is set accordingly

 call_view(r_view).

Step 8 – Create BSP Page (View)

Right click the BSP Application and create a new page called
main1.htm. When this is done

make sure you save and activate it.

Step 9 – Activate whole BSP Application

Tutorial 2 - Creating the Model (Class to to perform functionality
i.e. retrieve data)

Step 1 - Using the Model class within DO_INIT (note: Model class not
created yet!)

From within SE80 double click on main.do to select it, now double
click on the controller class.

Double click on the DO_INIT method. Now enter the following code into
the DO_INIT method & save.

method DO_INIT.
*CALL METHOD SUPER->DO_INIT
* .
* Create refernece variable based on your own class (not created yet)
data: r_model TYPE REF TO zcl_model_01.

* Create an instance of our Model class and use a widening cast to
load your
* reference variable r_model
r_model ?= me->create_model(
 class_name = 'ZCL_MODEL_01'
 model_id = 'mod_main').

* Use the r_model to call the select details method from your Model
class
r_model->select_details().
* Load attributes in your class attributes to hold the variable - make
it
* more 'global' so it can be seen by other methods.
me->r_model = r_model.
endmethod.

Step 2 – Create model class

Use SE80 or SE18 to create a new class, give it a name and
description.

Go to the properties tab and enter change mode, Press the Superclass
button and enter the

superclass cl_bsp_model. Save and activate

Step 3 – Define method of Model class

Select the methods tab and scroll to the bottom of the methods, now
enter a new method called

SELECT_DETAILS, as an instance method with public visibility.

Now double click the method to create it and enter the following code:

METHOD select_details .
 SELECT ebeln
 UP TO 1 ROWS
 INTO retvalue
 FROM ekko.
 ENDSELECT.
ENDMETHOD.

Step 4 – Define attributes of method

Click on the Model class attributes tab and enter the field 'RETVALUE'
as type ekko-ebeln, Ensuring it

is an instance attribute, which has public visibility. Now save and
activate the new model class!

Step 5 – Define atributes of the controller sub class

Now return to the controller class you created, accessed via the
controller page (i.e. main.do). Remember

the ABAP code you inserted to declare 'r_model' within the DO_INIT
method? You now need to declare this

attribute within the class attributes tab. It needs to be instance,
public and 'type ref to' your model

class (ZCL_MODEL_01). Save and Activate the controller class (
ZCL_CONTROLLER_01).

Step 6 – Display data from the model (update the page/view)

In-order to display the data from the model, we are going to use a
reference variable p_ord declared in

the page attributes .

Now make changes to the layout, so that the returned data is displayed
within and input field.

<%@page language="abap"%>

<%@extension name="htmlb" prefix="htmlb"%>

<htmlb:content design="design2003">
 <htmlb:page title = " ">
 <htmlb:form>
 <htmlb:textView text = "Purchase order"
 design = "EMPHASIZED" />
 <htmlb:inputField id = ""
 invalid = "false"
 value = "test"
 required = "true"/>

 <htmlb:button text = "Press Me"
 onClick = "myClickHandler" />
 </htmlb:form>
 </htmlb:page>
</htmlb:content>

Step 7 – Display data from the model (update controller)

Within the DO_REQUEST of the controller class (ZCL_CONTROLLER_01)
enter the code below to pass the

model reference back to the View. Save and activate everything.

METHOD do_request .

*CALL METHOD SUPER->DO_REQUEST

* .

 DATA: r_view TYPE REF TO if_bsp_page.

 r_view = create_view(view_name = 'main1.htm').

 r_view->set_attribute(name = 'p_ord'

 value = me->r_model).

 call_view(r_view).

ENDMETHOD.

Tutorial 3 - Event handling and calling a new view

Step 1 - Redefine DO_HANDLE_EVENT event

Return to the controller class you created in tutorial 1, accessed via
the controller page (i.e. main.do)

and double clicking on the cc name (ZCL_CONTROLLER_01). Go into
change mode and find the

DO_HANDLE_EVENT method and redefine it.

Step 2 - Insert code in to DO_HANDLE_EVENT

Enter the following ABAP code which handles a button click event:

method DO_HANDLE_EVENT .
*CALL METHOD SUPER->DO_HANDLE_EVENT
* EXPORTING
* EVENT =
* HTMLB_EVENT =
** HTMLB_EVENT_EX =
* GLOBAL_MESSAGES =
* RECEIVING
* GLOBAL_EVENT =
* .
 DATA: button_event TYPE REF TO CL_HTMLB_EVENT_BUTTON. "date
event
 DATA: date_event TYPE REF TO CL_HTMLB_EVENT_DATENAVIGATOR. "button
event

* Check if event being processed is a button event

 IF htmlb_event IS BOUND AND htmlb_event->name = 'button'.
* Use widening cast to take generic event to specific event (button
event)
* - Basically moves current event structure into button event
structure,
* - so that the button event now contains the relevant data
 button_event ?= htmlb_event.
*
* Contains value store in the 'onClick' parameter on page view
 if button_event->server_event = 'myClickHandler'.
 page = 'page2.htm'.
 endif.
 ENDIF.

* Check if event being processed is a date event
* - the below code is simply for further demonstration of above syntax
 IF htmlb_event IS BOUND AND htmlb_event->name = 'dateNavigator'.
 date_event ?= htmlb_event.
 ENDIF.
endmethod.

Step 3 – Create attributte to store next page value

Return back to Class interface and define a new class attributte as
type string to store next page

value!

Step 4 – Modify DO_REQUEST method

You now need to modify the DO_REQUEST code so that it calls the event
handling and controls which

page to display based on the new page variable/attribute. The event
handling is called using the

'dispatch_input()' command.

METHOD do_request .
*CALL METHOD SUPER->DO_REQUEST
* .
 DATA: r_view TYPE REF TO if_bsp_page.

* Calls event handler DO_HANDLE_EVENT
 dispatch_input().

 IF page EQ 'main1.htm' or page EQ space.
 r_view = create_view(view_name = 'main1.htm').

 r_view->set_attribute(name = 'p_ord'
 value = me->r_model).
 ELSEIF page = 'page2.htm'.
 r_view = create_view(view_name = 'page2.htm').

 r_view->set_attribute(name = 'p_ord'
 value = me->r_model).
 ENDIF.

** Create object r_view with view_name main1.htm
** Layout is provided by view main1.htm
* r_view = create_view(view_name = 'main1.htm').
* r_view->set_attribute(name = 'p_ord'
* value = me->r_model).
 call_view(r_view).
ENDMETHOD.

Step 5 – Create second View

Firstly save and activate the controller class. The next stage is to
create the second view which

is executed from within DO_REQUEST. This will need to be called
'page2.htm' unless you modify the

code you have just placed in the DO_REQUEST method. The simplest way
to do this is to copy your

existing view (main1.htm), You might want to change some text slightly
so that you can distanguish

between the 2 page.

 i.e. change PO text to 'Purchase order2'.

Step 6 – Save and activate

Ensure you save and activate all the objects that have been changed
during this tutorial.

